¾Ï Ä¡·á¿ë ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ ½ÃÀå ¿¹Ãø( -2030³â) : ¾à¹° À¯Çüº°, µô¸®¹ö¸® ¹æ¹ýº°, ¾à¹° ¹æÃâ À¯Çüº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®
Novel Drug Delivery Systems in Cancer Therapy Market Forecasts to 2030 - Global Analysis By Drug Type, Delivery Method, Drug Release Type, Technology, Application, End User and By Geography
»óǰÄÚµå : 1662654
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 6,004,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,596,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 9,187,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,851,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é, ¾Ï Ä¡·á¿ë ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2024³â 183¾ï 8,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 9.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 316¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ç×¾ÏÁ¦¸¦ ƯÁ¤ ºÎÀ§¿¡ Á¤È®Çϰí È¿À²ÀûÀ¸·Î ºÐÆ÷½Ã۱â À§ÇØ °³¹ßµÈ ÷´Ü ±â¼úÀ» ¾Ï Ä¡·á¿ë ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛÀ̶ó°í ÇÕ´Ï´Ù. °íºÐÀÚ, ¸®Æ÷¼Ø, ³ª³ëÀÔÀÚ µîÀ» Æ÷ÇÔÇÏ´Â ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ºÎÀÛ¿ëÀ» ÁÙÀ̰í, ¾à¹°ÀÇ »ýü ÀÌ¿ë·üÀ» ³ôÀ̸ç, Àü¹ÝÀûÀÎ Ä¡·á È¿°ú¸¦ ³ôÀ̱â À§ÇØ °í¾ÈµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¾Ï¼¼Æ÷¿Í Á¾¾ç¿¡ Á÷Á¢ ¾à¹°À» Àü´ÞÇÏ¿© Ä¡·á È¿°ú¸¦ ±Ø´ëÈ­ÇÏ´Â µ¿½Ã¿¡ ÁÖº¯ °Ç°­ÇÑ Á¶Á÷¿¡ ´ëÇÑ ÇÇÇØ¸¦ ÁÙÀÓÀ¸·Î½á ¾Ï Ä¡·á¿¡ À¯¸ÁÇÑ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ °ü½É Áõ°¡

¸ÂÃãÇü Ä¡·áÀÇ Á߿伺ÀÌ ³ô¾ÆÁö¸é¼­ ¾Ï Ä¡·á¿ë ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ(NDDS) ½ÃÀåÀ» °ßÀÎÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ȯÀÚÀÇ À¯ÀüÀÚ ±¸¼º, ºÐÀÚ ÇÁ·ÎÆÄÀÏ, Á¾¾ç Ư¼º¿¡ µû¶ó Ä¡·á °èȹÀ» Á¶Á¤ÇÏ´Â ¸ÂÃãÀÇ·á´Â º¸´Ù Á¤È®Çϰí È¿À²ÀûÀÎ ¾Ï Ä¡·á¸¦ °¡´ÉÇÏ°Ô Çϸç, NDDS´Â ƯÁ¤ ¾Ï¼¼Æ÷¿¡ ¾à¹°À» ½±°Ô Àü´ÞÇÏ¿© ¼±·®ÇÑ Á¶Á÷¿¡ ´ëÇÑ ¼Õ»óÀ» ÁÙÀ̰í Ä¡·á °á°ú¸¦ °³¼±Çϱ⠶§¹®¿¡ ÀÌ Àü·«¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Á¤È®¼ºÀº ºÎÀÛ¿ëÀ» ÁÙÀ̰í Ä¡·á °èȹ¿¡ ´ëÇÑ È¯ÀÚÀÇ ¼øÀÀµµ¸¦ Çâ»ó½Ãŵ´Ï´Ù. ÃÖ÷´Ü NDDS ±â¼úÀÇ °³¹ßÀº Çö´ëÀÇ ¾Ï Ä¡·á °èȹ¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀ̸ç, ¸ÂÃãÇü ÀǾàǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

