ÇコÄɾî ÀÚµ¿È­ ½ÃÀå ¿¹Ãø(-2030³â) : ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®
Healthcare Automation Market Forecasts to 2030 - Global Analysis By Technology (Robotics, Artificial Intelligence, Internet of Medical Things, Big Data and Analytics, Blockchains and Other Technologies), Application, End User and by Geography
»óǰÄÚµå : 1530834
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2024³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,751,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,275,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,799,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,393,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÇコÄɾî ÀÚµ¿È­ ½ÃÀåÀº 2024³â¿¡ 441¾ï 5,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGR 12.0%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 871¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

ÇコÄɾî ÀÚµ¿È­¶ó´Â ¿ë¾î´Â ÀÇ·á »ê¾÷¿¡¼­ ¹Ýº¹ÀûÀÎ ÀÛ¾÷À» ÀÚµ¿È­ÇÏ°í ¿öÅ©Ç÷ο츦 °³¼±Çϱâ À§ÇØ ¼ÒÇÁÆ®¿þ¾î¿Í ±â¼úÀ» Àû¿ëÇÏ´Â °ÍÀ» ÀǹÌÇÕ´Ï´Ù. ±× ¹üÀ§´Â ÀÚµ¿È­µÈ û±¸ ¾÷¹« ¹× ÀüÀÚ ÀÇ·á ±â·Ï(EHR) °ü¸®ºÎÅÍ Ã·´Ü ·Îº¿ ¼ö¼ú ¹× AI Áø´Ü¿¡ À̸£±â±îÁö ´Ù¾çÇÕ´Ï´Ù. ÀÇ·á ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ´Â ½Ã°£ÀÌ ¸¹ÀÌ °É¸®´Â ¹Ýº¹ÀûÀÎ ÀÛ¾÷À» ÀÚµ¿È­ÇÔÀ¸·Î½á »ý»ê¼ºÀ» ³ôÀÌ°í ½Ç¼ö¸¦ ÁÙÀ̸ç ȯÀÚ Ä¡·á¿¡ ´õ ¸¹Àº ½Ã°£À» ÇÒ¾ÖÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿È­´Â µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¢±Ù¼º°ú Á¤È®¼ºÀ» Çâ»ó½ÃÄÑ ´õ ³ªÀº ÀÇ»ç °áÁ¤°ú ȯÀÚ °á°ú °³¼±À» ÃËÁøÇÕ´Ï´Ù.

¹Ì±¹ ÀÇ»çÇùȸ¿¡ µû¸£¸é ÀÇ·á ÀÚµ¿È­´Â ÀÇ»çÀÇ °ü¸® ºÎ´ãÀ» Å©°Ô ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ÀÇ»ç´Â ȯÀÚ¿¡°Ô Á÷Á¢ Ä¡·á¿¡ ´õ ÁýÁßÇÒ ¼ö ÀÖÀ¸¸ç, Àüü ÀÇ·á ¼­ºñ½º¸¦ °³¼±ÇÒ ¼ö ÀÖ´Ù°í ÇÕ´Ï´Ù.

È¿°úÀûÀÎ ÀÇ·á ¼­ºñ½º¿¡ ´ëÇÑ ´ÏÁî Áõ°¡

Àα¸ °í·ÉÈ­, ¸¸¼ºÁúȯÀÇ È®»ê, ȯÀÚµéÀÇ ±â´ëÄ¡ »ó½ÂÀº ¸ðµÎ ÇコÄÉ¾î ºÐ¾ßÀÇ ¼­ºñ½º ¼ö¿ä¸¦ Áõ°¡½ÃŰ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ´Â ÀÌ·¯ÇÑ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ È¿°úÀûÀ̰í Áú ³ôÀº ÀÇ·á ¼­ºñ½º¸¦ Á¦°øÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÚµ¿È­ ±â¼úÀº ȯÀÚÀÇ ºÎ´ãÀ» °ü¸®ÇÏ°í ´ë±â ½Ã°£À» ÁÙÀÌ¸ç ½Å¼ÓÇÑ ÀÇ·á °³ÀÔÀ» º¸ÀåÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÇ·á ÀÚµ¿È­´Â ¿öÅ©Ç÷ο츦 ÃÖÀûÈ­ÇÏ°í °ü¸® ºÎ´ãÀ» ÁÙ¿© ÀÇ·áÁøÀÌ È¯ÀÚ Ä¡·á¿¡ ´õ ÁýÁßÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© ±Ã±ØÀûÀ¸·Î ȯÀÚ Ä¡·á °á°ú¸¦ °³¼±ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

