Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Æä·Î¹Ù³ªµã ½ÃÀåÀº 2024³â 41¾ï ´Þ·¯ ±Ô¸ðÀÌ¸ç ¿¹Ãø ±â°£ µ¿¾È 6.7%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü·Î 2030³â¿¡´Â 61¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Æä·Î¹Ù³ªµãÀº ÁַΠö°ú ¹Ù³ªµãÀ¸·Î ±¸¼ºµÈ ÇÕ±ÝÀ¸·Î, ÀϹÝÀûÀ¸·Î 35-85%ÀÇ ¹Ù³ªµãÀ» ÇÔÀ¯Çϰí ÀÖ½À´Ï´Ù. ÀÌ ÇÕ±ÝÀº Àü±â ¾ÆÅ©·Î¿¡¼ ö°ú ¹Ù³ªµã »êȹ°À» °áÇÕÇÏ¿© »ý»êµÇ¸ç, Á¾Á¾ ź¼Ò, ¾Ë·ç¹Ì´½, Ȳ ¹× ¸Á°£°ú °°Àº ¼Ò·®ÀÇ ´Ù¸¥ ¿ø¼Ò¿Í ÇÔ²² »ý»êµË´Ï´Ù. Æä·Î¹Ù³ªµãÀº ĢĢÇÑ °áÁ¤ ¸ð¾çÀ¸·Î Àß ¾Ë·ÁÁ® ÀÖÀ¸¸ç Á¾Á¾ Æä·Î¹Ù³ªµã ¸ÕÁö¶ó°í ºÒ¸®´Â ºÐ¸»·Î ºÐ¼âµË´Ï´Ù. ö° »ê¾÷¿¡¼ ö° Á¦Ç°ÀÇ °æµµ, °µµ ¹× ³»½Ä¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ³Î¸® »ç¿ëµË´Ï´Ù. ¶ÇÇÑ Æä·Î¹Ù³ªµãÀº °í°µµ ÀúÇձݰ, °ø±¸° ¹× ´Ù¾çÇÑ Ã¶ ±â¹Ý Á¦Ç°ÀÇ »ý»ê¿¡ Ȱ¿ëµË´Ï´Ù. Æä·Î¹Ù³ªµãÀÇ °íÀ¯ÇÑ Æ¯¼º ´öºÐ¿¡ ³»±¸¼º°ú º¹¿ø·ÂÀÌ ¶Ù¾î³ ¼ÒÀç°¡ ÇÊ¿äÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ ±ÍÁßÇÑ Ã·°¡Á¦°¡ µË´Ï´Ù.
°í°µµ °Àç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
°Ç¼³, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ µîÀÇ »ê¾÷¿¡¼ °í°µµ ÀúÇձݰ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ Æä·Î¹Ù³ªµã ½ÃÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷¿¡¼´Â Çâ»óµÈ °µµ, ³»±¸¼º ¹× ³»½Ä¼ºÀ» Á¦°øÇÏ´Â ¼ÒÀç°¡ ÇÊ¿äÇÕ´Ï´Ù. Æä·Î¹Ù³ªµãÀº ÀÌ·¯ÇÑ °í¼º´É °Ã¶ »ý»ê¿¡ ÇʼöÀûÀÎ ÇÕ±Ý ¿ø¼ÒÀÔ´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î µµ½ÃÈ ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®°¡ È®´ëµÊ¿¡ µû¶ó °ß°íÇÑ Ã¶° Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä Áõ°¡´Â Æä·Î¹Ù³ªµã ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
Á¦ÇÑµÈ ¹Ù³ªµã ¸ÅÀå·®
Æä·Î¹Ù³ªµãÀÇ ÇÙ½É ±¸¼º ¿ä¼ÒÀÎ ¹Ù³ªµãÀÇ °¡¿ë¼ºÀº Àü ¼¼°è ¸ÅÀå·®ÀÇ Á¦ÇÑÀ¸·Î ÀÎÇØ Á¦¾àÀ» ¹Þ½À´Ï´Ù. ´ëºÎºÐÀÇ ¹Ù³ªµãÀº ¸î¸î ÁÖ¿ä Áö¿ª¿¡¼ °ø±ÞµÇ±â ¶§¹®¿¡ °ø±Þ Ãë¾à¼ºÀÌ Á¸ÀçÇÕ´Ï´Ù. ÁöÁ¤ÇÐÀû, °æÁ¦Àû ¿äÀÎÀ¸·Î ÀÎÇÑ ¹Ù³ªµã °¡°ÝÀÇ º¯µ¿Àº Æä·Î¹Ù³ªµãÀÇ ºñ¿ë°ú °¡¿ë¼º¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹Ù³ªµãÀÇ ÃßÃâ°ú °¡°øÀº ȯ°æ ±ÔÁ¦ÀÇ Àû¿ëÀ» ¹Þ±â ¶§¹®¿¡ °ø±ÞÀÌ ´õ¿í Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦¾à Á¶°ÇÀº Æä·Î¹Ù³ªµã ½ÃÀåÀÇ ¼ºÀå¿¡ Å« °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
ä±¼ ¹× ÇÕ±Ý »ý»ê ±â¼úÀÇ Çõ½Å
ä±¼ ±â¼ú°ú ÇÕ±Ý »ý»ê ¹æ¹ýÀÇ ¹ßÀüÀº Æä·Î¹Ù³ªµã ½ÃÀå¿¡ »ó´çÇÑ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¹Ù³ªµã ÃßÃâ ¹× °¡°øÀÇ »õ·Î¿î ±â¼úÀº È¿À²¼ºÀ» °³¼±Çϰí ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÇÕ±Ý °øÁ¤ÀÇ Çõ½ÅÀº Æä·Î¹Ù³ªµãÀÇ Æ¯¼ºÀ» Çâ»ó½ÃÄÑ °í¼º´É °Ã¶ ÀÀ¿ë ºÐ¾ß¿¡ ´õ¿í ¹Ù¶÷Á÷ÇÏ°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀº ¶ÇÇÑ »ý»ê ºñ¿ëÀ» ³·Ãß¾î Æä·Î¹Ù³ªµãÀ» ´õ ´Ù¾çÇÑ »ê¾÷¿¡¼ ´õ ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ ºÐ¾ß¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿¬±¸ °³¹ß ³ë·ÂÀº »ó´çÇÑ ¼ºÀå ÀáÀç·ÂÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù.