³ôÀº °³¹ß ºñ¿ë

µ§µå¸®¸Ó, ¸®Æ÷¼Ø, ³ª³ëÀÔÀÚ¿Í °°Àº NDDS¿¡ ÇÊ¿äÇÑ Ã·´Ü ±â¼úÀº µ¶ÀÚÀûÀÎ Àç·á, º¹ÀâÇÑ Á¦Á¶ ÀýÂ÷, ¸¹Àº °æÇèÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ ¾ÈÀü¼º°ú À¯È¿¼ºÀ» º¸ÀåÇϱâ À§Çؼ­´Â ¸¹Àº ÀüÀÓ»ó½ÃÇè°ú ÀÓ»ó½ÃÇèµµ ÇÊ¿äÇÕ´Ï´Ù. ƯÈ÷ ÀÚ¿øÀÌ ÇÑÁ¤µÈ ȯ°æ¿¡¼­ ÀÌ·¯ÇÑ ¸·´ëÇÑ ºñ¿ëÀº Áß¼Ò±â¾÷ÀÇ ½ÃÀå ÁøÀÔÀ» ¾î·Æ°Ô Çϰí, Ä¡·áºñ¿ëÀ» »ó½Â½ÃÄÑ È¯ÀÚ Á¢±Ù¼ºÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. Áï, NDDSÀÇ °³¹ß ºñ¿ëÀº NDDS°¡ ³Î¸® äÅÃµÇ¾î »ó¿ëÈ­µÇ´Â °ÍÀ» ¹æÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù.

¿¬±¸°³¹ß ÅõÀÚ È®´ë

º¸´Ù È¿°úÀûÀ̰í Ç¥ÀûÈ­µÈ ¸ÂÃãÇü ¾Ï Ä¡·á¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ(NDDS)¿¡ ´ëÇÑ ¿¬±¸°³¹ß(R&D) ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸°³¹ßÀº ³ª³ëÀÔÀÚ, ¸®Æ÷¼Ø, ¹Ì¼¿ µî ¾àÈ¿¸¦ ³ôÀÌ°í ºÎÀÛ¿ëÀ» ÃÖ¼ÒÈ­Çϸç ȯÀÚÀÇ ¼øÀÀµµ¸¦ Çâ»ó½Ãų ¼ö Àִ ÷´Ü ¾à¹°Àü´Þ ±â¼ú °³¹ß¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù. Á¦¾à»ç ¹× ¹ÙÀÌ¿ÀÅ×Å© ±â¾÷µéµµ ³·Àº »ýü ÀÌ¿ë·ü°ú Àü½Å µ¶¼º µî ±âÁ¸ Ä¡·á¹ýÀÇ ÇѰ踦 ±Øº¹Çϱâ À§ÇØ Çõ½ÅÀûÀÎ ¾à¹°Àü´Þ ½Ã½ºÅÛ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. R&D ÅõÀÚ Áõ°¡´Â ¾Ï Ä¡·á¸¦ À§ÇÑ º¸´Ù È¿À²ÀûÀÌ°í ¾ÈÀüÇÑ ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ °³¹ß¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.