°í°¡ÀÇ µµÀÔ °¡°Ý

ÇコÄɾî ÀÚµ¿È­ ±â¼úÀ» µµÀÔÇÏ·Á¸é Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¸·´ëÇÑ Ãʱâ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀº ¿¹»êÀÌ ÇÑÁ¤µÈ ¼Ò±Ô¸ð Áø·á¼Ò³ª ½Ã¼³¿¡¼­´Â °¨´çÇÒ ¼ö ¾øÀ» ¼öµµ ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á÷¿ø ±³À°, ½Ã½ºÅÛ Á¤ºñ ¹× ÇöÀç ±â¼ú°úÀÇ ÅëÇÕ°ú °ü·ÃµÈ ºñ¿ëµµ ºÎ´ãÀ» Áõ°¡½Ãŵ´Ï´Ù. ¶ÇÇÑ ÀÚµ¿È­´Â Àå±âÀûÀ¸·Î È¿À²¼ºÀ» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖÁö¸¸, ƯÈ÷ ÀÚ±ÝÀÌ ºÎÁ·ÇÑ ÀÇ·á ±â°üÀ̳ª ¿ø°ÝÁö¿¡ À§Ä¡ÇÑ ÀÇ·á ±â°ü¿¡´Â »ó´çÇÑ Ãʱ⠺ñ¿ëÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÇ·á ¿¬±¸¿¡ ´ëÇÑ »õ·Î¿î Á¢±Ù ¹æ½Ä

ÀÇ·á ¿¬±¸´Â ÀÚµ¿È­¸¦ ÅëÇØ Å©°Ô ¹ßÀüÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿È­µÈ µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®À» ÅëÇØ ÀÓ»ó½ÃÇè ¹× ¿¬±¸ ±â°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á ºÐ¾ßÀÇ ºòµ¥ÀÌÅÍ´Â AI¿Í ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» ÅëÇØ 󸮵Ǿî Àΰ£ÀÌ ÆÄ¾ÇÇÒ ¼ö ¾ø´Â µ¿Çâ¿Í ÀλçÀÌÆ®À» ¹àÇô³¾ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú »õ·Î¿î Ä¡·á¹ý, ¾àǰ, Ä¡·á¹ýÀ» ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿È­´Â ¶ÇÇÑ ¿¬±¸ µ¥ÀÌÅÍ °ü¸®ÀÇ Á¤È®¼º°ú ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÏ´Â µ¥¿¡µµ µµ¿òÀÌ µË´Ï´Ù.

