Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¼®ÅºÃþ ¸Þź ½ÃÀåÀº 2024³â 137¾ï ´Þ·¯ ±Ô¸ðÀÌ¸ç ¿¹Ãø ±â°£ µ¿¾È 6.9%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 205¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼®ÅºÃþ ¸Þź(CBM)Àº ¼®ÅºÃþ ³»¿¡ °¤Çô ÀÖ´Â µ¶Æ¯ÇÑ Ãµ¿¬°¡½º·Î, ÁÖ·Î ¼®ÅºÈ °úÁ¤¿¡¼ Çü¼ºµÇ´Â ¸Þź(CH4)À¸·Î ±¸¼ºµË´Ï´Ù. ¼®Åº ÀÔÀÚ Ç¥¸é¿¡ ÈíÂøµÇ¾î źÃþ ³» ¼ö¾Ð¿¡ ÀÇÇØ Á¦ÀÚ¸®¿¡ °íÁ¤µÇ¾î ÀÖ½À´Ï´Ù. CBMÀ» ÃßÃâÇÏ·Á¸é źÃþ¿¡ ¿ì¹°À» ¶Õ°í ¼ö¾ÐÀ» ³·Ãç¾ß Çϴµ¥, ÀÌ °úÁ¤¿¡¼ Å»¼ö °úÁ¤ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼öÆò ½ÃÃß ¹× ¼ö¾Ð ÆÄ¼â¿Í °°Àº °í±Þ ½ÃÃß ±â¼úÀº °¡½º ȸ¼ö È¿À²À» Çâ»ó½Ãŵ´Ï´Ù. CBMÀº ¼®Åº°ú ¼®À¯¿¡ ºñÇØ ÀÌ»êÈź¼Ò¿Í ¿À¿° ¹°ÁúÀ» Àû°Ô ¹èÃâÇϴ ûÁ¤ ¿¡³ÊÁö¿øÀ¸·Î °£Áֵ˴ϴÙ. ¹ßÀü, »ê¾÷¿ë, ¾ÐÃà õ¿¬°¡½º(CNG) ÇüÅÂÀÇ Â÷·® ¿¬·á·Î »ç¿ëµË´Ï´Ù.
±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é 2023³â Àü ¼¼°è ¿¡³ÊÁö °ü·Ã CO2 ¹èÃâ·®Àº 2022³â ´ëºñ 1.1% Áõ°¡ÇÏ¿© 4¾ï 1õ¸¸ ÅæÀÌ Áõ°¡ÇÏ¿© »ç»ó ÃÖ°íÄ¡ÀÎ 374¾ï Åæ¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â 2022³â¿¡ 1.3% Áõ°¡ÇÑ 4¾ï 9,000¸¸ Åæ¿¡ ÀÌÀº ¼öÄ¡ÀÔ´Ï´Ù.
ûÁ¤ ¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
Àü ¼¼°è ¿¡³ÊÁö ¼Òºñ°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó »ê¾÷°è¿Í Á¤ºÎ´Â ¼®Åº°ú ¼®À¯¸¦ ´ëüÇÒ Ã»Á¤ ¿¡³ÊÁö·Î õ¿¬°¡½º¸¦ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù. ¸Þź ±â¹Ý ¿¬·áÀÎ ¼®ÅºÃþ ¸ÞźÀº ±âÁ¸ ȼ® ¿¬·á¿¡ ºñÇØ ÀÌ»êÈź¼Ò(CO2), À¯È², ¹Ì¼¼¸ÕÁö ¹èÃâ·®ÀÌ ³·½À´Ï´Ù. ÀÌ´Â ¿Â½Ç°¡½º °¨ÃàÀ» ¸ñÇ¥·Î ÇÏ´Â ±¹Á¦ ±âÈÄ Çù¾à ¹× ±¹°¡ Á¤Ã¥°úµµ ºÎÇÕÇÕ´Ï´Ù. ¶ÇÇÑ CBMÀº ƯÈ÷ ¼®Åº ¸ÅÀå·®ÀÌ Ç³ºÎÇÑ Áö¿ª¿¡¼ ¾ÈÁ¤ÀûÀÎ ¿¡³ÊÁö ¾Èº¸ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© ¼öÀÔ Ãµ¿¬°¡½º ¹× ¿øÀ¯¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÕ´Ï´Ù.
