Stratistics MRC¿¡ µû¸£¸é, ¼¼°è Á¤¹Ð ¾ç½Ä ½ÃÀåÀº 2024³â 6¾ï 4,020¸¸ ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È 16.3%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 15¾ï 8,420¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Á¤¹Ð ¾ç½ÄÀº ¹°°í±âÀÇ °Ç°, Áö¼Ó°¡´É¼º, »ý»ê È¿À²¼ºÀ» °³¼±Çϱâ À§ÇØ ÀÚµ¿È, µ¥ÀÌÅÍ ºÐ¼®, ±â¼úÀ» °áÇÕÇÑ ÃÖ÷´Ü ¾ç½Ä ¹æ¹ýÀÔ´Ï´Ù. ¿Âµµ, »ê¼Ò ¼öÁØ, ¹°°í±â Ȱµ¿, ¼öÁú°ú °°Àº Áß¿äÇÑ º¯¼ö¸¦ ½Ç½Ã°£À¸·Î ÃßÀûÇϱâ À§ÇØ ¼¾¼, ÀΰøÁö´É, »ç¹°ÀÎÅͳÝ(IoT) ÀåÄ¡°¡ »ç¿ëµË´Ï´Ù. Á¤¹Ð ¾ç½ÄÀº ±â°è ÇнÀ°ú ¿¹Ãø ºÐ¼®À» Ȱ¿ëÇÏ¿© ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇϰí, Æó±â¹°À» ÁÙÀ̰í, ¸ÔÀÌ °ø±Þ ÀÏÁ¤À» °³¼±ÇÕ´Ï´Ù.
³ô¾ÆÁö´Â ¼ö»ê¹° ¼ö¿ä
¼ö»ê¹°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Á¤¹Ð ¾ç½Ä ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀ̸ç, ¾÷°è´Â Áö¼Ó°¡´ÉÇϰí È¿À²ÀûÀÎ ¾î·ù ¾ç½ÄÀ» À§ÇÑ Á¤±³ÇÑ ±â¼ú äÅÃÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è ¼ö»ê¹° ¼Òºñ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÌ¸é¼ »ý»ê·®À» ´Ã·Á¾ß ÇÏ´Â Çʿ伺ÀÌ IoT, AI, ÀÚµ¿ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÇ »ç¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¤¹Ð ¾ç½ÄÀº »ç·á ÃÖÀûÈ, Áúº´ ¿¹¹æ, ¼öÁú °ü¸®¸¦ °³¼±ÇÏ´Â µ¿½Ã¿¡ »ý»ê¼ºÀ» Çâ»ó½ÃŰ°í Æó±â¹°À» °¨¼Ò½Ãŵ´Ï´Ù. µû¶ó¼ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÕ´Ï´Ù.
³ôÀº Ãʱâ ÅõÀÚ ºñ¿ë
³ôÀº Ãʱâ ÅõÀÚºñ¿ëÀ¸·Î ÀÎÇØ ƯÈ÷ Áß¼Ò±â¾÷ÀÇ µµÀÔÀÌ Á¦ÇѵǾî Á¤¹Ð¾ç½Ä ºÐ¾ßÀÇ ¼ºÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù. °í°¡ÀÇ ¼¾¼, ÀÚµ¿±ÞÀÌ ½Ã½ºÅÛ, µ¥ÀÌÅÍ ºÐ¼® ÀÎÇÁ¶ó¸¦ ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ °æÁ¦Àû Àå¾Ö°¡ ¹ß»ýÇÕ´Ï´Ù. ÀÌ´Â ¾ç½Ä¾÷ÀÚµéÀÌ Ã·´Ü ±â¼úÀ» µµÀÔÇÏ·Á´Â ÀÇ¿åÀ» ¶³¾î¶ß·Á ½ÃÀå È®´ë¸¦ Áö¿¬½Ã۰í ÀÖ½À´Ï´Ù. ±ä ÅõÀÚ È¸¼ö ±â°£°ú ¿¹ÃøÇÒ ¼ö ¾ø´Â ¼öÀÍÀº Á¾Á¾ ÅõÀÚ¸¦ ¸Á¼³ÀÌ°Ô Çϰí, ¾÷°èÀÇ Çõ½Å°ú È®À强À» Á¦ÇÑÇÕ´Ï´Ù.