¹ýÀû, À±¸®Àû ¹®Á¦

ÇコÄÉ¾î ºÐ¾ß¿¡¼­ÀÇ ÀÚµ¿È­, ƯÈ÷ AI¿Í ¸Ó½Å·¯´×ÀÇ Àû¿ëÀº ½É°¢ÇÑ µµ´öÀû, ¹ýÀû ¹®Á¦¸¦ ¾ß±âÇÕ´Ï´Ù. ¾Ë°í¸®Áò¿¡ ÀÇÇÑ Æí°ß, ÀÚµ¿È­µÈ ÀÇ»ç°áÁ¤ÀÇ Åõ¸í¼º, AI ½Ã½ºÅÛÀÇ Ã¥ÀÓ¼º µîÀ» ½ÅÁßÇÏ°Ô °í·ÁÇØ¾ß ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î AI ½Ã½ºÅÛÀÌ Áø´Ü ¿À·ù¸¦ ¹üÇÑ °æ¿ì, Ã¥ÀÓ°ú Ã¥ÀÓÀ» °áÁ¤ÇÏ±â ¾î·Æ½À´Ï´Ù. ÀÚµ¿È­ ½Ã½ºÅÛÀÌ À±¸®ÀûÀ¸·Î °³¹ßµÇ°í Ȱ¿ëµÉ ¼ö ÀÖµµ·Ï Çϱâ À§Çؼ­´Â ²÷ÀÓ¾ø´Â °ËÅä, Á¾ÇÕÀûÀÎ ÀÌÇØ°ü°èÀÚ Âü¿©, Á¤È®ÇÑ À±¸® ±âÁØÀÇ ¼ö¸³, ¹ýÀû ÇÁ·¹ÀÓ¿öÅ©ÀÇ µµÀÔÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ ÀÇ·á ¼­ºñ½º Á¦°øÀÇ °øÁ¤¼º°ú ½Å·Ú¸¦ À¯ÁöÇϱâ À§Çؼ­´Â ÀÚµ¿È­ÀÇ ÀÌÁ¡°ú µµ´öÀû °í·Á»çÇ×ÀÇ ±ÕÇüÀ» ¸ÂÃß´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19 ÆÒµ¥¹ÍÀº Àü ¼¼°è ÀÇ·á ½Ã½ºÅÛ¿¡ Àü·Ê ¾ø´Â µµÀüÀ» °¡Á®¿Ô°í, ±× °á°ú ÀÇ·á ÀÚµ¿È­ÀÇ µµÀÔÀÌ Å©°Ô °¡¼ÓÈ­µÇ¾ú½À´Ï´Ù. ¿ø°ÝÀÇ·á Ç÷§Æû, ÀÚµ¿ Áø´Ü Åø ¹× ¿ø°Ý ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÇ ½Å¼ÓÇÑ µµÀÔÀº ȯÀÚ Ä¡·á¸¦ °ü¸®Çϰí ÀÇ·á Á¾»çÀÚÀÇ ¾÷¹« ºÎ´ãÀ» ÁÙÀÌ°í ¼­ºñ½º ¿¬¼Ó¼ºÀ» º¸ÀåÇϱâ À§ÇØ È¿°úÀûÀ̰í È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀÇ Çʿ伺¿¡ ÀÇÇØ µ¿±â¸¦ ºÎ¿© ¹Þ¾Ò½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿È­¸¦ ÅëÇØ °ü¸® ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­Çϰí, ¿ø°ÝÁö¿¡¼­ ȯÀÚ¿ÍÀÇ »óÈ£ ÀÛ¿ëÀ» °¡´ÉÇÏ°Ô Çϰí, µ¥ÀÌÅÍ °ü¸®¸¦ °³¼±ÇÏ¿© °úÁßÇÑ ¾÷¹«¿¡ ½Ã´Þ¸®´Â ÀÇ·á ½Ã¼³ÀÇ ºÎ´ãÀ» ´ú¾îÁÖ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ÀΰøÁö´É ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀΰøÁö´É(AI) ºÐ¾ß´Â ÇコÄɾî ÀÚµ¿È­ ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. AI ½Ã½ºÅÛÀº º¹ÀâÇÑ ÀÇ·á µ¥ÀÌÅ͸¦ Æò°¡Çϰí, ¿¹ÈÄ ¿¹ÃøÀ» Á¦°øÇϸç, Ź¿ùÇÑ Á¤È®µµ·Î ÀÇ»ç°áÁ¤ ÀýÂ÷¸¦ °­È­ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» °®Ãß°í ÀÖÀ¸¸ç, °³ÀÎÈ­µÈ ÀÇ·á, Áø´Ü ¹× Ä¡·á °èȹ¿¡¼­ AIÀÇ Æø³ÐÀº Ȱ¿ëÀÌ ±× ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ÀÇ·á ±â·Ï 󸮸¦ À§ÇÑ ÀÚ¿¬¾î ó¸®, ȯÀÚ °á°ú ¿¹ÃøÀ» À§ÇÑ ¿¹Ãø ºÐ¼®, ¿µ»óÀÇÇÐ ºÐ¾ßÀÇ À̹ÌÁö ÀÎ½Ä µîÀÇ ¿ëµµ°¡ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ ÀΰøÁö´É(AI)Àº ÀûÀÀ·Â°ú ÀÇ·á ¿î¿µ ¹× Á¦°øÀÇ ¿©·¯ Ãø¸éÀ» º¯È­½Ãų ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ ÀÇ·á ÀÚµ¿È­ÀÇ ¼ºÀå¿¡ ÀÖÀ¸¸ç, ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