³ôÀº Ãʱâ ÀÚº» ¹× »ý»ê ºñ¿ë
½ÃÃß °øÁ¤, Å»¼ö ¹× ¸Þź ÃßÃâ¿¡´Â °í°¡ÀÇ ±â¼úÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ¿î¿µ ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. ¶ÇÇÑ, ¼®ÅºÃþ ¸Þź ÃßÃâÀÇ ¹° °ü¸® ÇÁ·Î¼¼½º´Â º¹ÀâÇϱ⠶§¹®¿¡ »ý»êµÈ ¹°À» ÀûÀýÈ÷ ó¸®Çϰųª Æó±âÇØ¾ß ÇϹǷΠºñ¿ëÀÌ ´õ¿í Áõ°¡ÇÕ´Ï´Ù. ¸¹Àº ±â¾÷ÀÌ Áö¿ª¿¡ µû¶ó ´Þ¶óÁö´Â ¼®ÅºÃþ ¸Þź »ý»ê·®ÀÇ ºÒÈ®½Ç¼ºÀ¸·Î ÀÎÇØ ÀÚ±Ý È®º¸¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ôÀº ºñ¿ëÀº õ¿¬°¡½º °¡°Ý º¯µ¿°ú ÇÔ²² ¼®ÅºÃþ ¸Þź ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÀúÇØÇÏ¿© ½ÃÀå ¼ºÀåÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÃßÃâ ¹× »ý»ê ±â¼úÀÇ Çõ½Å
¼öÆò ½ÃÃß, ¼ö¾Ð ÆÄ¼â, Çâ»óµÈ ¼®ÅºÃþ Àڱذú °°Àº Çõ½ÅÀ¸·Î ¼®ÅºÃþ ¸Þź ȸ¼ö È¿À²ÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº °¡½º ÃßÃâ·üÀ» ³ôÀÌ´Â µ¿½Ã¿¡ ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ¿© CBM »ý»êÀÇ °æÁ¦¼ºÀ» ³ôÀÌ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ Ã·´Ü ¼öó¸® ±â¼úÀÇ ¹ß´Þ·Î »ý»êµÈ ¹°À» ´õ Àß °ü¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾î ȯ°æ ¹®Á¦µµ ÇØ°áµÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ¼®ÅºÃþ ¸Þź »ý»ê¿¡ ÀΰøÁö´É(AI)°ú ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» ÅëÇÕÇÏ¿© È¿À²¼ºÀ» ³ôÀÌ°í ¸Þź ´©ÃâÀ» ÁÙÀÌ¸ç ¾ÈÀü Á¶Ä¡¸¦ °³¼±ÇÏ¿© ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
Àç»ý ¿¡³ÊÁö¿øÀÇ Ã¤Åà Áõ°¡
Á¤ºÎ¿Í »ê¾÷°è´Â ûÁ¤¿¡³ÊÁö¸¦ À§ÇÑ º¸´Ù Áö¼Ó °¡´ÉÇϰí Àå±âÀûÀÎ ÇØ°áÃ¥À¸·Î ÀνĵǴ Å¾籤, dz·Â, ¼ö¼Ò ¿¡³ÊÁö¿¡ ¸·´ëÇÑ ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº ±¹°¡¿¡¼ ¼ø¹èÃâ Á¦·Î¿¡ ´ëÇÑ ¾ß½ÉÂù ¸ñÇ¥¸¦ ¼³Á¤ÇÏ¿© ȼ® ¿¬·áº¸´Ù Àç»ý ¿¡³ÊÁö¸¦ ¼±È£ÇÏ´Â Á¤Ã¥ º¯È¸¦ À̲ø°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹èÅ͸® ÀúÀå ±â¼úÀÇ ¹ßÀüÀ¸·Î Àç»ý ¿¡³ÊÁöÀÇ ½Å·Ú¼ºÀÌ Çâ»óµÇ¾î õ¿¬°¡½º ±â¹Ý Àü·Â »ý»ê¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ÁÙ¾îµé°í ÀÖ½À´Ï´Ù. ž籤°ú dz·Â ¿¡³ÊÁöÀÇ °¡°Ý °æÀï·ÂÀÌ ³ô¾ÆÁü¿¡ µû¶ó Àü ¼¼°è ¿¡³ÊÁö Àüȯ¿¡¼ CBMÀÇ ½ÃÀå Á¡À¯À²ÀÌ °¨¼ÒÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
°æ±â ħü´Â »ê¾÷ Ȱµ¿ÀÇ °¨¼Ò·Î À̾îÁ® ¼®ÅºÃþ ¸ÞźÀ» Æ÷ÇÔÇÑ Ãµ¿¬°¡½º ¼Òºñ¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¶ÇÇÑ ÆÒµ¥¹Í ±â°£ µ¿¾È ÀçÁ¤Àû Á¦¾àÀ¸·Î ÀÎÇØ Ž»ç ¹× »ý»ê ÇÁ·ÎÁ§Æ®°¡ ¿¬±âµÇ¸é¼ ½ÃÀå ¼ºÀåÀÌ ´õ¿í µÐȵǾú½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ¿¡³ÊÁö ´Ùº¯ÈÀÇ Çʿ伺ÀÌ ºÎ°¢µÇ¸é¼ ÀϺΠÁ¤ºÎ´Â ±¹³» ¿¡³ÊÁö¿øÀ» ÀçÆò°¡Çϱ⠽ÃÀÛÇß½À´Ï´Ù. °æÁ¦°¡ ȸº¹µÊ¿¡ µû¶ó ´õ ±ú²ýÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ¿¡³ÊÁö¿ø¿¡ ´ëÇÑ ¼ö¿ä·Î ÀÎÇØ ¼®ÅºÃþ ¸Þź ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ °ü½ÉÀÌ ´Ù½Ã ³ô¾ÆÁú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ±âÁ¸ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»ó