±â¼ú ¹ßÀü
AI ±â¹Ý ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, IoT Áö¿ø ¼¾¼, ÀÚµ¿ »ç·á °ø±Þ ¼Ö·ç¼Ç µî Çõ½ÅÀº ¼öÁú, ¾î·ù °Ç°, ÀÚ¿ø Ȱ¿ëÀ» ÃÖÀûÈÇϰí, AI ±â¹Ý ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, IoT Áö¿ø ¼¾¼, ÀÚµ¿ »ç·á °ø±Þ ¼Ö·ç¼Ç µîÀÇ Çõ½ÅÀº È¿À²¼º, Áö¼Ó°¡´É¼º, ¼öÀ²À» Çâ»ó½ÃÄÑ ½ÃÀåÀ» º¯È½Ã۰í ÀÖ½À´Ï´Ù. ºí·ÏüÀÎÀº °ø±Þ¸ÁÀÇ Åõ¸í¼ºÀ» º¸ÀåÇϰí, ¸Ó½Å·¯´×Àº Áúº´ ¹ß»ýÀ» ¿¹ÃøÇÏ¿© ¼Õ½ÇÀ» ÁÙÀÔ´Ï´Ù. ·Îº¿ °øÇÐÀÇ ÅëÇÕÀº ¿î¿µÀ» °£¼ÒÈÇϰí ÀΰǺñ¸¦ Àý°¨ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº »ý»ê¼ºÀ» Çâ»ó½ÃŰ°í ½ÃÀå ¼ºÀå°ú »ê¾÷ Àü¹ÝÀÇ Ã¤ÅÃÀ» ÃËÁøÇÕ´Ï´Ù.
µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã ¹®Á¦
µ¥ÀÌÅÍ º¸¾È°ú ÇÁ¶óÀ̹ö½Ã ¹®Á¦´Â IoT, AI, Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀÇ È°¿ëÀ» Á¦ÇÑÇÔÀ¸·Î½á ½ÃÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù. ³ó¹ÎµéÀº µ¥ÀÌÅÍ À¯Ãâ, »çÀ̹ö °ø°Ý, °³ÀÎ ¾÷¹« Á¤º¸ÀÇ ºÎÀûÀýÇÑ »ç¿ë¿¡ ´ëÇØ ¿ì·ÁÇϰí ÀÖ½À´Ï´Ù. µðÁöÅÐ ÀüȯÀº ºÒÃæºÐÇÑ ¹ýÀû ÇÁ·¹ÀÓ¿öÅ©¿Í »çÀ̹ö º¸¾È¿¡ ´ëÇÑ Áö½Ä ºÎÁ·À¸·Î ÀÎÇØ ´õ¿í Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼Ò±Ô¸ð ¾ç½Ä¾÷üµéÀº º¸¾È ÀÎÇÁ¶ó¿¡ ¸¹Àº ºñ¿ëÀÌ µé±â ¶§¹®¿¡ Á¤È®ÇÑ ±â¼úÀ» ÃÖ´ëÇÑ È°¿ëÇÏ´Â °ÍÀ» ÁÖÀúÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå È®´ë¿¡ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 ÆÒµ¥¹ÍÀº °ø±Þ¸Á È¥¶õ, ³ëµ¿·Â ºÎÁ·, ¼ö»ê¹° ¼ö¿ä °¨¼Ò¸¦ ÅëÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Á¤¹Ð ¾ç½Ä ½ÃÀåÀ» È¥¶õ¿¡ ºü¶ß·È½À´Ï´Ù. °¡µ¿ Áß´ÜÀ¸·Î ÀÎÇØ Àåºñ ¼³Ä¡¿Í ±â¼ú äÅÃÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¿î¿µÀÇ ¿¬¼Ó¼ºÀ» º¸ÀåÇϱâ À§ÇØ ÀÚµ¿È ¹× ¿ø°Ý ¸ð´ÏÅ͸µÀ¸·ÎÀÇ ÀüȯÀ» °¡¼ÓÈÇß½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ µðÁöÅÐ ¾ç½Ä ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÏ¿© ½ÃÀåÀÇ È¸º¹°ú Àå±âÀûÀΠȸº¹·ÂÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ±ÞÀÌ °ü¸® ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½Ç½Ã°£ ¼¾¼, AI ±â¹Ý ¸ð´ÏÅ͸µ, ÀÚµ¿ ±ÞÀ̱â¿Í °°Àº ÷´Ü ±â¼úÀÌ »ç·á °ø±Þ Á¤È®µµ¸¦ ³ôÀ̰í Áö¼Ó°¡´É¼º°ú ÀÌ»óÀûÀÎ ¼ºÀå·üÀ» º¸ÀåÇϱ⠶§¹®¿¡ ±ÞÀÌ °ü¸® ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ç·á ºñ¿ëÀÇ Áõ°¡¿Í ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±ÞÀÌ °ü¸®´Â ¾ç½ÄÀåÀÇ ¼öÀͼºÀ» ³ôÀ̰í, °úÀ× °ø±ÞÀ» ÁÙÀ̰í È¿À²¼ºÀ» ³ô¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ Àü ¼¼°è Á¤¹Ð ¾ç½Ä Çõ½ÅÀÇ Áß¿äÇÑ ºÎºÐÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ·Îº¿ ¹× µå·Ð ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ·Îº¿ ¹× µå·Ð ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼öÁß ·Îº¿°ú °øÁß µå·ÐÀº ¼öÁú, ¹°°í±â °Ç° »óÅÂ, ¸ÔÀÌÁÖ±â ÆÐÅÏ¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Á¦°øÇÏ¿© ¼öÀÛ¾÷°ú ¿î¿µ ºñ¿ëÀ» Àý°¨Çϰí, AI ±â¹Ý µå·ÐÀº ¸ÔÀÌÁÖ±â ÀÏÁ¤À» ÃÖÀûÈÇÏ°í ³¶ºñ¸¦ ÃÖ¼ÒÈÇÏ¸ç ¼öÀ²À» Çâ»ó½Ãų ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÚÀ² ½Ã½ºÅÛÀº À¯Áöº¸¼ö ¹× Áúº´ ŽÁö¸¦ È¿À²ÈÇÏ¿© Áö¼Ó°¡´ÉÇÑ ¾ç½ÄÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº »ý»ê¼º, ÀÚ¿ø Ȱ¿ë, ȯ°æ Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ°í ½ÃÀå ¼ºÀå°ú ±â¼ú ÁøÈ¸¦ ÃËÁøÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â Áö¼Ó°¡´ÉÇÑ ¼ö»ê¹°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, IoT, AI, ÀÚµ¿È ¹ßÀü, ¾ç½Ä¾÷ Çõ½ÅÀ» Áö¿øÇϱâ À§ÇÑ Á¤ºÎÀÇ ³ë·ÂÀ¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾î·ù ¼öÈ®·® Áõ°¡, ȯ°æ ¿µÇâ °¨¼Ò, ÀÚ¿ø È¿À²¼º Çâ»ó¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖ¿ä ¿äÀÎÀ¸·Î´Â ½º¸¶Æ® »ç·á °ø±Þ ½Ã½ºÅÛ, ½Ç½Ã°£ ¼öÁú ¸ð´ÏÅ͸µ, ¿¹Ãø ºÐ¼® µîÀÇ Ã¤ÅÃÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚ¿¬¾î¾÷¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¦¿Í ÃßÀû °¡´ÉÇÑ °íǰÁú ¼ö»ê¹°¿¡ ´ëÇÑ ¿ä±¸°¡ ½ÃÀå È®´ë¸¦ ´õ¿í °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ¼ö»ê¹°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ±â¼ú Çâ»ó, Áö¼Ó°¡´ÉÇÑ ¾ç½ÄÀ» Àå·ÁÇÏ´Â Á¤ºÎ ÇÁ·Î±×·¥ ´öºÐÀÔ´Ï´Ù. ±âÈÄ º¯È¿Í ÇØ¾ç ÀÚ¿ø °í°¥¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ½º¸¶Æ® ¾ç½Ä ¼Ö·ç¼ÇÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ¾ç½Ä Ȱµ¿ÀÌ È°¹ßÇÑ Áß±¹, Àεµ, Àεµ³×½Ã¾Æ µîÀÇ ±¹°¡µéÀÌ ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù. ¼¾¼ ±â¹Ý ±ÞÀÌ ½Ã½ºÅÛ ¹× µðÁöÅÐ Ç÷§Æû¿¡ ´ëÇÑ ÅõÀÚµµ ÀÌ Áö¿ªÀÇ ½ÃÀå È®´ë¸¦ °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Precision Aquaculture Market is accounted for $640.2 million in 2024 and is expected to reach $1584.2 million by 2030 growing at a CAGR of 16.3% during the forecast period. Precision aquaculture is a cutting-edge method of fish farming that combines automation, data analytics, and technology to improve fish health, sustainability, and production efficiency. In order to track important variables like temperature, oxygen levels, fish activity, and water quality in real time, sensors, artificial intelligence, and Internet of Things (IoT) devices are used. Precision aquaculture minimizes environmental impact, decreases waste, and improves feeding schedules by utilizing machine learning and predictive analytics.
