Stratistics MRC¿¡ µû¸£¸é, ¹ÙÀÌ¿À¹Ì¸Þƽ Àç·á ¼¼°è ½ÃÀåÀº 2024³â 509¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È CAGR 7.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 795¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¹ÙÀÌ¿À¹Ì¸Þƽ Àç·á´Â õ¿¬ »ý¹° Àç·á¿Í µ¿ÀÏÇÑ ±¸Á¶, ±â´É, ¼ºÁúÀ» °¡Áø ÇÕ¼º ¶Ç´Â Àΰø Àç·á¸¦ ¸»ÇÕ´Ï´Ù. ÀÚ¿¬¿¡¼ ¿µ°¨À» ¾òÀº ÀÌ Àç·áµéÀº ¿¡³ÊÁö È¿À², ÀÚ°¡ Ä¡À¯, ÀûÀÀ ¹ÝÀÀ µî »ý¹°ÇÐÀû °úÁ¤À» ¸ð¹æÇÕ´Ï´Ù. ·Îº¿ °øÇÐ, Àç·á °úÇÐ, ÀÇ·á µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ Àΰø Á¶Á÷, ÀÚ°¡ Ä¡À¯ ÄÚÆÃ, ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº Ç¥¸é µî ÃÖ÷´Ü ¼Ö·ç¼ÇÀ» °³¹ßÇϱâ À§ÇØ Ã¤Åõǰí ÀÖ½À´Ï´Ù. ¼º´É, ³»±¸¼º ¹× Áö¼Ó°¡´É¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ¹ÙÀÌ¿À¹Ì¸Þƽ Àç·á´Â ¿¬ÀÙ, °Å¹ÌÁÙ, ÁøÁÖÃþ°ú °°Àº »ý¹°ÇÐÀûÀÎ °Í¿¡¼ ¿µ°¨À» ¾ò½À´Ï´Ù.
Áö¼Ó°¡´ÉÇÑ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
Áö¼Ó°¡´ÉÇÑ Àç·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ±â¾÷ÀÌ ÀÚ¿¬¿¡¼ ¿µ°¨À» ¹Þ¾Æ ȯ°æÀûÀ¸·Î Çã¿ë °¡´ÉÇÑ ´ëü Àç·á¸¦ ã°í Àֱ⠶§¹®¿¡ ¹ÙÀÌ¿À¹Ì¸Þƽ Àç·á ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À¹Ì¸Þƽ Àç·á´Â »ý¹°ÇÐÀû ±¸Á¶¸¦ ¹Ý¿µÇϱ⠶§¹®¿¡ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇÏ¸é¼ ¿ì¼öÇÑ ¼º´ÉÀ» ¹ßÈÖÇÏ¿© Æ÷Àå, °ÇÃà, ÇコÄÉ¾î ºÐ¾ß¿¡¼ »ç¿ëÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù. ź¼Ò ¹èÃâ°ú ÇÃ¶ó½ºÆ½ Æó±â¹°À» ±ÔÁ¦ÇÏ´Â ¹ýÀÌ °ÈµÈ °Íµµ äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ý¸í°øÇÐ ¹× ³ª³ë±â¼ú·Î ÀÎÇÑ Àç·á ǰÁúÀÇ Çâ»óµµ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µû¶ó¼ ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
³ôÀº ¿¬±¸°³¹ßºñ
³ôÀº ¿¬±¸°³¹ß(R&D) ºñ¿ëÀº Çõ½Å°ú »ó¿ëȸ¦ Á¦ÇÑÇÔÀ¸·Î½á ¹ÙÀÌ¿À¹Ì¸Þƽ Àç·á ½ÃÀåÀÇ °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. °í°¡ÀÇ Àç·á ÇÕ¼º, º¹ÀâÇÑ ¼³°è °úÁ¤, °íµµÀÇ Å×½ºÆ® ÇÊ¿ä µîÀÌ °æÁ¦Àû ºÎ´ãÀ» Áõ°¡½Ãŵ´Ï´Ù. ¼Ò±Ô¸ð ±â¾÷ ¹× ½Å»ý ±â¾÷Àº ÀÚ±Ý Á¶´Þ¿¡ ¾î·Á¿òÀ» °Þ°í ½ÃÀå ÁøÀÔÀ» ´ÊÃß°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±ä °³¹ß ÁÖ±â·Î ÀÎÇØ Á¦Ç° äÅÃÀÌ Áö¿¬µË´Ï´Ù. ³ôÀº ºñ¿ëÀº ¶ÇÇÑ ÀáÀçÀû ÅõÀÚÀÚµéÀÇ ¹ß±æÀ» µ¹¸®°Ô Çϰí, »ê¾÷ÀÇ ¼ºÀåÀ» Á¦ÇÑÇϸç, ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ ¹ÙÀÌ¿À¹Ì¸Þƽ ¼Ö·ç¼ÇÀÇ °¡¿ë¼ºÀ» ¶³¾î¶ß¸³´Ï´Ù.
