¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç° ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, À¯·¡º°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®
Bio-based Chemicals Market Forecasts to 2030 - Global Analysis By Type (Solvents, Polymers, Surfactants, Organic Acids, Adhesives, Specialty Chemicals and Other Types), Source, Technology, Application, End User and By Geography
»óǰÄÚµå : 1530777
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2024³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,713,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,227,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,742,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,325,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç° ½ÃÀåÀº 2024³â¿¡ 816¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGRÀº 11.6%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 1,577¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç°Àº È­¼®¿¬·á°¡ ¾Æ´Ñ ½Ä¹°, Á¶·ù, Æó±â¹° µî Àç»ýÇÑ »ý¹°ÇÐÀû ÀÚ¿ø¿¡¼­ ¾ò¾îÁý´Ï´Ù. ÀÌ·¯ÇÑ È­Çй°ÁúÀº ´ç·ù, ¿ÀÀÏ, ¸®±×³ë¼¿·ê·Î¿À½º ¼ÒÀç¿Í °°Àº ¿ø·á¸¦ »ç¿ëÇÏ¿© ¹ßÈ¿ ¹× È­ÇÐÀû Àüȯ µîÀÇ °øÁ¤À» ÅëÇØ »ý»êµË´Ï´Ù. ¼®À¯ ±â¹Ý ÅõÀÔ¹°¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̰í, ¿Â½Ç °¡½º ¹èÃâÀ» ÁÙÀ̸ç, Áö¼Ó°¡´ÉÇÑ °üÇàÀ» ÃËÁøÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.

Áö¼Ó°¡´ÉÇÑ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

Áö¼Ó°¡´ÉÇÑ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚ ¹× ±ÔÁ¦ ´ç±¹ÀÇ ¾Ð·ÂÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº ź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇØ ±âÁ¸ ¼®À¯È­ÇÐÁ¦Ç°À» ´ëüÇÒ ¼ö ÀÖ´Â ¹ÙÀÌ¿À Á¦Ç° °³¹ß¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀº ±â¼ú ¹ßÀü°ú ±âÈÄ º¯È­¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡¿¡ ÈûÀÔ¾î ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. º¸´Ù ģȯ°æÀûÀÎ ¼±ÅÃÀ» Á¦°øÇϰí, ȯ°æ¿¡ ¹Î°¨ÇÑ ¼ÒºñÀÚÀÇ ¿ä±¸¸¦ ÃæÁ·½Ã۸ç, ¼¼°è Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕÇÕ´Ï´Ù.

±â¼úÀû °úÁ¦

½ÇÇè½Ç¿¡¼­ÀÇ Çõ½ÅÀ» »ê¾÷ ¼öÁØÀ¸·Î È®ÀåÇÏ´Â °ÍÀº Á¾Á¾ ¾î·Æ°í ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ¶ÇÇÑ ±âÁ¸ ¼®À¯È­ÇÐÁ¦Ç°°ú ºñ±³ÇÏ¿© ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç°¿¡¼­ ÀϰüµÈ ǰÁú°ú ¼º´ÉÀ» ´Þ¼ºÇÏ´Â °ÍÀº ¿©ÀüÈ÷ ¾î·Á¿î °úÁ¦ÀÔ´Ï´Ù. ½ÃÀåÀº ¶ÇÇÑ Á¦ÇÑµÈ ±â¼ú ÀÎÇÁ¶ó¿Í Ã˸а³¹ß ¹× °øÁ¤ ÃÖÀûÈ­¸¦ À§ÇÑ ¹ßÀüÀÇ Çʿ伺¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¶ÇÇÑ °í°¡ÀÇ ¿ø·á¿Í º¹ÀâÇÑ °¡°ø ±â¼ú·Î ÀÎÇÑ ³ôÀº »ý»ê ºñ¿ë µî ¿©·¯ °¡Áö ±â¼úÀû ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù.