±âÁ¸ ºÎ¹®Àº Àß È®¸³µÈ ÃßÃâ ±â¼ú°ú ³·Àº ±â¼úÀû À§ÇèÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âÁ¸ÀÇ ¼®ÅºÃþ ¸Þź ÃßÃâÀº ½ÃÃß ¹× Å»¼ö °øÁ¤ÀÌ ´õ °£´ÜÇÏ¿© ÷´Ü ±â¼ú¿¡ ´ëÇÑ Á¢±ÙÀÌ Á¦ÇÑµÈ ±â¾÷¿¡°Ô ´õ ¸Å·ÂÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ¼º¼÷ÇÑ ¼®Åº ºÐÁö¿Í ±âÁ¸ °¡½º ÀÎÇÁ¶ó°¡ ÀÖ´Â Áö¿ªÀº Àç·¡½Ä ¼®ÅºÃþ ¸Þź »ý»êÀÇ ¼ºÀåÀ» Áö¿øÇÏ¿© ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¹ßÀü ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀÌ ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È ¹ßÀü ºÎ¹®Àº ¼®Åº È·Â ¹ßÀü¼Ò¿¡ ºñÇØ ³·Àº ¹èÃâ·®À» Á¦°øÇÏ´Â ¾ÈÁ¤ÀûÀ̰í È¿À²ÀûÀÎ ¹ßÀü ¿¬·á ¿øÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ê¾÷ÀÇ Àü±âȰ¡ Áõ°¡ÇÏ°í °³¹ßµµ»ó±¹¿¡¼ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁö¿ø¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó CBM ±â¹Ý Àü·Â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àúź¼Ò ¿¡³ÊÁö¿øÀ» Áö¿øÇÏ´Â Á¤ºÎÀÇ Àμ¾Æ¼ºê¿Í Á¤Ã¥Àº ¹ßÀü ºÐ¾ß¿¡¼ ¼®ÅºÃþ ¸ÞźÀÇ Ã¤ÅÃÀ» ´õ¿í Àå·ÁÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀº ±¤¹üÀ§ÇÑ ¼®Åº ¸ÅÀå·®°ú Àß ±¸Ãà µÈ Ãµ¿¬ °¡½º ÀÎÇÁ¶ó·Î ÀÎÇØ CBM »ý»êÀÌ °æÁ¦ÀûÀ¸·Î ½ÇÇà °¡´ÉÇϱ⠶§¹®¿¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â ¿ìÈ£ÀûÀÎ Á¤ºÎ Á¤Ã¥°ú ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÇ Áö¿øÀ» ¹Þ¾Æ ºñÀüÅë °¡½º Ž»ç ºÐ¾ßÀÇ ¼±±¸ÀÚ ¿ªÇÒÀ» ÇØ¿Ô½À´Ï´Ù. ¶ÇÇÑ Ã»Á¤ ¿¡³ÊÁö¿ø°ú ¿¡³ÊÁö ÀÚ¸³¿¡ ´ëÇÑ ¼ö¿ä·Î ÀÎÇØ CBM ÃßÃâ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿Í ÷´Ü ÃßÃâ ±â¼úÀº Áö¼Ó °¡´ÉÇÑ CBM »ý»êÀ» º¸ÀåÇÏ¿© ºÏ¹ÌÀÇ ½ÃÀå Áö¹è·ÂÀ» ´õ¿í °ø°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀº Áß±¹, Àεµ, È£ÁÖ¿Í °°Àº ±¹°¡µéÀÌ Áõ°¡ÇÏ´Â ¿¡³ÊÁö ¼ö¿ä¸¦ ÃæÁ·Çϱâ À§ÇØ CBM »ý»ê ´É·ÂÀ» ºü¸£°Ô È®ÀåÇϰí Àֱ⠶§¹®¿¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ª¿¡´Â ¸·´ëÇÑ ¹Ì°³¹ß ¼®Åº ¸ÅÀå·®ÀÌ ÀÖ¾î ÃßÃâÇÒ ¼ö ÀÖ´Â »ó´çÇÑ ±âȸ°¡ ÀÖ½À´Ï´Ù. Áß±¹°ú Àεµ Á¤ºÎ´Â ¼öÀÔ Ãµ¿¬°¡½º¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇØ Á¤Ã¥ Àμ¾Æ¼ºê¿Í ÀÎÇÁ¶ó °³¹ßÀ» ÅëÇØ CBM ÇÁ·ÎÁ§Æ®¸¦ Àû±ØÀûÀ¸·Î Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀÇ »ê¾÷È¿Í µµ½ÃÈ·Î ÀÎÇØ Àú·ÅÇÏ°í ±ú²ýÇÑ ¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ÀÌ Áö¿ªÀº CBMÀÇ ÁÖ¿ä ¼ºÀå Çãºê·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Coal Bed Methane Market is