ƯÁ¤ Àü´Þ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÓ»óÀû ±Ù°Å°¡ ºÎÁ·

ƯÁ¤ ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ(NDDS)¿¡ ´ëÇÑ ºÒÃæºÐÇÑ ÀÓ»ó µ¥ÀÌÅÍ´Â ¾Ï Ä¡·á ½ÃÀå¿¡¼­ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ƯÁ¤ ³ª³ëÀÔÀÚ Á¦Á¦³ª À¯ÀüÀÚ ±â¹Ý Àü´Þ ½Ã½ºÅÛ µî ¸¹Àº NDDS ¹æ¹ýµéÀÌ ÀüÀÓ»ó ¿¬±¸¿¡¼­ À¯¸ÁÇÑ °ÍÀ¸·Î ³ªÅ¸³µÁö¸¸, ¾ÆÁ÷ Àΰ£ ÀÓ»ó½ÃÇè¿¡¼­ ÀϰüµÇ°Ô È¿°ú°¡ ÀÔÁõµÇÁö ¾Ê¾Ò½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ ±¤¹üÀ§ÇÑ º¸±ÞÀº ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ Áö¿¬ °¡´É¼ºÀ¸·Î ÀÎÇØ ¹æÇذ¡ µÉ ¼ö ÀÖ½À´Ï´Ù. »õ·Î¿î NDDS ±â¼úÀÌ ¼º°øÇÏ¿© Ç¥ÁØ ¾Ï Ä¡·á¿¡ ÅëÇյDZâ À§Çؼ­´Â ÀÌ·¯ÇÑ ±â¼úÀÇ À§Çè°ú ÀÌÁ¡À» È®ÀÎÇϱâ À§ÇØ º¸´Ù öÀúÇÏ°í ´ë±Ô¸ðÀÇ ÀÓ»ó½ÃÇèÀÌ ÇÊ¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 »çÅ´ ¾Ï Ä¡·á¿¡ »ç¿ëµÇ´Â Çõ½ÅÀû ¾à¹°Àü´Þ ½Ã½ºÅÛ(NDDS) ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÀÓ»ó½ÃÇè ÀýÂ÷ ¹× °ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ »õ·Î¿î Ä¡·á¹ýÀÇ °³¹ß ¹× ½ÂÀÎÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, COVID-19 °ü¸®¿¡ ÀÇ·á ÀÚ¿øÀÌ ÁýÁߵǸ鼭 ¾Ï Ä¡·á¿¡ ´ëÇÑ °ü½Éµµ °¨¼ÒÇß½À´Ï´Ù. ¶ÇÇÑ, ¾Ï ȯÀÚµéÀº ÆÒµ¥¹Í ±â°£ µ¿¾È ´õ Ãë¾àÇÑ »óÅ¿´±â ¶§¹®¿¡ Ä¡·á °èȹÀÌ ´õ º¹ÀâÇØÁ³½À´Ï´Ù. ÀÌ´Â ÀÌ ¾î·Á¿î ȯ°æ¿¡¼­ ȯÀÚÀÇ ¿¹Èĸ¦ °³¼±Çϱâ À§ÇØ º¸´Ù È¿À²ÀûÀ̰í ÁýÁßÀûÀÎ ¾à¹°Àü´Þ ½Ã½ºÅÛÀÇ Çʿ伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È È­Çпä¹ýÁ¦ ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Ç×¾ÏÁ¦ ºÎ¹®Àº ¾Ï Ä¡·á¿¡ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ¾î ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, NDDS ±â¼úÀº ¾à¹°ÀÇ ¿ëÇØµµ¸¦ °³¼±Çϰí, ¾Ï¼¼Æ÷¸¦ º¸´Ù Á¤È®ÇÏ°Ô Ç¥ÀûÈ­Çϰí, Àü½Å µ¶¼ºÀ» °¨¼Ò½ÃÅ´À¸·Î½á Ç×¾Ï Ä¡·áÀÇ È¿°ú¸¦ Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹æÃâ Á¦¾î¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ºÎÀÛ¿ëÀ» ÃÖ¼ÒÈ­Çϰí Ä¡·á È¿°ú¸¦ ±Ø´ëÈ­ÇÕ´Ï´Ù. ºÎÀÛ¿ëÀ» ÃÖ¼ÒÈ­Çϸ鼭 È­Çпä¹ýÀÇ Ä¡·á ¼ºÀûÀ» Çâ»ó½Ãų Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó NDDS¿Í È­Çпä¹ýÁ¦ÀÇ Ãß°¡ °³¹ß ¹× ÅëÇÕÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È º´¿ø ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È º´¿ø ºÎ¹®Àº °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Ï Ä¡·áÀÇ ÁÖ¿ä ¼¾ÅÍÀÎ º´¿øÀº ¾Ï Ä¡·áÀÇ È¿°ú¸¦ ³ôÀÌ°í ºÎÀÛ¿ëÀ» ÁÙÀ̸ç ȯÀÚ ¿¹Èĸ¦ °³¼±Çϱâ À§ÇØ Ã·´Ü NDDS¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÓ»ó ÇöÀå¿¡¼­ °³ÀÎÈ­µÈ Ä¡·á¿Í Ç¥ÀûÄ¡·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó º´¿øµéÀÌ ÀÌ·¯ÇÑ Çõ½ÅÀûÀÎ ¾à¹°Àü´Þ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í, ±Ã±ØÀûÀ¸·Î Ç¥ÁØ ¾Ï Ä¡·á ÇÁ·ÎÅäÄÝ¿¡ÀÇ ÅëÇÕÀ» °¡¼ÓÈ­ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¾Ï ¹ßº´·ü Áõ°¡, ÀÇ·á ÀÎÇÁ¶ó °³¼±, ÀÇ·áºñ Áõ°¡¿¡ ÈûÀÔ¾î °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °¢±¹ Á¤ºÎ´Â ÷´Ü ÀÇ·á ±â¼ú¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó NDDS¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¸¹Àº ȯÀÚ ¼ö¿Í »ý¸í°øÇÐ ¹× Á¦¾à »ê¾÷ÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀº Çõ½ÅÀûÀÎ ¾Ï Ä¡·á ¼Ö·ç¼ÇÀÇ °³¹ß ¹× äÅÿ¡ ÀÖ¾î Áß¿äÇÑ ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À̴ źźÇÑ ÀÇ·á ÀÎÇÁ¶ó, ¼±ÁøÀûÀÎ ¿¬±¸°³¹ß ´É·Â, ³ôÀº ÀÇ·áºñ ÁöÃâ¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ¸ÂÃãÇü ¾Ï Ä¡·á¿Í Á¤¹Ð ÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ NDDS ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, FDA¿Í °°Àº ±â°üÀÇ ±ÔÁ¦Àû Áö¿ø°ú ÁÖ¿ä Á¦¾à»ç ¹× »ý¸í°øÇÐ ±â¾÷ÀÇ Á¸Àç´Â ºÏ¹Ì¿¡¼­ ¾Ï Ä¡·á¸¦ À§ÇÑ Çõ½ÅÀûÀÎ ¾à¹°Àü´Þ ½Ã½ºÅÛÀÇ °³¹ß ¹× äÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¾Ï Ä¡·á¿ë ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ ½ÃÀå : ¾à¹° À¯Çüº°