¿ø·áÀÇ ´Ù¾çÈ­

½ÃÀåÀÇ ¿ø·á ´Ù¾çÈ­¿¡´Â ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç°À» »ý»êÇϱâ À§ÇØ ³ó¾÷ ÀÜÀç, Àӻ깰, ½ÉÁö¾î Á¶·ù µî ´Ù¾çÇÑ Àç»ýÇÑ ¿ø·á¸¦ Ȱ¿ëÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. ´Ù¾çÇÑ ¿ø·á¸¦ Ȱ¿ëÇÔÀ¸·Î½á ±â¾÷Àº »ý»ê È¿À²¼ºÀ» ³ôÀ̰í, ºñ¿ëÀ» Àý°¨Çϸç, °ø±Þ¸Á È¥¶õ¿¡ µû¸¥ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Àü·«Àº Çõ½ÅÀ» ÃËÁøÇÏ°í ´õ °­ÀÎÇϰí ģȯ°æÀûÀÎ È­ÇÐ »ê¾÷ÀÇ ¹ßÀüÀ» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.

±âÁ¸ È­Çй°Áú°úÀÇ °æÀï

½ÃÀåÀº ÁÖ·Î ºñ¿ë °ÝÂ÷¿Í È®¸³µÈ »ý»ê È¿À²¼ºÀ¸·Î ÀÎÇØ ±âÁ¸ È­ÇÐÁ¦Ç°°úÀÇ Å« ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ±âÁ¸ È­Çй°ÁúÀº ¼º¼÷ÇÑ ±â¼ú°ú ±Ô¸ðÀÇ °æÁ¦ÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖÀ¸¸ç, ±× °á°ú °¡°ÝÀÌ ³·¾ÆÁ® ³Î¸® º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ¹Ý¸é, ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç°Àº »ý»ê ºñ¿ëÀÌ ³ô°í °ø±Þ¸ÁÀÌ ¾ÆÁ÷ °³¹ßµÇÁö ¾ÊÀº °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ °æÀï ¾Ð·ÂÀº ȯ°æÀû ÀÌÁ¡¿¡µµ ºÒ±¸ÇÏ°í »ê¾÷°è°¡ Áö¼Ó°¡´É¼ºº¸´Ù ºñ¿ë È¿À²¼ºÀ» ¿ì¼±½ÃÇÒ ¼ö ÀÖÀ¸¹Ç·Î ¹ÙÀÌ¿À ´ëüǰÀÇ Ã¤ÅÃÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19´Â °ø±Þ¸Á¿¡ È¥¶õÀ» ÀÏÀ¸ÄÑ ¿ø·á ºÎÁ·°ú »ý»ê Áö¿¬À¸·Î À̾îÁö´Â µî ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °æ±â ħü´Â °³ÀÎ ¼Òºñ¸¦ °¨¼Ò½ÃÄÑ ¹ÙÀÌ¿À Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¶ÇÇÑ ±â¾÷°ú ¼ÒºñÀÚ°¡ ȯ°æ ģȭÀû ÀÎ ´ë¾È¿¡ Á¡Á¡ ´õ ¸¹Àº °ü½ÉÀ» ±â¿ïÀ̸鼭 Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÃßÁø·ÂÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç°¿¡ ´ëÇÑ Çõ½Å°ú ÅõÀÚ¸¦ ÃËÁøÇÏ¿© ´Ü±âÀûÀÎ ¾î·Á¿ò¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀåÀÇ Àå±âÀûÀÎ ¼ºÀåÀ» °¡´ÉÇÏ°Ô Çß½À´Ï´Ù.

¿¹Ãø ±â°£ Áß À¯±â»ê ºÐ¾ß°¡ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ Áß À¯±â»êÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àç»ýÇÑ ÀÚ¿ø¿¡¼­ ÃßÃâÇÑ ÀÌ »ê¿¡´Â Á¥»ê, ±¸¿¬»ê, ¾Æ¼¼Æ®»êÀÌ Æ÷ÇԵǸç, »ýºÐÇØ¼º ÇÃ¶ó½ºÆ½, ¿ë¸Å ¹× ÷°¡Á¦ »ý»ê¿¡ ÇʼöÀûÀÔ´Ï´Ù. ȯ°æ ģȭÀûÀÌ°í ´Ù¾çÇϹǷΠ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ Áö¼Ó°¡´ÉÇÑ °üÇàÀ» äÅÃÇÏ´Â Ãß¼¼°¡ °­È­µÊ¿¡ µû¶ó À¯±â»êÀº º¸´Ù ģȯ°æÀûÀÎ ´ëüǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ¹ÙÀÌ¿À È­ÇÐ ºÎ¹®ÀÇ È®ÀåÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù.

