¹Ú¸· ¾ÐÀü ¼ÒÀÚ ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç°º°, Àç·áº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®
Thin Film Piezoelectric Devices Market Forecasts to 2030 - Global Analysis by Product (Piezoelectric Sensors, Piezoelectric Actuators, Piezoelectric Energy Harvesters and Other Products), Material, Application, End User and By Geography
»óǰÄÚµå : 1679194
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 03¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 6,004,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,596,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 9,187,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,851,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é, ¹Ú¸· ¾ÐÀü ¼ÒÀÚ ¼¼°è ½ÃÀåÀº 2024³â 58¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È CAGR 16.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 148¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¹Ú¸· ¾ÐÀü ¼ÒÀÚ´Â ¾ÐÀü Àç·áÀÇ ¾ãÀº ÃþÀ» »ç¿ëÇÏ¿© ±â°è ¿¡³ÊÁö¸¦ Àü±â ¿¡³ÊÁö·Î º¯È¯Çϰųª ¹Ý´ë·Î Àü±â ¿¡³ÊÁö¸¦ ±â°è ¿¡³ÊÁö·Î º¯È¯ÇÏ´Â ¼ÒÇü ºÎǰÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀÚ´Â È­ÇÐ ÁõÂøÀ̳ª ½ºÆÛÅ͸µ°ú °°Àº ¼º¸· ±â¼úÀ» »ç¿ëÇÏ¿© Á¦Á¶µÇ´Â °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ ¸¶ÀÌÅ©·Î Àü±â ±â°è ½Ã½ºÅÛ(MEMS)¿¡ ÅëÇÕµÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¼ÒÀÚµéÀº ¹Î°¨µµ°¡ ³ô°í, ÀÀ´ä ½Ã°£ÀÌ ºü¸£¸ç, Å©±â°¡ À۱⠶§¹®¿¡ ¼¾¼­, ¾×Ãß¿¡ÀÌÅÍ, ¿¡³ÊÁö ¼öÈ®, ÀÇ·á¿ë ÃÊÀ½ÆÄ µî¿¡ ÀûÇÕÇÕ´Ï´Ù.

¿¡³ÊÁö ¼öÈ®ÀÇ ¹ßÀü

¿¡³ÊÁö ¼öÈ®ÀÇ ¹ßÀüÀº È¿À²¼º, ¼ÒÇüÈ­, ³»±¸¼ºÀ» Çâ»ó½ÃÄÑ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, PZT ¹× AlN°ú °°Àº Àç·áÀÇ Çõ½ÅÀº Ãâ·ÂÀ» Çâ»ó½ÃÄÑ ¿þ¾î·¯ºí, IoT ¼¾¼­, ¹ÙÀÌ¿À ÀÇ·á±â±â¿¡ Æø³Ð°Ô Àû¿ëµÉ ¼ö ÀÖµµ·Ï Çϸç, MEMS ÅëÇÕÀ» Æ÷ÇÔÇÑ Á¦Á¶ ±â¼úÀÇ °­È­´Â È®À强 ¹× ºñ¿ë È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÇコÄɾî, ÀÚµ¿Â÷, »ê¾÷ ÀÚµ¿È­ µîÀÇ »ê¾÷¿¡¼­ ÀÚ°¡¹ßÀüÇü ÀüÀÚÁ¦Ç° ¹× ¹«¼± ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, Áö¼Ó°¡´ÉÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀÇ À°¼ºÀ¸·Î ½ÃÀå µµÀÔÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