Á¦6Àå ¼¼°èÀÇ ¾Ï Ä¡·á¿ë ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ ½ÃÀå : µô¸®¹ö¸® ¹æ¹ýº°

Á¦7Àå ¼¼°èÀÇ ¾Ï Ä¡·á¿ë ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ ½ÃÀå : ¾à¹° ¹æÃâ À¯Çüº°

Á¦8Àå ¼¼°èÀÇ ¾Ï Ä¡·á¿ë ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ ½ÃÀå : ±â¼úº°

Á¦9Àå ¼¼°èÀÇ ¾Ï Ä¡·á¿ë ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ ½ÃÀå : ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ ¾Ï Ä¡·á¿ë ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦11Àå ¼¼°èÀÇ ¾Ï Ä¡·á¿ë ½Å±Ô ¾à¹°Àü´Þ ½Ã½ºÅÛ ½ÃÀå : Áö¿ªº°

Á¦12Àå ÁÖ¿ä °³¹ß

Á¦13Àå ±â¾÷ °³¿ä

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Novel Drug Delivery Systems in Cancer Therapy Market is accounted for $18.38 billion in 2024 and is expected to reach $31.69 billion by 2030 growing at a CAGR of 9.5% during the forecast period. Advanced technologies created to improve the accurate and efficient distribution of cancer drugs to specific areas are referred to as novel drug delivery systems in cancer therapy. These systems, which include polymers, liposomes, and nanoparticles, are designed to decrease adverse effects, boost the bioavailability of medicinal compounds, and enhance treatment efficacy overall. These technologies provide promising options in cancer therapy by delivering medications directly to cancer cells or tumors, maximizing therapeutic efficacy while reducing harm to nearby healthy tissues.

Market Dynamics:

Driver:

Increased focus on personalized medicine

Growing emphasis on individualized care is a major factor propelling the market for novel drug delivery systems (NDDS) in cancer treatment. More accurate and efficient cancer treatments are made possible by personalized medicine, which adjusts treatment plans according to a patient's genetic composition, molecular profile, and tumor features. By making it easier to distribute medications to particular cancer cells, NDDS are essential to this strategy because they reduce harm to good tissue and improve therapy results. This accuracy lowers adverse effects and increases patient compliance with treatment plans. The creation of cutting-edge NDDS technology remains a vital part of contemporary cancer treatment plans, supporting market expansion as the need for tailored medicines increases.

Restraint:

High development costs

The sophisticated technologies needed for NDDS, like dendrimers, liposomes, and nanoparticles, require unique materials, intricate manufacturing procedures, and a great deal of experience. To guarantee the security and effectiveness of these systems, a great deal of preclinical and clinical testing is also required. Particularly in environments with limited resources, these exorbitant expenses may make it more difficult for smaller businesses to enter the market and may also lead to higher treatment costs, which would limit patient access. This means that the cost of developing NDDS prevents them from being widely adopted and commercialized.

Opportunity:

Growing research and development investments

The growing need for more effective, targeted, and personalized cancer treatments is driving an increase in research and development (R&D) investments in Novel Drug Delivery Systems (NDDS). R&D efforts are focused on developing advanced drug delivery technologies, such as nanoparticles, liposomes, and micelles, which enhance drug efficacy, minimize side effects, and improve patient compliance. Pharmaceutical and biotechnology companies are also investing heavily in innovative drug delivery systems to address the limitations of conventional therapies, such as poor bioavailability and systemic toxicity. Increased R&D investments accelerate the development of novel, more efficient, and safe drug delivery options for cancer treatment.