³ª³ë±â¼ú°ú Àç·á°úÇÐÀÇ ¹ßÀü
¹ÙÀÌ¿À¹Ì¸Þƽ Àç·á ½ÃÀåÀº Àç·á °úÇаú ³ª³ë±â¼úÀÇ ¹ß´Þ·Î ÀÎÇØ Çõ¸íÀÌ ÀϾ°í ÀÖ½À´Ï´Ù. ³ª³ë±â¼úÀ» ÅëÇØ ¹ÙÀÌ¿À¹Ì¸ÞƽÀº ´õ¿í Á¤È®ÇØÁ³°í, Àç·á´Â °í°µµ, ÃʼҼö¼º, Àڱ⺹¿ø¼º µî ÀÚ¿¬ÀÇ Æ¯¼ºÀ» ¸ð¹æÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Àç·á°úÇÐÀÇ ¹ßÀüÀº »ýüÀûÇÕ¼º, ¿¡³ÊÁö È¿À², °æ·®È, ·Îº¿°øÇÐ, Ç×°ø¿ìÁÖ, ÀÇ·á¿ë ÀÓÇöõÆ® µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
º¹ÀâÇÑ Á¦Á¶ °øÁ¤
¹ÙÀÌ¿À¹Ì¸Þƽ Àç·á ½ÃÀåÀÇ º¹ÀâÇÑ Á¦Á¶ ¹æ¹ýÀº Á¦Á¶ ºñ¿ë »ó½Â, È®À强 Á¦ÇÑ, °³¹ß ±â°£ÀÇ Áö¿¬À¸·Î ÀÎÇØ ¹ßÀüÀ» ÀúÇØÇϰí ÀÖÀ¸¸ç, 3D ¹ÙÀÌ¿ÀÇÁ¸°ÆÃ ¹× ³ª³ë ±¸Á¶È¿Í °°Àº °í±Þ Á¦Á¶ ¹æ¹ýÀº ¸·´ëÇÑ Ãʱ⠺ñ¿ë°ú ƯÁ¤ Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ °í¼º´ÉÀÇ Áö¼Ó°¡´ÉÇÑ ¹ÙÀÌ¿À¹Ì¸Þƽ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ½¿¡µµ ºÒ±¸Çϰí, Àç·áÀÇ ºÒÀÏÄ¡ ¹× ´ë±Ô¸ð Àç»ý»êÀÇ ¾î·Á¿òÀ¸·Î ÀÎÇØ »ó¿ëȰ¡ ´õ¿í Áö¿¬µÇ°í ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 »çÅ·ΠÀÎÇØ Á¦Á¶, °ø±Þ¸Á, R&D Ȱµ¿ÀÌ µÐÈµÇ¸é¼ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹ÙÀÌ¿À¹Ì¸Þƽ Àç·á ½ÃÀåÀº È¥¶õ¿¡ ºüÁ³½À´Ï´Ù. ±×·¯³ª ÇコÄÉ¾î ºÐ¾ß¿¡¼´Â ¹ÙÀÌ¿À¹Ì¸Þƽ ÀÇ·á¿ë ÀÓÇöõÆ®, ¾à¹°Àü´Þ ½Ã½ºÅÛ, Ç×±Õ ÄÚÆÃ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ Áö¼Ó°¡´ÉÇÏ°í °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í Á¤ºÎÀÇ Çõ½Å¿¡ ´ëÇÑ Áö¿øÀ¸·Î ÇコÄɾî, °Ç¼³ µî ´Ù¾çÇÑ »ê¾÷¿¡¼ ½ÃÀå ȸº¹°ú ¼ºÀåÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼¼¶ó¹Í ºÐ¾ß°¡ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
»À¿Í Á¶°³²®Áú°ú °°Àº õ¿¬ ¼ÒÀç¿¡¼ ¿µ°¨À» ¾òÀº ¹ÙÀÌ¿À¹Ì¸Þƽ ¼¼¶ó¹ÍÀº Á¶Á÷ °øÇÐ, Ä¡°ú ¼öº¹¹°, ÀÇ·á¿ë ÀÓÇöõÆ®¸¦ °³¼±Çϱ⠶§¹®¿¡ ¼¼¶ó¹Í ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÎ½Ä°ú ¸¶¸ð¿¡ °ÇØ »ê¾÷ ¹× »ý¹°ÀÇÇÐ ºÐ¾ß¿¡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀáÀç·ÂÀº 3D ÇÁ¸°ÆÃ°ú ³ª³ë±â¼úÀÇ ¹ßÀüÀ¸·Î ´õ¿í ³ô¾ÆÁ® ¿¡³ÊÁö ÀúÀå, Ç×°ø¿ìÁÖ, Àç»ýÀÇ·á µîÀÇ ºÐ¾ß¿¡¼ Çõ½ÅÀ» ÃËÁøÇÏ°í ½ÃÀå È®´ë¿Í ½ÃÀå ÁøÀÔÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È, ¹ÙÀÌ¿ÀÆÐºê¸®ÄÉÀÌ¼Ç ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¹ÙÀÌ¿ÀÆÐºê¸®ÄÉÀÌ¼Ç ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ý¸í°øÇÐÀ» Ȱ¿ëÇÑ ¹ÙÀÌ¿ÀÆÐºê¸®ÄÉÀ̼ÇÀº ȯ°æÀûÀÀ¼º, ÀÚ°¡º¹¿ø¼º, »ýüÀûÇÕ¼º µî ǰÁúÀÌ °³¼±µÈ ¹ÙÀÌ¿À¹Ì¸Þƽ Àç·áÀÇ »ý»êÀÌ °¡´ÉÇϱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ ¹æ¹ýÀº ÇÕ¼º ¹°Áú¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀå È®´ë´Â °Ç¼³, ÇコÄɾî, Ç×°ø¿ìÁÖ »ê¾÷¿¡¼ ģȯ°æ ±â´É¼º ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¼¼Æ÷°øÇаú 3D ¹ÙÀÌ¿ÀÇÁ¸°ÆÃÀÇ ¹ßÀüÀ¸·Î äÅðú °æÁ¦¼ºÀÌ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â Áö¼Ó°¡´ÉÇÑ °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ƯÈ÷ »ýüÀûÇÕ¼º ÀÓÇöõÆ®, ÀÚ°¡¼öº¹¼º º¹ÇÕÀç·á, ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ÄÚÆÃ°ú °°Àº ±â¼ú Çõ½ÅÀÌ °¡¼Óȵʿ¡ µû¶ó °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ģȯ°æ ±â¼ú¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿ø°ú °·ÂÇÑ R&D ÅõÀÚ°¡ ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ ¼±µµÀûÀÎ »ý¸í°øÇÐ ¹× Àç·á°úÇÐ ±â¾÷µéÀÌ »ó¿ëȸ¦ ÃßÁøÇϰí ÀÖÀ¸¸ç, ÀÇ·á ¹× ±¹¹æ ºÐ¾ß¿¡¼ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ¸é¼ ºÏ¹Ì°¡ Áß¿äÇÑ »ê¾÷ °ÅÁ¡À¸·Î¼ ½ÃÀå È®ÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ·Îº¿ °øÇÐ, ÇコÄɾî, °ÇÃà ºÐ¾ß¿¡¼ÀÇ Àû¿ë È®´ë¿Í Áö¼Ó°¡´ÉÇÑ Àç·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ģȯ°æ ±â¼úÀ» Àå·ÁÇÏ´Â Á¤ºÎ ÇÁ·Î±×·¥°ú R&D ºñ¿ëÀÇ Áõ°¡´Â ¸ðµÎ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», Àεµ µîÀÇ ±¹°¡¿¡¼ »ê¾÷È¿Í µµ½ÃȰ¡ ºü¸£°Ô ÁøÇàµÇ°í ÀÖÀ¸¸ç, ¿¡³ÊÁö È¿À² ½Ã½ºÅÛ, ÀÚ°¡ Ä¡À¯ Àç·á, ÀÇ·á¿ë ÀÓÇöõÆ® µî¿¡ ¹ÙÀÌ¿À¹Ì¸Þƽ ¼Ö·ç¼ÇÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Áö¿ª ½ÃÀå È®´ë°¡ ´õ¿í °¡¼Ó鵃 °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global Biomimetic Materials Market is accounted for $50.9 billion in 2024 and is expected to reach $79.5 billion by 2030 growing at a CAGR of 7.7% during the forecast period. Biomimetic materials are synthetic or artificial materials that have the same structure, function, or qualities as natural biological materials. These materials, which draw inspiration from nature, mimic biological processes including energy efficiency, self-healing, and adaptive responses. They are employed to develop cutting-edge solutions including artificial tissues, self-repairing coatings, and energy-efficient surfaces in a variety of domains, including robotics, materials science, and medicine. In order to improve performance, durability, and sustainability, biomimetic materials take inspiration from biological things including lotus leaves, spider silk, and nacre (mother-of-pearl).