ö° ÇÕ±ÝÀÇ ´ëüÀç
´ëü ¼ÒÀç ¹× ÇÕ±ÝÀÇ °³¹ß°ú äÅÃÀº Æä·Î¹Ù³ªµã ½ÃÀå¿¡ À§ÇùÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀϺΠ»ê¾÷¿¡¼´Â ´õ ³·Àº ºñ¿ëÀ¸·Î À¯»çÇϰųª ¿ì¼öÇÑ Æ¯¼ºÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ´Ù¸¥ ÇÕ±Ý ¿ø¼Ò¸¦ ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ƼŸ´½À̳ª ¾Ë·ç¹Ì´½À» »ç¿ëÇÏ´Â ÇÕ±ÝÀº ƯÁ¤ ÀÀ¿ë ºÐ¾ß¿¡¼ °æÀï ¿ìÀ§¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ë¾ÈÀÌ ³Î¸® º¸±ÞµÇ¸é Æä·Î¹Ù³ªµã¿¡ ´ëÇÑ ¼ö¿ä°¡ ÁÙ¾îµé ¼ö ÀÖ½À´Ï´Ù. ½ÃÀåÀº °ü·Ã¼º°ú °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ Áö¼ÓÀûÀ¸·Î Çõ½ÅÇØ¾ß ÇÕ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
Äڷγª19 ÆÒµ¥¹ÍÀº Æä·Î¹Ù³ªµã ½ÃÀå¿¡ º¹ÇÕÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °ø±Þ¸ÁÀÇ Áߴܰú »ê¾÷ Ȱµ¿ÀÇ °¨¼Ò°¡ Ãʱ⿡´Â »ý»ê°ú ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÃÆÁö¸¸, ȸº¹ ´Ü°è¿¡¼´Â °Ç¼³ ¹× ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡¼ °í°µµ °Àç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù. ÆÒµ¥¹ÍÀº ź·ÂÀûÀÎ °ø±Þ¸ÁÀÇ Çʿ伺À» °Á¶Çϰí ÇÙ½É ¿ëµµ¿¡¼ Æä·Î¹Ù³ªµãÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. °æÁ¦°¡ ȸº¹µÇ¸é¼ Æä·Î¹Ù³ªµã¿¡ ´ëÇÑ ¼ö¿ä´Â ȸº¹µÇ°í Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÆÒµ¥¹Í¿¡¼ ¾òÀº ±³ÈÆÀº ½ÃÀåÀÇ Çõ½Å°ú ÀûÀÀÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
FeV50 ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Ŭ °ÍÀ¸·Î ¿¹»ó
FeV50 ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ù³ªµã ÇÔ·®ÀÌ ³ô¾Æ °í°µµ ÀúÇձݰÀ» »ý»êÇÏ´Â µ¥ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. °Ç¼³, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ »ê¾÷¿¡¼ FeV50ÀÌ ³Î¸® »ç¿ëµÇ¸é¼ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÎÀå °µµ ¹× ³»¸¶¸ð¼º, ³»½Ä¼º Çâ»ó µî FeV50ÀÇ ¿ì¼öÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ ¼±È£µÇ´Â ¼ÒÀçÀÔ´Ï´Ù. µû¶ó¼ FeV50 ºÎ¹®Àº ½ÃÀå¿¡¼ ¼±µµÀûÀÎ À§Ä¡¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Á¦° ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» °¡Áú °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È Á¦° ºÎ¹®Àº ö° »ý»ê¿¡¼ Æä·Î ¹Ù³ªµãÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇÕ±Ý ¿ø¼Ò·Î Æä·Î¹Ù³ªµãÀ» ÇÊ¿ä·Î ÇÏ´Â °í°µµ °Ã¶Àº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Çâ»óµÈ ¼º´É, ³»±¸¼º ¹× Áö¼Ó °¡´É¼ºÀ» Á¦°øÇÏ´Â ¼ÒÀç¿¡ ´ëÇÑ ¿ä±¸´Â Á¦° ºÎ¹®ÀÇ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ö° Á¦Á¶ °øÁ¤ÀÇ Çõ½Å°ú »õ·Î¿î °Á¾ÀÇ °³¹ßÀº ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇÕ´Ï´Ù. È¿À²¼º°ú ǰÁú¿¡ ´ëÇÑ Á¦° ¾÷°èÀÇ ÃÊÁ¡Àº Æä·Î¹Ù³ªµã¿¡ ´ëÇÑ ¼ö¿ä¸¦ °è¼Ó °ßÀÎÇÒ °ÍÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ Ã·´Ü »ê¾÷ ÀÎÇÁ¶ó¿Í ö° ¹× Ç×°ø ¿ìÁÖ »ê¾÷ÀÇ ÁÖ¿ä ¾÷üµéÀÇ °·ÂÇÑ ÀÔÁö°¡ ÀÌ Áö¿ªÀÇ Áö¹è·Â¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±â¼ú Çõ½Å°ú °íǰÁú Á¦Á¶ Ç¥ÁØ¿¡ ´ëÇÑ ºÏ¹ÌÀÇ ÁýÁßÀº Æä·Î¹Ù³ªµã°ú °°Àº °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀº ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¿ìÈ£ÀûÀÎ Á¤ºÎ Á¤Ã¥°ú ÅõÀÚÀÇ ÇýÅõµ ´©¸®°í ÀÖ½À´Ï´Ù. ±× °á°ú ºÏ¹Ì´Â Æä·Î¹Ù³ªµã ½ÃÀå¿¡¼ ¼±µµÀûÀÎ À§Ä¡¸¦ À¯ÁöÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀº Áß±¹, Àεµ ¹× µ¿³²¾Æ½Ã¾Æ ±¹°¡¿Í °°Àº ±¹°¡ÀÇ ±Þ¼ÓÇÑ »ê¾÷È, µµ½ÃÈ ¹× ÀÎÇÁ¶ó °³¹ß·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ÀÚµ¿Â÷ ¹× °Ç¼³ »ê¾÷ÀÇ È®ÀåÀº Æä·Î¹Ù³ªµã ½ÃÀåÀÇ ¼ºÀå¿¡ ´õ¿í ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¦Á¶ ¹× ±â¼ú ¹ßÀü¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÏ¸é¼ ÀÌ Áö¿ªÀÇ °ß°íÇÑ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀº °æÁ¦ ¹ßÀü°ú »ê¾÷ ¼ºÀå¿¡ ÈûÀÔ¾î Å©°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global Ferrovanadium Market is accounted for $4.1 billion in 2024 and is expected to reach $6.1 billion by 2030 growing at a CAGR of 6.7% during the forecast period. Ferrovanadium is an alloy composed primarily of iron and vanadium, typically containing 35% to 85% vanadium. This alloy is produced by combining iron and vanadium oxides in an electric arc furnace, often with small amounts of other elements like carbon, aluminum, sulfur, and manganese. Ferrovanadium is known for its grayish crystalline appearance and is often crushed into a powder called ferrovanadium dust. It is widely used in the steel industry to enhance the hardness, strength, and corrosion resistance of steel products. Additionally, ferrovanadium is utilized in the production of high-strength low-alloy steel, tool steels, and various ferrous-based products. Its unique properties make it a valuable additive in applications requiring durable and resilient materials.
Rising demand for high-strength steel
The growing need for high-strength, low-alloy steel in industries such as construction, automotive, and aerospace is a major driver for the ferrovanadium market. These industries require materials that offer enhanced strength, durability, and corrosion resistance. Ferrovanadium is an essential alloying element in the production of these high-performance steels. As, urbanization infrastructure projects expand globally, the demand for robust steel products increases. This rising demand fuels the growth of the ferrovanadium market.