³ôÀº Á¦Á¶ ºñ¿ë

¹Ú¸· ¾ÐÀü ¼ÒÀÚ »ê¾÷ÀÇ ³ôÀº Á¦Á¶ ºñ¿ëÀº °æÁ¦¼º°ú È®À强À» Á¦ÇÑÇÏ¿© ¼ºÀåÀ» ÀúÇØÇÕ´Ï´Ù. °í°¡ÀÇ ¿øÀÚÀç, º¹ÀâÇÑ Á¦Á¶ ÀýÂ÷, ÷´Ü ±â°è·Î ÀÎÇØ Á¦Á¶ ºñ¿ëÀÌ »ó½ÂÇϰí, »õ·Î¿î °æÀïÀÚ¸¦ ¸·°í, ±â¾÷ÀÇ ¼öÀÍ·üÀ» ³·Ãß°Ô µË´Ï´Ù. ¶ÇÇÑ, ³ôÀº ºñ¿ëÀ¸·Î ÀÎÇØ ±â¼ú Çõ½Å°ú ºñ¿ë Áß½ÉÀÇ ¾ÖÇø®ÄÉÀ̼ǿ¡ ´ëÇÑ Ã¤ÅÃÀ» ¹æÇØÇÏ°í ½ÃÀå È®ÀåÀ» Á¦ÇÑÇÕ´Ï´Ù. ÀÌ·Î ÀÎÇØ »ý»êÀÚ´Â ±Ô¸ðÀÇ °æÁ¦¸¦ ´Þ¼ºÇÏ±â ¾î·Æ°í, ÀÌ´Â ±â¼ú Çâ»ó°ú Àü¹ÝÀûÀÎ °æÀï·Â¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

»ê¾÷ ÀÚµ¿È­¿¡ ´ëÇÑ Ã¤¿ë È®´ë

¹Ú¸· ¾ÐÀü ¼ÒÀÚ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº »ê¾÷ ÀÚµ¿È­ÀÇ È°¿ë È®´ë°¡ ¹Ú¸· ¾ÐÀü ¼ÒÀÚ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀ̸ç, °íÁ¤¹Ð ¼¾¼­, ¾×Ãß¿¡ÀÌÅÍ, ¿¡³ÊÁö ¼öÈ®±â¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¹Ú¸· ¾ÐÀü ¼ÒÀÚ´Â ·Îº¿ °øÇÐ, °øÁ¤ Á¦¾î, ½º¸¶Æ® Á¦Á¶¿¡ ÀûÇÕÇÕ´Ï´Ù. ÀÚµ¿È­¸¦ À§Çؼ­´Â È¿°úÀûÀ̰í, ÀÛ°í, ¹ÝÀÀ¼ºÀÌ ¶Ù¾î³­ ÄÄÆ÷³ÍÆ®°¡ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× ¿¹Áöº¸ÀüÀº Á¤È®ÇÏ°í ºü¸¥ ±â°è-Àü±â º¯È¯À» Á¦°øÇÏ´Â ´É·Â¿¡ ÀÇÇØ Áö¿øµË´Ï´Ù. »ê¾÷°è°¡ ºñ¿ë ¹× È¿À²¼º Àý°¨À» À§ÇØ ÀÚµ¿È­¸¦ ¿ì¼±½ÃÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ÀåÄ¡ ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