È­Àåǰ ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

È­Àåǰ ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ È­ÀåǰÀº ½Ä¹°¼º ¿ÀÀÏÀ̳ª ¼³ÅÁ°ú °°Àº Àç»ýÇÑ ÀÚ¿ø¿¡¼­ ÃßÃâÇÑ Ãµ¿¬ À¯È­Á¦, °è¸éȰ¼ºÁ¦, ¹æºÎÁ¦¿Í °°Àº ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç°À» »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ¼®À¯È­ÇÐ ¼ººÐ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãâ »Ó¸¸ ¾Æ´Ï¶ó ±×¸° Äɹ̽ºÆ®¸®ÀÇ ¼ºÀåÀ» Áö¿øÇÕ´Ï´Ù. ȯ°æ ¿µÇâ¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó È­Àåǰ »ê¾÷¿¡¼­ ¹ÙÀÌ¿À ºÐ¾ß´Â °è¼Ó È®´ëµÇ°í ÀÖÀ¸¸ç, ±â¼ú Çõ½Å°ú ¼ÒºñÀÚ ¼±È£¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

ºÏ¹Ì´Â Áö¼Ó°¡´ÉÇÑ Æ÷Àå°ú ÀÚµ¿Â÷ ºÎǰÀ¸·ÎÀÇ Àüȯ¿¡ ÈûÀÔ¾î ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ý¸í°øÇÐ ¹× °øÁ¤ °øÇÐÀÇ ±â¼ú ¹ßÀüÀ¸·Î »ý»ê È¿À²¼º°ú ºñ¿ë È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î´Â »ê¾÷°èÀÇ Ä£È¯°æ ´ëüǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ µé ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿Í ģȯ°æ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç°·ÎÀÇ ÀüȯÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ±Þ¼ÓÇÑ »ê¾÷È­¿Í ³ôÀº Àα¸ ¹Ðµµ¸¦ ¹è°æÀ¸·Î È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ¹ÙÀÌ¿À È­ÇÐ ¹°Áú·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ä£È¯°æ ±â¼ú ÅõÀÚ¿¡ ´ëÇÑ À¯¸®ÇÑ Á¤Ã¥°ú Àμ¾Æ¼ºê°¡ ½ÃÀå ¿ªÇÐÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç°ÀÇ È®´ë´Â ¼¼°è Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕÇϸç, ÀÌ Áö¿ª ±â¾÷ÀÌ Ä£È¯°æ Á¦Ç° Áõ°¡ Ãß¼¼¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ´Â Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌÁî ¼­ºñ½º :

º» ¸®Æ÷Æ®¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ¾Æ·¡ÀÇ ¹«·á Ä¿½ºÅ͸¶ÀÌÁî ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. :

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç° ½ÃÀå : À¯Çüº°

Á¦6Àå ¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç° ½ÃÀå : À¯·¡º°

Á¦7Àå ¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç° ½ÃÀå : ±â¼úº°

Á¦8Àå ¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç° ½ÃÀå : ¿ëµµº°

Á¦9Àå ¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç° ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦10Àå ¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý È­ÇÐÁ¦Ç° ½ÃÀå : Áö¿ªº°

Á¦11Àå ÁÖ¿ä ¹ßÀü

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Bio-Based Chemicals Market is accounted for $81.6 billion in 2024 and is expected to reach $157.7 billion by 2030 growing at a CAGR of 11.6% during the forecast period. Bio-based chemicals are derived from renewable biological sources such as plants, algae, or waste products, rather than from fossil fuels. These chemicals are produced through processes like fermentation or chemical conversion, using feedstocks like sugars, oils, or lignocellulosic materials. They aim to reduce reliance on petroleum-based inputs, lower greenhouse gas emissions, and promote sustainable practices.

Market Dynamics:

Driver:

Rising demand for sustainable products

The market is experiencing a significant rise in demand driven by increasing consumer and regulatory pressure for sustainable products. Companies are focusing on developing bio-based alternatives to traditional petrochemical products to reduce carbon footprints. This shift towards sustainable solutions is supported by advancements in technology and growing awareness of climate change. They offer a greener option, meeting the needs of environmentally conscious consumers and aligning with global sustainability goals.

Restraint:

Technological challenges

Scaling up laboratory innovations to industrial levels often proves difficult and costly. Additionally, achieving consistent quality and performance in bio-based chemicals compared to traditional petrochemical products remains a challenge. The market also struggles with limited technological infrastructure and a need for advancements in catalyst development and process optimization. Furthermore, the market faces several technological challenges, including the high cost of production due to expensive raw materials and complex processing techniques.