accounted for $13.7 billion in 2024 and is expected to reach $20.5 billion by 2030 growing at a CAGR of 6.9% during the forecast period. Coal Bed Methane (CBM) is a unique natural gas trapped within coal seams, primarily composed of methane (CH4) formed during the coalification process. It is adsorbed onto the surface of coal particles and held in place by water pressure within the coal seam. Extracting CBM requires drilling wells into coal seams and reducing water pressure, which involves dewatering. Advanced drilling techniques like horizontal drilling and hydraulic fracturing improve gas recovery efficiency. CBM is considered a cleaner energy source compared to coal and oil, emitting lower levels of carbon dioxide and pollutants. It is used for electricity generation, industrial applications, and as a fuel for vehicles in the form of compressed natural gas (CNG).
According to the International Energy Agency (IEA), global energy-related CO2 emissions rose by 1.1% in 2023, increasing by 410 million tons from 2022, reaching a record high of 37.4 billion tons. This follows a 1.3% increase of 490 million tons in 2022.
Rising demand for cleaner energy
As global energy consumption continues to rise, industries and governments are shifting towards natural gas as a cleaner alternative to coal and oil. Coal bed methane, being a methane-based fuel, emits lower levels of carbon dioxide (CO2), sulfur, and particulate matter compared to conventional fossil fuels. This aligns with international climate agreements and national policies aimed at reducing greenhouse gas emissions. Moreover, CBM provides a reliable energy security solution, particularly in regions with abundant coal reserves, reducing dependence on imported natural gas and crude oil boosting the market growth.
High initial capital & production costs
The drilling process, dewatering, and methane extraction involve expensive technologies, which increase operational costs. Additionally, the water management process in coal bed methane extraction is complex; requiring proper disposal or treatment of produced water, further adding to expenses. Many companies face difficulties in securing funding due to the uncertainty of methane yield from coal seams, which varies by location. These high costs, combined with fluctuating natural gas prices, can discourage investment in coal bed methane projects, limiting market growth.