Àç·áÀÇ Á¦¾à

ÀÌ »ê¾÷¿¡¼­´Â Àç·áÀÇ Á¦¾àÀÌ ¼º´É, ³»±¸¼º, È®À强À» ¹æÇØÇϰí ÀÖ½À´Ï´Ù. ³·Àº ¾ÐÀü °è¼ö, Àç·á ÇÇ·Î, ¿­ ºÒ¾ÈÁ¤¼º µîÀÇ ¹®Á¦·Î ÀÎÇØ È¿À²°ú ¼ö¸íÀÌ °¨¼ÒÇÕ´Ï´Ù. Á¦Á¶ÀÇ À¯¿¬¼ºÀº ±âÆÇ°ú ÁõÂø ¹æ¹ýÀÇ È£È¯¼º ¹®Á¦·Î ÀÎÇØ Á¦Çѵ˴ϴÙ. ¶ÇÇÑ, °í°¡ÀÇ Àç·á³ª Èñ¼Ò¼º ÀÖ´Â Àç·á·Î ÀÎÇØ Á¦Á¶ ºñ¿ëÀÌ »ó½ÂÇÏ¿© »ó¿ëÈ­¸¦ Á¦ÇÑÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¦ÇÑÀº ±â¼ú Çõ½ÅÀ» ÀúÇØÇϰí ÀÇ·á±â±â, ¿¡³ÊÁö ¼öÈ®, MEMS ¼¾¼­ µîÀÇ ºÐ¾ß¿¡¼­ÀÇ µµÀÔ¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 »çÅ·ΠÀÎÇØ ¹Ú¸· ¾ÐÀü ¼ÒÀÚ ½ÃÀåÀº °ø±Þ¸ÁÀÇ È¥¶õ, Á¦Á¶ Áö¿¬, ÀÚµ¿Â÷ ¹× °¡ÀüÁ¦Ç°ÀÇ ¼ö¿ä °¨¼Ò·Î ÀÎÇØ È¥¶õÀ» °Þ¾ú½À´Ï´Ù. ±×·¯³ª ÀÇ·á±â±â, ƯÈ÷ ¼¾¼­ ¹× ÃÊÀ½ÆÄ ÀåÄ¡¿¡¼­ äÅÃÀÌ Áõ°¡ÇÏ¿© ¼Õ½ÇÀ» ¾î´À Á¤µµ »ó¼âÇß½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ È¸º¹, IoT ¹× ¿þ¾î·¯ºí¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, »ê¾÷ Ȱµ¿ÀÇ Àç°³´Â Ãʱâ ÁÂÀý¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ·Îº¿ ºÐ¾ß°¡ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÇ·á¿ë ·Îº¿, »ê¾÷ ÀÚµ¿È­, »ê¾÷¿ë ·Îº¿, °¡Á¤¿ë ·Îº¿ µîÀÇ ·Îº¿ ÀÀ¿ë ºÐ¾ß´Â ¿îµ¿ Á¦¾î ¹× ¹ÝÀÀ¼ºÀ» °­È­Çϱâ À§ÇØ ¼ÒÇü, °í¼º´É ¾ÐÀü ºÎǰÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ·Îº¿ ºÐ¾ß°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚµ¿È­, AI ±â¹Ý ·Îº¿ °øÇÐ, ¼ÒÇüÈ­µÈ ÀüÀÚ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϸ鼭 ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹Ì¼¼ÀüÀÚ±â°è½Ã½ºÅÛ(MEMS)ÀÇ ¹ßÀü°ú ½º¸¶Æ® ·Îº¿¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ¹Ú¸· ¾ÐÀü ¼ÒÀÚ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¾ÐÀü ¼¾¼­ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¾ÐÀü ¼¾¼­ ºÎ¹®Àº °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â »ê¾÷, ÀÚµ¿Â÷, °¡Àü, ÇコÄÉ¾î ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ¼ÒÇü, °í°¨µµ ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¿þ¾î·¯ºí, »ç¹°ÀÎÅÍ³Ý ±â±â, ÀÇ·á¿ë ÀÓÇöõÆ®¿¡¼­ ÀÌ·¯ÇÑ ¼¾¼­´Â Á¤È®ÇÑ ¾Ð·Â, Áøµ¿, À½¼º ¼¾½ÌÀ» Á¦°øÇϸç, MEMS ±â¼úÀÇ ¹ßÀü°ú ¿¡³ÊÁö ¼öÈ® ¹× ÃÊÀ½ÆÄ ¿µ»ó ó¸® ºÐ¾ßÀÇ ÀÀ¿ë ºÐ¾ß È®´ë´Â ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ç÷º¼­ºí ÀÏ·ºÆ®·Î´Ð½º·ÎÀÇ Àüȯ°ú ¼ÒÇüÈ­·Î ÀÎÇØ ½ÃÀå ħÅõ°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ¼ÒÇü ¼¾¼­, ¾×Ãß¿¡ÀÌÅÍ, ¿¡³ÊÁö ¼öÈ®±â¿¡ ´ëÇÑ ¼ÒºñÀÚ °¡Àü, ÀÚµ¿Â÷, ÇコÄÉ¾î ¾ÖÇø®ÄÉÀ̼ÇÀÇ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. MEMS ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí, IoT, 5G, ¿þ¾î·¯ºí ÀÇ·á±â±âÀÇ È®´ë°¡ ¼ö¿ëÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ±¹¹æ ¹× Ç×°ø¿ìÁÖ ºÐ¾ß¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº »ê¾÷ ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ½ÃÀåÀº Ç÷º¼­ºí ÀÏ·ºÆ®·Î´Ð½ºÀÇ °³¹ß°ú ¿¡³ÊÁö È¿À²ÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀ¸·Î ÀÎÇØ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â 5G ¹èÆ÷, IoT ¹× ÀÇ·á±â±âÀÇ ¼ºÀåÀÌ Ã¤ÅÃÀ» °¡¼ÓÈ­ÇÏ°í ½º¸¶Æ® Á¦Á¶¿¡ ´ëÇÑ Á¤ºÎ ÅõÀÚ°¡ ±âȸ¸¦ È®´ëÇÒ °ÍÀ¸·Î ¿¹»óµÇ±â ¶§¹®ÀÔ´Ï´Ù. Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®ÀÇ È®´ë¿Í ¼ÒÇüÈ­µÈ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ¼¾¼­ÀÇ º¸±ÞÀÌ ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ °ÍÀÔ´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀº °­·ÂÇÑ R&D »ýŰè¿Í ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ °í¼º´É ¸¶ÀÌÅ©·Î Àü±â±â°è ½Ã½ºÅÛ(MEMS)¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ±â¼ú Çõ½ÅÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º:

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¹Ú¸· ¾ÐÀü ¼ÒÀÚ ½ÃÀå : Á¦Ç°º°

Á¦6Àå ¼¼°èÀÇ ¹Ú¸· ¾ÐÀü ¼ÒÀÚ ½ÃÀå : Àç·áº°

Á¦7Àå ¼¼°èÀÇ ¹Ú¸· ¾ÐÀü ¼ÒÀÚ ½ÃÀå : ¿ëµµº°

Á¦8Àå ¼¼°èÀÇ ¹Ú¸· ¾ÐÀü ¼ÒÀÚ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦9Àå ¼¼°èÀÇ ¹Ú¸· ¾ÐÀü ¼ÒÀÚ ½ÃÀå : Áö¿ªº°

Á¦10Àå ÁÖ¿ä ¹ßÀü

Á¦11Àå ±â¾÷ °³¿ä

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Thin Film Piezoelectric Devices Market is accounted for $5.8 billion in 2024 and is expected to reach $14.8 billion by 2030 growing at a CAGR of 16.8% during the forecast period. Thin Film Piezoelectric Devices are miniature parts that transform mechanical energy into electrical energy and vice versa by using thin layers of piezoelectric materials. These devices can be integrated into microelectromechanical systems (MEMS) since they are frequently made using deposition techniques like chemical vapor deposition or sputtering. They are perfect for use in sensors, actuators, energy harvesting, and medical ultrasound because of their great sensitivity, quick response times, and small form factors.

Market Dynamics:

Driver:

Advancements in Energy Harvesting

Advancements in energy harvesting are driving significant growth in the market by enhancing efficiency, miniaturization, and durability. Innovations in materials like PZT and AlN improve power output, enabling broader applications in wearables, IoT sensors, and biomedical devices. Enhanced fabrication techniques, including MEMS integration, boost scalability and cost-effectiveness. The rising demand for self-powered electronics and wireless sensors in industries like healthcare, automotive, and industrial automation further accelerates market adoption, fostering sustainable and energy-efficient solutions.

Restraint:

High Manufacturing Costs

High manufacturing costs in the thin film piezoelectric devices industry hamper growth by limiting affordability and scalability. Expensive raw materials, intricate fabrication procedures, and sophisticated machinery increase production costs, deterring new competitors and lowering company margins. Additionally, high costs limit market expansion by stifling innovation and adoption in cost-sensitive applications. Because of this, producers find it difficult to get economies of scale, which affects both technological improvements and overall competitiveness.

Opportunity:

Increased Adoption in Industrial Automation

The growing use of industrial automation is a major driver of the thin film piezoelectric device market, increasing demand for high-precision sensors, actuators, and energy harvesters. Thin film piezoelectric devices are perfect for robotics, process control, and smart manufacturing since automation demands components that are effective, small, and extremely responsive. Real-time monitoring and predictive maintenance are supported by their capacity to deliver precise and quick mechanical-electrical conversions. The market for these devices keeps growing as industries prioritize automation for cost and efficiency savings.