Opportunity:

Diversification of feedstocks

Diversification of feedstocks in the market involves utilizing a range of renewable raw materials, such as agricultural residues, forestry by-products, and even algae, to produce bio-based chemicals. By leveraging diverse feedstocks, companies can improve production efficiency, lower costs, and mitigate risks associated with supply chain disruptions. This strategy also promotes innovation and supports the development of a more resilient and eco-friendly chemical industry.

Threat:

Competition from traditional chemicals

The market faces significant challenges from traditional chemicals, primarily due to cost disparities and established production efficiencies. Traditional chemicals benefit from mature technologies and economies of scale, which result in lower prices and wider availability. In contrast, bio-based chemicals often involve higher production costs and less developed supply chains. This competitive pressure can hinder the adoption of bio-based alternatives, despite their environmental benefits, as industries may prioritize cost-effectiveness over sustainability.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the market by disrupting supply chains, leading to raw material shortages and production delays. The economic downturn reduced consumer spending, affecting demand for bio-based products. However, the crisis also accelerated the push towards sustainable solutions, as companies and consumers increasingly focused on eco-friendly alternatives. This shift prompted innovation and investment in bio-based chemicals, positioning the market for long-term growth despite short-term challenges.

The organic acids segment is expected to be the largest during the forecast period

The organic acids is expected to be the largest during the forecast period. Derived from renewable sources, these acids include lactic acid, citric acid, and acetic acid, which are essential in producing biodegradable plastics, solvents, and additives. Their eco-friendly profile and versatility drive their growing demand. As industries increasingly adopt sustainable practices, organic acids are positioned to meet the rising need for greener alternatives, supporting the expansion of the bio-based chemicals sector.

The cosmetics segment is expected to have the highest CAGR during the forecast period

The cosmetics segment is expected to have the highest CAGR during the forecast period. These cosmetics use bio-based chemicals such as natural emulsifiers, surfactants, and preservatives derived from renewable sources like plant oils and sugars. This shift not only reduces reliance on petrochemical components but also supports the growth of green chemistry. As awareness of environmental impact grows, the bio-based segment within the cosmetics industry continues to expand, driving innovation and consumer preference.

Region with largest share:

North America is projected to hold the largest market share during the forecast period driven by the shift toward sustainable packaging and automotive components. Technological advancements in biotechnology and process engineering are enhancing production efficiency and cost-effectiveness. Key drivers include the rising demand for green alternatives in industries. Additionally, stringent environmental regulations and consumer preference for eco-friendly products are accelerating the shift towards bio-based chemicals.

Region with highest CAGR:

Asia Pacific is projected to hold the highest CAGR over the forecast period. This region, with its rapid industrialization and high population density, is shifting towards bio-based chemicals to reduce reliance on fossil fuels and minimize ecological impact. Additionally, favorable policies and incentives for green technology investments are enhancing market dynamics. The expansion of bio-based chemicals aligns with global sustainability goals and offers significant opportunities for businesses in the region to capitalize on the growing trend of eco-friendly products.

Key players in the market

Some of the key players in Bio-Based Chemicals market include BASF SE, Dow Inc., Braskem S.A., Cargill, Inc., NatureWorks LLC, Novozymes A/S, SABIC, Clariant AG, Kraton Corporation, Solvay S.A., Arkema S.A., Mitsubishi Chemical Corporation, LG Chem Ltd., Tate & Lyle PLC, Green Biologics Ltd., Reverdia, TotalEnergies SE and Ginkgo Bioworks.

Key Developments:

In March 2024, TotalEnergies and China Petroleum and Chemical Corporation have signed a Heads of Agreement (HoA) to jointly develop a Sustainable Aviation Fuel (SAF) production unit at a SINOPEC's refinery in China.

In February 2024, Mitsubishi Chemical released new biodegradable biopolyester resins SA916N and SA916F. Due to Mitsubishi Chemical's proprietary material design and manufacturing technology, the new product's high biomass content of more than 60%, flexibility, high tear strength and excellent processing properties are achieved and can be used in various applications.

Types Covered:

Sources Covered:

Technologies Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Bio-Based Chemicals Market, By Type

6 Global Bio-Based Chemicals Market, By Source

7 Global Bio-Based Chemicals Market, By Technology

8 Global Bio-Based Chemicals Market, By Application

9 Global Bio-Based Chemicals Market, By End User

10 Global Bio-Based Chemicals Market, By Geography

11 Key Developments

12 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â