Growing Demand for Seafood
The rising demand for seafood is a major driver of the precision aquaculture market, pushing the industry to adopt sophisticated technology for sustainable and efficient fish farming. The need to increase production while reducing environmental effect due to rising worldwide seafood consumption is propelling the use of IoT, AI, and automated monitoring systems. Precision aquaculture improves feed optimization, disease prevention, and water quality management while increasing productivity and decreasing waste. Thus, it drives the growth of the market.
High Initial Investment Costs
High initial investment costs stifle the growth of the precision aquaculture sector by limiting adoption, particularly among small and medium-sized businesses. Financial obstacles are brought up by the requirement for costly sensors, automated feeding systems, and data analytics infrastructure. This slows market expansion by discouraging farmers from implementing cutting-edge technologies. Long payback times and unpredictable returns often discourage investment, which limits industry innovation and scalability.
Technological Advancements
Technological advancements are transforming the market by enhancing efficiency, sustainability, and yield. Innovations such as AI-driven monitoring systems, IoT-enabled sensors, and automated feeding solutions optimize water quality, fish health, and resource utilization. Blockchain ensures transparency in supply chains, while machine learning predicts disease outbreaks, reducing losses. The integration of robotics streamlines operations, lowering labor costs. These advancements improve productivity, driving market growth and adoption across the industry.
Data Security and Privacy Concerns
Data security and privacy issues are impeding the market by limiting the use of IoT, AI, and cloud-based solutions. Farmers worry about data breaches, cyberattacks, and improper use of private operational information. Digital transformation is further slowed by inadequate legal frameworks and a lack of cybersecurity knowledge. Small-scale aquaculture enterprises are also discouraged from utilizing precise technology to their full potential due to the high expenses of security infrastructure, thus it hinders market expansion.
Covid-19 Impact
The COVID-19 pandemic disrupted the Precision Aquaculture Market in the Asia-Pacific region through supply chain disruptions, labor shortages, and reduced seafood demand. Lockdowns delayed equipment installations and technology adoption. However, the crisis accelerated the shift toward automation and remote monitoring to ensure operational continuity. Post-pandemic, increased investments in digital aquaculture solutions are driving market recovery and long-term resilience.
The feeding management segment is expected to be the largest during the forecast period
The feeding management segment is expected to account for the largest market share during the forecast period, as cutting-edge technology like real-time sensors, AI-driven monitoring, and automated feeders increase feeding accuracy, guaranteeing sustainability and ideal growth rates. Adoption is further pushed by growing feed costs and environmental concerns. Feeding management is a crucial part of precision aquaculture innovations around the world since it increases farm profitability and decreases ecological impact by reducing overfeeding and increasing efficiency.
The robotics & drones segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the robotics & drones segment is predicted to witness the highest growth rate, because underwater robots and aerial drones provide real-time data on water quality, fish health, and feeding patterns, reducing manual labor and operational costs. AI-powered drones optimize feeding schedules, minimizing waste and improving yield. Autonomous systems streamline maintenance and disease detection, ensuring sustainable aquaculture practices. These advancements boost productivity, resource utilization, and environmental sustainability, driving the market's growth and technological evolution.
During the forecast period, the North America region is expected to hold the largest market share due to increasing demand for sustainable seafood, advancements in IoT, AI, and automation, and government initiatives supporting aquaculture innovation. The rising need to enhance fish yield, reduce environmental impact, and improve resource efficiency propels market growth. Key factors include the adoption of smart feeding systems, real-time water quality monitoring, and predictive analytics. Additionally, stringent regulations on wild fishing and the push for traceable, high-quality seafood further accelerate market expansion.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, owing to the growing demand for seafood, improvements in technology, and government programs that promote sustainable aquaculture. Smart aquaculture solutions are being used in response to worries about climate change and the depletion of marine resources. Because of their significant aquaculture activity, nations like China, India, and Indonesia dominate the market. Investments in sensor-based feeding systems and digital platforms also quicken the region's market expansion.
Key players in the market
Some of the key players profiled in the Precision Aquaculture Market include AKVA Group, InnovaSea Systems, ScaleAQ, Deep Trekker, Aquabyte, Eruvaka Technologies, Akuakare, CPI Equipment, Lifegard Aquatics, Bluegrove, Imenco AS, In-Situ, Signify, Jala Tech, Planet Lighting, Maritech Systems, OxyGuard, Aquaconnect, AquaMaof and MonitorFish.
In April 2024, AKVA group has announced a new contract with Laxey to advance land-based aquaculture technology in the Westman Islands, Iceland.
In January 2024, Aquaconnect, has formalized a strategic partnership by signing a Memorandum of Understanding (MoU) with StartupTN. This collaboration aims to stimulate innovation and provide support for the growth of emerging startups in the aquaculture sector within the state.