Threat:

Material Limitations

Material constraints in the industry impede performance, durability, and scalability. Efficiency and longevity are decreased by problems such as low piezoelectric coefficients, material fatigue, and thermal instability. Manufacturing flexibility is limited by substrate and deposition method compatibility issues. Furthermore, the cost of production is raised by expensive or rare materials, which restricts commercialization. These limitations hinder innovation and impact uptake in fields such as medical devices, energy harvesting, and MEMS sensors.

Covid-19 Impact

The COVID-19 pandemic disrupted the thin film piezoelectric devices market due to supply chain disruptions, manufacturing delays, and reduced demand in automotive and consumer electronics. However, increased adoption in medical devices, particularly sensors and ultrasound equipment, offset some losses. Post-pandemic recovery, rising investments in IoT and wearables, and renewed industrial activity are driving market growth despite initial setbacks.

The robotics segment is expected to be the largest during the forecast period

The robotics segment is expected to account for the largest market share during the forecast period, as robotics applications, including medical robots, industrial automation, and consumer robotics, demand compact, high-performance piezoelectric components for enhanced motion control and responsiveness. The rising adoption of automation, AI-driven robotics, and miniaturized electronic systems is accelerating market growth. Additionally, advancements in microelectromechanical systems (MEMS) and increasing investments in smart robotics further boost demand for thin film piezoelectric devices.

The piezoelectric sensors segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the piezoelectric sensors segment is predicted to witness the highest growth rate, because of the growing need for small, highly sensitive sensors in industrial, automotive, consumer electronics, and healthcare applications. For wearables, Internet of Things devices, and medical implants, these sensors provide accurate pressure, vibration, and audio sensing. Growth is further aided by developments in MEMS technology, growing use in energy harvesting, and ultrasonic imaging. Furthermore, their market penetration is improved by the move toward flexible electronics and downsizing.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share due to the growing need in consumer electronics, automotive, and healthcare applications for miniature sensors, actuators, and energy harvesters. Investments in MEMS technology spur innovation, while the expansion of IoT, 5G, and wearable medical devices speeds up acceptance. Government support for defense and aerospace applications accelerates industry growth. The region's market is also growing as a result of developments in flexible electronics and a greater emphasis on energy-efficient solutions.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, owing to growth in 5G deployment, IoT, and medical devices accelerates adoption, while government investments in smart manufacturing enhance opportunities. Expanding renewable energy projects and the push for miniaturized, energy-efficient sensors fuel market expansion. Countries like China, Japan, and South Korea lead innovation, supported by strong R&D ecosystems and increasing demand for high-performance microelectromechanical systems (MEMS) in various industries.

Key players in the market

Some of the key players profiled in the Thin Film Piezoelectric Devices Market include APC International, Ltd, CeramTec GmbH, CTS Corporation, Hanergy, Johnson Matthey Piezo Products GmbH, Kistler Group, Mad City Labs, Inc, Manz AG, Meggitt PLC, Murata Manufacturing Co., Ltd., Noliac A/S, Physik Instrumente (PI) GmbH & Co. KG, PI Ceramic GmbH, Piezosystem Jena GmbH, Sensor Technology Ltd, Sparkler Ceramics Pvt. Ltd, Taiyo Yuden Co., Ltd, TDK Corporation, Tokyo Electron Ltd and TRS Technologies, Inc.

Key Developments:

In September 2024, Tokyo Electron signed a memorandum of understanding with Tata Electronics Private Limited. The two companies will collaborate to accelerate semiconductor equipment infrastructure for India's first Fab being built by Tata Electronics in Dholera, Gujarat, and for its assembly and test facility in Jagiroad, Assam.

In October 2023, TDK announced the launch of the TDK i3 Micro Module, an innovative energy harvesting and storage solution designed to power ultra-low-power IoT devices.

Products Covered:

Materials Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Thin Film Piezoelectric Devices Market, By Product

6 Global Thin Film Piezoelectric Devices Market, By Material

7 Global Thin Film Piezoelectric Devices Market, By Application

8 Global Thin Film Piezoelectric Devices Market, By End User

9 Global Thin Film Piezoelectric Devices Market, By Geography

10 Key Developments

11 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â