Innovations in extraction and production techniques
Innovations such as horizontal drilling, hydraulic fracturing, and enhanced coal seam stimulation have improved the efficiency of coal bed methane recovery. These advancements help in increasing gas extraction rates while reducing operational costs, making CBM production more economically viable. Additionally, the development of advanced water treatment technologies enables better management of produced water, addressing environmental concerns. In addition the integration of artificial intelligence (AI) and real-time monitoring in coal bed methane production also enhances efficiency, reducing methane leakage and improving safety measures encouraging the market growth.
Rising adoption of renewable energy sources
Governments and industries are investing heavily in solar, wind, and hydrogen energy, which are perceived as more sustainable and long-term solutions for clean energy. Many countries have set ambitious targets for net-zero emissions, leading to policy changes that favor renewable over fossil fuels. Additionally, advancements in battery storage technology have improved the reliability of renewable energy, reducing dependence on natural gas-based power generation. As solar and wind energy become more cost-competitive, CBM may face reduced market share in the global energy transition.
Covid-19 Impact
The economic slowdown led to a decline in industrial activities, directly affecting the consumption of natural gas, including coal bed methane. Additionally, financial constraints during the pandemic resulted in the postponement of exploration and production projects, further slowing market growth. However, the pandemic also highlighted the need for energy diversification, leading some governments to reassess their domestic energy sources. As economies recover, the demand for cleaner and cost-effective energy sources is expected to drive renewed interest in coal bed methane projects.
The conventional segment is expected to be the largest during the forecast period
The conventional segment is expected to account for the largest market share during the forecast period due to its well-established extraction techniques and lower technical risks. Conventional coal bed methane extraction involves simpler drilling and dewatering processes, making it more attractive for companies with limited access to advanced technologies. Furthermore, regions with mature coal basins and existing gas infrastructure support the growth of conventional coal bed methane production driving the markets growth.
The power generation segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the power generation segment is predicted to witness the highest growth rate owing to stable and efficient fuel source for power generation, offering lower emissions compared to coal-fired power plants. The increasing electrification of industries and the need for reliable energy sources in developing countries are driving the demand for CBM-based electricity. Government incentives and policies supporting low-carbon energy sources are further encouraging the adoption of coal bed methane in power generation.
During the forecast period, the North America region is expected to hold the largest market share due to extensive coal reserves and well-established natural gas infrastructure, making CBM production economically viable. The United States and Canada have been pioneers in unconventional gas exploration, supported by favorable government policies and regulatory frameworks. In addition, the demand for cleaner energy sources and energy independence has led to increasing investments in CBM extraction. North America's stringent environmental regulations and advanced extraction technologies ensure sustainable CBM production, further solidifying its market dominance.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR owing to countries like China, India, and Australia are rapidly expanding their CBM production capabilities to meet growing energy demands. The region has vast untapped coal reserves, providing significant opportunities for extraction. Governments in China and India are actively supporting CBM projects through policy incentives and infrastructure development to reduce reliance on imported natural gas. This rising industrialization and urbanization in Asia Pacific are driving increased demand for affordable and cleaner energy, positioning the region as a key growth hub for CBM.
Key players in the market
Some of the key players in Coal Bed Methane market include Arrow Energy Pty Ltd., Baker Hughes, a GE Company LLC, Black Diamond Energy, ConocoPhillips Company, Essar, Exxon Mobil, G3 Exploration, Gazprom, Great Eastern Energy, Halliburton, IGas Energy, PetroChina Company Limited, Petroliam Nasional Berhad, Pioneer Natural Resources Company, Reliance Industries Limited and Royal dutch shel plc .
In January 2025, Halliburton Energy Services and Coterra Energy Inc. announced the launch of autonomous hydraulic fracturing technology in North America with the Octiv(R) Auto Frac service, which is part of the ZEUS platform.
In April 2024, GE Aerospace announced its official launch as an independent public company defining the future of flight, following the completion of the GE Vernova spin-off. GE Aerospace will trade on the New York Stock Exchange (NYSE) under the ticker "GE".