Limited vanadium reserves
The availability of vanadium, a critical component of ferrovanadium, is constrained by limited global reserves. Most vanadium is sourced from a few key regions, leading to supply vulnerabilities. Fluctuations in vanadium prices due to geopolitical and economic factors can impact the cost and availability of ferrovanadium. Additionally, the extraction and processing of vanadium are subject to environmental regulations, which can further limit supply. These constraints pose a significant challenge to the growth of the ferrovanadium market.
Innovations in mining and alloy production techniques
Advancements in mining technologies and alloy production methods offer significant opportunities for the ferrovanadium market. New techniques in vanadium extraction and processing can improve efficiency and reduce environmental impact. Innovations in alloying processes can enhance the properties of ferrovanadium, making it more desirable for high-performance steel applications. These technological advancements can also lower production costs, making ferrovanadium more accessible to a broader range of industries. The ongoing research and development efforts in this field present substantial growth potential.
Alternatives in steel alloys
The development and adoption of alternative materials and alloys pose a threat to the ferrovanadium market. Some industries are exploring other alloying elements that can provide similar or superior properties at a lower cost. For instance, alloys using titanium or aluminum may offer competitive advantages in certain applications. As these alternatives become more widely accepted, they could reduce the demand for ferrovanadium. The market must continuously innovate to maintain its relevance and competitive edge.
Covid-19 Impact
The Covid-19 pandemic had a mixed impact on the ferrovanadium market. While disruptions in supply chains and reduced industrial activity initially affected production and demand, the recovery phase saw increased demand for high-strength steel in construction and infrastructure projects. The pandemic underscored the need for resilient supply chains and highlighted the importance of ferrovanadium in critical applications. As economies rebound, the demand for ferrovanadium is expected to recover and grow. The lessons learned from the pandemic are likely to drive further innovation and adaptation in the market.
The FeV50 segment is expected to be the largest during the forecast period
The FeV50 segment is expected to account for the largest market share during the forecast period. Its high vanadium content makes it particularly valuable for producing high-strength, low-alloy steels. The widespread use of FeV50 in construction, automotive, and aerospace industries drives its demand. Additionally, FeV50's superior properties, such as improved tensile strength and resistance to wear and corrosion, make it a preferred choice for various applications. As a result, the FeV50 segment is expected to maintain its leading position in the market.
The steelmaking segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the steelmaking segment is predicted to witness the highest growth rate due to the increasing adoption of ferrovanadium in steel production. High-strength steels, which require ferrovanadium as an alloying element, are in growing demand across various industries. The need for materials that offer enhanced performance, durability, and sustainability drives the growth of the steelmaking segment. Innovations in steel manufacturing processes and the development of new steel grades further boost this segment. The steelmaking industry's focus on efficiency and quality will continue to drive the demand for ferrovanadium.
During the forecast period, the North America region is expected to hold the largest market share. The region's advanced industrial infrastructure and strong presence of key players in the steel and aerospace industries contribute to its dominance. North America's focus on technological innovation and high-quality manufacturing standards drives the demand for high-performance materials like ferrovanadium. The region also benefits from favorable government policies and investments in infrastructure projects. As a result, North America is poised to maintain its leading position in the ferrovanadium market.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR owing to rapid industrialization, urbanization, and infrastructure development in countries like China, India, and Southeast Asian nations. The region's expanding automotive and construction industries further contribute to the growth of the ferrovanadium market. Additionally, increasing investments in manufacturing and technological advancements support the region's robust growth. The Asia Pacific market is expected to experience significant expansion, driven by economic development and industrial growth.
Key players in the market
Some of the key players in Ferrovanadium market include Advanced Metallurgical Group, Atlantic Ltd., Bear Metallurgical Company, Bushveld Minerals Limited, Core Metals Group, Elkem, Evraz PLC, Gulf Chemical & Metallurgical Corporation, HBIS Chengsteel, Hickman, JFE Material, OM Holdings, Pangang, Shiva Metals Energy, Tremond Metals Corp and Williams.
In January 2024, Elkem Silicones announced new partnership with Silstar in South Africa and neighboring countries. This strategic change aims to strengthen our distribution network and enhance the customer experience.
In July 2024, AMG Critical Materials acquired a strategic Stake in Savannah resources. The terms of the agreement include a seat on Savannah's Board of Directors, a 5-year offtake of the Project at 45ktpa of spodumene (or 225,000 DMT in the aggregate), with the opportunity to increase the offtake to 90ktpa.
In July 2024, AMG Critical Materials N.V.'s subsidiary Graphit Kropfmuhl and BASF have entered into an innovative agreement to reduce their product carbon footprint. Under this agreement, BASF will supply renewable energy certificates to Graphit Kropfmuhl's production site.