Áø´Ü ¸ð´ÏÅ͸µ ÀÚµ¿È­ ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÇコÄɾî ÀÚµ¿È­ ½ÃÀå¿¡¼­ Áø´Ü ¹× ¸ð´ÏÅ͸µ ÀÚµ¿È­ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» º¸À̰í ÀÖ½À´Ï´Ù. ÷´Ü Áø´Ü Àåºñ¿Í Áö¼ÓÀûÀΠȯÀÚ ¸ð´ÏÅ͸µ ÇÁ·Î±×·¥¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ÀÌ ½ÃÀåÀÇ Æø¹ßÀûÀÎ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿þ¾î·¯ºí °Ç°­ ¸ð´ÏÅÍ, AI ±â¹Ý Áø´Ü ½Ã½ºÅÛ, ¿ø°Ý °¨Áö ±â¼úÀº ÀÇ·á Àü¹®°¡µéÀÌ Áúº´À» ½Äº°Çϰí Ä¡·áÇÏ´Â ¹æ½ÄÀ» º¯È­½Ã۰í ÀÖ´Â Çõ½Å Áß ÀϺο¡ ºÒ°úÇÕ´Ï´Ù. ¶ÇÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Á¦°øÇϰí, Áø´Ü Á¤È®µµ¸¦ ³ôÀ̰í, °Ç°­ »óŸ¦ »çÀü¿¡ °ü¸®ÇÒ ¼ö ÀÖ°Ô ÇØÁÖ´Â ÀÌ·¯ÇÑ ±â¼úµéÀº ¸·´ëÇÑ ÅõÀÚ¿Í ºÐ¾ß È®ÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

ÇコÄɾî ÀÚµ¿È­ ½ÃÀåÀº ºÏ¹Ì°¡ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ÀÌ Áö¿ªÀÇ ³ôÀº ÀÚµ¿È­ ¼Ö·ç¼Ç äÅ÷ü, ¸·´ëÇÑ ±â¼ú ÅõÀÚ, Á¤±³ÇÑ ÇコÄɾî ÀÎÇÁ¶óÀÇ ´öºÐÀÔ´Ï´Ù. ºÏ¹Ì°¡ ¿©ÀüÈ÷ ¼±µÎ¸¦ ´Þ¸®°í ÀÖ´Â ÀÌÀ¯´Â ÁÖ¿ä ±â¼ú ±â¾÷ÀÇ Á¸Àç, ¸¹Àº R&D ÇÁ·ÎÁ§Æ®, ºñÁî´Ï½º ÃßÁøÀ» À§ÇÑ Á¤ºÎ ±ÔÁ¦°¡ Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀÇ ÇコÄɾî ÀÚµ¿È­ ½ÃÀå Á¡À¯À²ÀÌ ³ôÀº ÀÌÀ¯´Â ÀÌ ºÐ¾ßÀÇ µ¶Ã¢ÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ °­·ÂÇÑ ¼ö¿ä, ¾ÈÁ¤ÀûÀÎ ±ÔÁ¦ ȯ°æ, ȯÀÚ °á°ú ¹× ÀÇ·á È¿À²¼º Çâ»ó¿¡ ´ëÇÑ ³ë·Â¿¡ ±âÀÎÇÕ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ÇコÄɾî ÀÚµ¿È­ ½ÃÀåÀº À¯·´¿¡¼­ °¡Àå ³ôÀº ¿¬Æò±Õ ¼ºÀå·ü(CAGR)·Î °¡Àå ºü¸¥ ¼Óµµ·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ±â¼ú Çõ½Å°ú ÇコÄɾîÀÇ µðÁöÅÐ Çõ½Å¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÀÌ·¯ÇÑ ¼ºÀåÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. À¯·´ ±¹°¡µéÀº °í·ÉÈ­·Î ÀÎÇÑ ¹®Á¦¸¦ ÇØ°áÇϰí, ¾÷¹« È¿À²¼ºÀ» ³ôÀ̰í, Ä¡·áÀÇ ÁúÀ» Çâ»ó½Ã۱â À§ÇØ Ã·´Ü ÀÚµ¿È­ ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ EUÀÇ Çù·ÂÀûÀÎ ±ÔÁ¦ ȯ°æ, R&D¿¡ ´ëÇÑ ¸·´ëÇÑ ÀÚ±Ý Áö¿ø, ÅëÇÕ ÀÇ·á ½Ã½ºÅÛ ÃßÁøÀ¸·Î ÀÎÇØ ÀÚµ¿È­ ¼Ö·ç¼Ç µµÀÔÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. :