Threat:

Limited clinical evidence for certain delivery systems

Insufficient clinical data for specific Novel Drug Delivery Systems (NDDS) continues to be a major obstacle in the market for cancer treatments. Many NDDS methods, including specific nanoparticle formulations and gene-based delivery systems, have shown promise in preclinical research but have not yet proven to be consistently effective in human clinical trials. The widespread deployment of these technologies may be hampered by the potential delay in regulatory approval. For emerging NDDS technologies to succeed and be incorporated into standard cancer treatment, more thorough, extensive clinical trials are required to confirm the hazards and advantages of these technologies.

Covid-19 Impact

The COVID-19 pandemic has had a significant impact on the market for innovative drug delivery systems (NDDS) used in cancer treatment. The development and approval of new therapies have been delayed by disruptions in clinical trial procedures and supply chains. Cancer therapies also received less attention as a result of healthcare resources being redirected to COVID-19 management. Additionally, because cancer patients were more vulnerable during the pandemic, their treatment plans were more complex. This highlights the need for more efficient and focused medication delivery systems to improve patient outcomes in this difficult setting.

The chemotherapy drugs segment is expected to be the largest during the forecast period

The chemotherapy drugs segment is expected to account for the largest market share during the forecast period, due to their widespread use in cancer treatment. NDDS technologies enhance the effectiveness of chemotherapy by improving drug solubility, targeting cancer cells more precisely, and reducing systemic toxicity. These systems allow for controlled release, minimizing side effects and maximizing therapeutic impact. The growing need to improve chemotherapy outcomes while minimizing adverse effects fuels further development and integration of NDDS with chemotherapy agents.

The hospitals segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the hospitals segment is predicted to witness the highest growth rate, as primary centers for cancer treatment, hospitals are adopting advanced NDDS to enhance the efficacy of cancer therapies, reduce side effects, and improve patient outcomes. The increasing demand for personalized and targeted therapies in clinical settings pushes hospitals to invest in these innovative drug delivery systems, ultimately promoting their adoption and accelerating their integration into standard cancer treatment protocols.

Region with largest share:

During the forecast period, Asia Pacific region is expected to hold the largest market share, driven by rising cancer incidence, improving healthcare infrastructure, and increasing healthcare expenditure. Governments are investing in advanced medical technologies, while growing awareness of personalized medicine further boosts demand for NDDS. Additionally, the region's large patient population, combined with rapid advancements in biotechnology and pharmaceutical industries, positions Asia-Pacific as a key market for the development and adoption of innovative cancer treatment solutions.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to robust healthcare infrastructure, advanced research and development capabilities, and high healthcare spending. The region's focus on precision medicine, along with a growing emphasis on personalized cancer treatments, fuels demand for NDDS technologies. Additionally, regulatory support from agencies like the FDA, along with the presence of leading pharmaceutical and biotech companies accelerates the development and adoption of innovative drug delivery systems for cancer therapy in North America.

Key players in the market

Some of the key players profiled in the Novel Drug Delivery Systems in Cancer Therapy Market include Johnson & Johnson, Pfizer Inc., Novartis AG, Merck & Co., Inc., Roche Holding AG, Eli Lilly and Company, AbbVie Inc., Bristol-Myers Squibb Company, Sanofi S.A., AstraZeneca PLC, GlaxoSmithKline PLC, Amgen Inc., Celgene Corporation, Bayer AG, Teva Pharmaceutical Industries Ltd., Gilead Sciences, Inc., Biocon Limited, and Mylan N.V.

Key Developments:

In June 2024, Bristol-Myers Squibb Company received FDA accelerated approval for KRAZATI (adagrasib) in combination with cetuximab, a targeted treatment for KRASG12C-mutated CRC patients who had undergone prior chemotherapy, based on ORR and DOR results.

In January 2024, Johnson & Johnson acquired Ambrx Biopharma, a clinical-stage biopharmaceutical company, in a cash merger deal valued at approximately USD 2.0 billion, with estimated cash on hand deducted.

Drug Types Covered:

Delivery Methods Covered:

Drug Release Types Covered:

Technologies Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Novel Drug Delivery Systems in Cancer Therapy Market, By Drug Type

6 Global Novel Drug Delivery Systems in Cancer Therapy Market, By Delivery Method

7 Global Novel Drug Delivery Systems in Cancer Therapy Market, By Drug Release Type

8 Global Novel Drug Delivery Systems in Cancer Therapy Market, By Technology

9 Global Novel Drug Delivery Systems in Cancer Therapy Market, By Application

10 Global Novel Drug Delivery Systems in Cancer Therapy Market, By End User

11 Global Novel Drug Delivery Systems in Cancer Therapy Market, By Geography

12 Key Developments

13 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â