Growing Demand for Sustainable Materials
The growing demand for sustainable materials is a major driver of the biomimetic materials market, as companies look for environmentally acceptable alternatives inspired by nature. Because they mirror biological structures, biomimetic materials provide excellent performance with minimal environmental effect, which makes them perfect for use in packaging, building, and healthcare. Adoption is also aided by tighter laws governing carbon emissions and plastic waste. Innovation is also encouraged by improvements in material qualities brought about by biotechnology and nanotechnology. Thus, it drives market expansion.
High Research & Development Costs
High research and development (R&D) costs hinder the biomimetic materials market by limiting innovation and commercialization. Expensive material synthesis, complex design processes, and the need for advanced testing increase financial burdens. Small firms and startups struggle with funding, slowing market entry. Additionally, long development cycles delay product adoption. High costs also deter potential investors, restricting industry growth and reducing the availability of biomimetic solutions across various applications.
Advancements in Nanotechnology & Material Science
The market for biomimetic materials is undergoing a revolution due to developments in material science and nanotechnology, which have made it possible to create materials that are incredibly durable, adaptable, and functional. Biomimicry is made more accurate by nanotechnology, which enables materials to mimic natural qualities like high strength, superhydrophobicity, and self-healing. Material science advancements increase biocompatibility, energy efficiency, and lightweight structures, broadening their uses in robotics, aerospace, and medical implants, these innovations propel market expansion.
Complex Manufacturing Processes
The complex manufacturing methods in the biomimetic materials market stymie progress by raising production costs, limiting scalability, and delaying development timeframes. Advanced production methods like 3D bioprinting and nanostructuring demand significant upfront costs and specific knowledge. Furthermore, despite growing demand for high-performance and sustainable biomimetic solutions across a range of industries, commercialization is further slowed by material inconsistencies and difficulties with large-scale reproduction.
Covid-19 Impact
The COVID-19 pandemic disrupted the biomimetic materials market in the Asia-Pacific region by slowing manufacturing, supply chains, and R&D activities. However, demand surged in healthcare for biomimetic medical implants, drug delivery systems, and antimicrobial coatings. Post-pandemic, increased focus on sustainable and high-performance materials, along with government support for innovation, has accelerated market recovery and growth in various industries, including healthcare and construction.
The ceramics segment is expected to be the largest during the forecast period
The ceramics segment is expected to account for the largest market share during the forecast period, because biomimetic ceramics, which draw inspiration from natural materials like bone and seashells, improve tissue engineering, dental restorations, and medical implants. They are perfect for industrial and biomedical applications due to their great resistance to corrosion and abrasion. Their potential is further enhanced by developments in 3D printing and nanotechnology, which encourage innovation in fields like energy storage, aerospace, and regenerative medicine and hasten market expansion and uptake.
The biofabrication segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the biofabrication segment is predicted to witness the highest growth rate, as utilizing biotechnology, biofabrication makes it possible to produce biomimetic materials with improved qualities including increased environmental adaptability, self-healing, and biocompatibility. This method lessens the ecological impact by reducing dependency on synthetic materials. The market is expanding because to rising demand for eco-friendly, functional materials in the construction, healthcare, and aerospace industries. Adoption and economic viability are further accelerated by advancements in cellular engineering and 3D bioprinting.
During the forecast period, the North America region is expected to hold the largest market share due to increasing demand for sustainable, high-performance materials accelerates innovation, particularly in biocompatible implants, self-healing composites, and energy-efficient coatings. Government support for eco-friendly technologies and strong R&D investments further propel growth. The region's leading biotech and material science firms drive commercialization, while rising adoption in medical and defense sectors enhances market expansion, positioning North America as a key industry hub.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, owing to expanding uses in robotics, healthcare, and construction, as well as the need for sustainable materials. Government programs encouraging eco-friendly technology and rising R&D expenditures both contribute to the market's expansion. Regional market expansion is further promoted by the fast industrialization and urbanization of nations like China, Japan, and India, which increase the use of biomimetic solutions in energy-efficient systems, self-healing materials, and medical implants.
Key players in the market
Some of the key players profiled in the Biomimetic Materials Market include TDK Corporation, Wright Medical Group, CTS Corporation, CeramTec, NOLIAC A/S, APC International, Kyocera Corporation, Channel Technologies, Advanced Cerametrics, 3B's Research Group, Applied Biomimetic A/S, Avinent, BIOKON International, Bionic engineering network, BioTomo Pty., Ltd. and LORD Corporation.
In January 2024, TDK Corporation and The Goodyear Tire & Rubber Company announced a collaboration to advance next-generation tire solutions with the goal of accelerating the development and adoption of integrated intelligent hardware and software into tires and vehicle ecosystems.
In October 2023, TDK Corporation and LEM International SA announced that they have entered into a development agreement of custom TMR dies for next-generation integrated current sensors.