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ÇコÄɾî ÀÚµ¿È­ ½ÃÀå : ±â¼úº°

Á¦6Àå ¼¼°èÀÇ ÇコÄɾî ÀÚµ¿È­ ½ÃÀå : ¿ëµµº°

Á¦7Àå ¼¼°èÀÇ ÇコÄɾî ÀÚµ¿È­ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦8Àå ¼¼°èÀÇ ÇコÄɾî ÀÚµ¿È­ ½ÃÀå : Áö¿ªº°

Á¦9Àå ÁÖ¿ä ¹ßÀü

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Healthcare Automation Market is accounted for $44.15 billion in 2024 and is expected to reach $87.15 billion by 2030 growing at a CAGR of 12.0% during the forecast period. The term healthcare automation describes the application of software and technology to automate repetitive tasks and improve workflow in the medical industry. This can range from automated billing and the administration of electronic health records (EHRs) to sophisticated robotic surgery and AI-driven diagnostics. Healthcare providers can increase productivity, lower errors, and devote more time to patient care by automating time-consuming and repetitive tasks. Additionally, automation improves the accessibility and accuracy of data, which facilitates better decision-making and better patient outcomes.

According to the American Medical Association, healthcare automation has the potential to significantly reduce administrative burdens on physicians, allowing them to focus more on direct patient care and improving overall healthcare delivery.

Market Dynamics:

Driver:

Growing need for effective medical services

The aging population, the prevalence of chronic diseases, and the rising expectations of patients are all contributing factors to the growing demand for services in the healthcare sector. Healthcare providers are under pressure to provide effective, high-quality care in response to this demand. Automation technologies help to manage patient loads, shorten wait times, and guarantee prompt medical interventions. Moreover, healthcare automation helps medical staff focus more on patient care by optimizing workflows and lowering administrative burdens, which eventually improves patient outcomes.

Restraint:

High starting prices

Healthcare automation technology implementation necessitates a large initial hardware, software, and infrastructure investment. These expenses may be unaffordable for smaller medical practices and facilities with tighter budgets. The costs associated with employee training, system maintenance, and integration with current technologies can also increase the burden. Furthermore, automation may increase efficiency and reduce costs in the long run, but it can come with a significant upfront cost, especially for underfunded or remote healthcare providers.

Opportunity:

New approaches to medical research

Medical research can progress significantly with the help of automation. Clinical trial and research study times can be shortened by using automated data collection and analysis. Big data in the medical field can be processed by AI and machine learning algorithms, which can reveal trends and insights that are impossible for humans to see. Novel therapies, medications, and treatments may be found as a result of this. Automation also helps to ensure accuracy and regulatory compliance in the management of research data.

Threat:

Legal and ethical concerns

The application of automation in healthcare, especially AI and machine learning, presents significant moral and legal issues. Careful consideration must be given to matters like algorithmic bias, automated decision-making transparency, and AI system accountability. Determining liability and accountability, for instance, can be difficult if an AI system makes a diagnostic error. It takes constant examination, inclusive stakeholder engagement, the development of precise ethical standards, and the implementation of legal frameworks to guarantee that automated systems are developed and utilized ethically. Additionally, to preserve equity and trust in the provision of healthcare, it is crucial to strike a balance between the advantages of automation and moral considerations.

Covid-19 Impact:

The COVID-19 pandemic brought about unprecedented challenges for healthcare systems worldwide, which in turn significantly accelerated the adoption of healthcare automation. The quick adoption of telehealth platforms, automated diagnostic tools, and remote monitoring systems was motivated by the need for effective and scalable solutions to manage patient care, lessen the workload on healthcare professionals, and ensure continuity of services. Furthermore, automation streamlined administrative processes, enabled remote patient interactions, and improved data management, all of which relieved pressure on overburdened healthcare facilities.

The Artificial Intelligence segment is expected to be the largest during the forecast period

In the market for healthcare automation, the artificial intelligence (AI) segment has the largest share. The wide range of uses of AI in personalized medicine, diagnosis, and treatment planning is what propels its dominance. AI systems possess the ability to evaluate intricate medical data, offer prognostications, and bolster decision-making procedures with unparalleled precision. This covers uses like natural language processing for processing medical records, predictive analytics for patient outcomes, and image recognition in radiology. Moreover, artificial intelligence (AI) is a key player in the growth of healthcare automation due to its adaptability and capacity to change many facets of healthcare operations and delivery.

The Diagnostics & Monitoring Automation segment is expected to have the highest CAGR during the forecast period

In the healthcare automation market, the Diagnostics & Monitoring Automation segment has the highest CAGR. The rising need for sophisticated diagnostic instruments and ongoing patient monitoring programs is driving this market's explosive expansion. Wearable health monitors, AI-driven diagnostic systems, and remote sensing technologies are just a few examples of innovations that are changing the way healthcare professionals identify and treat illnesses. Additionally, significant investment and sector expansion are being driven by these technologies, which provide real-time data, enhance diagnostic accuracy, and enable proactive management of health conditions.

Region with largest share:

The market for healthcare automation is dominated by North America. This dominance is a result of the region's highly adopted automation solutions, substantial technological investments, and sophisticated healthcare infrastructure. North America is still in the lead because of the existence of significant technology companies, a plethora of R&D projects, and pro-business government regulations. Furthermore, the region's sizable market share in healthcare automation is also attributed to the strong demand for creative solutions in the field, a stable regulatory environment, and a commitment to enhancing patient outcomes and healthcare efficiency.

Region with highest CAGR:

The healthcare automation market is expanding at a significant rate in Europe as well, with the highest CAGR. The region's growing focus on technology innovation and the digital transformation of healthcare is what is causing this growth. In order to address the issues posed by an aging population, increase operational efficiencies, and improve care quality, European nations are making significant investments in cutting-edge automation technologies. Moreover, the adoption of automation solutions is being further fueled by the EU's supportive regulatory environment, significant funding for research and development, and the push for integrated healthcare systems.

Key players in the market

Some of the key players in Healthcare Automation market include Swisslog Holding AG, Cerner, Stryker Corporation, Accuray, Inc., Tecan Group Ltd., Koninklijke Philips N.V., GE Healthcare, Roche Diagnostics, Intuitive Surgical, Inc., Danaher Corporation, Siemens Healthineers, Medtronic plc and Philips Healthcare.

Key Developments:

In July 2024, GE HealthCare announced it has entered into an agreement to acquire Intelligent Ultrasound Group PLC's (Intelligent Ultrasound) clinical artificial intelligence (AI) software business for total consideration of approximately $51 million. Intelligent Ultrasound is a leader in integrated AI-driven image analysis tools designed to make ultrasound smarter and more efficient.

In June 2024, Accuray Incorporated announced an agreement with TrueNorth Medical Physics LLC to provide radiation oncology departments with third-party support designed to enhance their department's capabilities.

In June 2024, Stryker, a global leader in medical technologies, announced the signing of a definitive agreement to acquire all of the issued and outstanding shares of Artelon, a privately held company specializing in innovative soft tissue fixation products for foot and ankle and sports medicine procedures.

Technologies Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Healthcare Automation Market, By Technology

6 Global Healthcare Automation Market, By Application

7 Global Healthcare Automation Market, By End User

8 Global Healthcare Automation Market, By Geography

9 Key Developments

10 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â