Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º ½ÃÀåÀº 2024³â¿¡ 307¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGRÀº 13.6%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 661¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.
Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå¿¡´Â ±¸ºÎ¸± ¼ö ÀÖ°í, ´Ã¸± ¼ö ÀÖ°í, Á¢À» ¼ö ÀÖ´Â ÀüÀÚÁ¦Ç°ÀÇ »ý»ê°ú °³Ã´ÀÌ Æ÷ÇԵ˴ϴÙ. ¿©±â¿¡´Â ÇÃ¶ó½ºÆ½, ±Ý¼Ó¹Ú, À¯±â ÈÇÕ¹° µîÀÇ Àç·á·Î ¸¸µé¾îÁø Ç÷º¼ºí µð½ºÇ÷¹ÀÌ, ¼¾¼, ¹èÅ͸®, ȸ·Î µîÀÌ Æ÷ÇԵ˴ϴÙ. ÁÖ¿ä ±â¿© ºÐ¾ß´Â ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°, ÇコÄɾî, ÀÚµ¿Â÷ µîÀÔ´Ï´Ù.
IEEE Spectrum¿¡ µû¸£¸é "Ç÷º¼ºí µð½ºÇ÷¹ÀÌÀÇ ÃâÇÏ·®Àº 2019³â 3¾ï 2õ¸¸ ´ë¿¡¼ 2030³â 7,400¸¸ ´ë ÀÌ»óÀ¸·Î Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â CAGR 34%¿¡ ÇØ´çÇÑ´Ù"°í ¹àÇû½À´Ï´Ù.
¿þ¾î·¯ºí ±â±â ¹× IoT ÅëÇÕ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
¿þ¾î·¯ºí ±â±âÀÇ Àα⠻ó½Â°ú IoT ±â¼ú ÅëÇÕÀÇ ¹ßÀüÀÌ Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀº ÀÏ»ó »ýȰ¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕµÉ ¼ö ÀÖ´Â ´õ ÀÛ°í, °¡º±°í, ´Ù¿ëµµÇÑ ÀüÀÚÁ¦Ç°À» ¿øÇϰí ÀÖ½À´Ï´Ù. Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º´Â ½Åü¿¡ Âø¿ëÇϰųª ÀÇ·ù¿¡ ÅëÇÕÇÒ ¼ö ÀÖ´Â Á¢À» ¼ö ÀÖ°í, ½ÅÃ༺, ½ÅÃ༺, ÀûÀÀ¼ºÀÌ ÀÖ´Â µð¹ÙÀ̽º¸¦ °³¹ßÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Ç÷º¼ºí µð½ºÇ÷¹ÀÌ, ¼¾¼, ¹èÅ͸®¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, Á¦Á¶¾÷üµéÀº Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º ºÐ¾ßÀÇ Á¦Ç° Çõ½Å°ú È®ÀåÀ» À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.
º¹ÀâÇÑ Á¦Á¶ °øÁ¤
Ç÷º¼ºí µð¹ÙÀ̽º´Â Ư¼ö ¼ÒÀç, ÷´Ü Á¦Á¶ ±â¼ú, Á¤¹ÐÇÑ Á¦Á¶ Á¶°Ç Á¦¾î°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº Á¦Á¶ ºñ¿ë »ó½Â, °³¹ß Áֱ⠿¬Àå, ǰÁú°ü¸®ÀÇ ÀáÀçÀû ¹®Á¦·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. Ç÷º¼ºí ±âÆÇ, Àüµµ¼º À×Å©, Á¢ÇÕ ±â¼ú µîÀÇ ºÐ¾ß´Â Ư¼ö Àåºñ¿Í Àü¹® Áö½ÄÀÌ ÇÊ¿äÇϹǷΠÇ÷º¼ºí ÀÏ·ºÆ®·Î´Ð½ºÀ» ´ë±Ô¸ð·Î »ý»êÇÒ ¼ö ÀÖ´Â Á¦Á¶¾÷üÀÇ ¼ö°¡ Á¦ÇÑµÇ¾î ½ÃÀå ¼ºÀåÀÌ µÐ鵃 ¼ö ÀÖ½À´Ï´Ù.
Áö¼ÓÀûÀÎ ±â¼ú °³¹ß
½ÅÃ༺ ÀüµµÃ¼, À¯±â ¹ÝµµÃ¼, Ç÷º¼ºí ¹èÅ͸®¿Í °°Àº ºÐ¾ßÀÇ Çõ½ÅÀº »õ·Î¿î ÀÀ¿ë °¡´É¼ºÀ» ³ÐÈ÷°í ±âÁ¸ µð¹ÙÀ̽ºÀÇ ¼º´ÉÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¿¬±¸°¡ ÁøÇàµÊ¿¡ µû¶ó ´õ È¿À²ÀûÀÌ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ºñ¿ë È¿À²ÀûÀÎ Ç÷º¼ºí ÀüÀÚ ºÎǰÀÌ µîÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ Áö¼ÓÀûÀÎ ±â¼ú °³¹ßÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ »õ·Î¿î Á¦Ç°°ú ¿ëµµÀÇ ¹®À» ¿¾î ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈÇϰí Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½ºÀÇ Àúº¯À» È®´ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
±âÁ¸ ±â¼ú°úÀÇ °æÀï
¸¹Àº ¼ÒºñÀÚ¿Í »ê¾÷°è´Â ±âÁ¸ ÀüÀÚÁ¦Ç°¿¡ Àͼ÷ÇØÁ® ÀÖÀ¸¸ç, º¸´Ù À¯¿¬ÇÑ »õ·Î¿î ´ëü ±â¼úÀ» äÅÃÇÏ´Â °ÍÀ» ÁÖÀúÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸®Áöµå ÀÏ·ºÆ®·Î´Ð½º°¡ ¼ÒÇüÈ ¹× È¿À²¼º Ãø¸é¿¡¼ °è¼Ó °³¼±µÊ¿¡ µû¶ó Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º°¡ ´ëÀÀÇϰíÀÚ ÇÏ´Â ´ÏÁî Áß ÀϺθ¦ ÃæÁ·½Ãų ¼ö ÀÖÀ» °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °æÀïÀº ƯÈ÷ À¯¿¬¼ºÀÇ ÀÌÁ¡ÀÌ ¿ëµµ¿¡ Áß¿äÇÏÁö ¾ÊÀº °æ¿ì ƯÁ¤ ºÐ¾ß¿¡¼ Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½ºÀÇ Ã¤ÅÃÀ» Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù.
COVID-19´Â Ãʱ⿡´Â Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º°ø±Þ¸Á°ú Á¦Á¶ °øÁ¤¿¡ È¥¶õÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ±×·¯³ª ¿þ¾î·¯ºí °Ç° ¸ð´ÏÅÍ ¹× ÅÍÄ¡¸®½º ÀÎÅÍÆäÀ̽º¿Í °°Àº ÇコÄÉ¾î °ü·Ã ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈÇß½À´Ï´Ù. ÆÒµ¥¹ÍÀº À¯¿¬Çϰí ÀûÀÀ·ÂÀÌ ¶Ù¾î³ ±â¼úÀÇ Á߿伺À» ºÎ°¢½ÃÄ×À¸¸ç, »ê¾÷°è°¡ º¸´Ù ź·ÂÀûÀÌ°í ´Ù¿ëµµÇÑ ¼Ö·ç¼ÇÀ» Ãß±¸ÇÔ¿¡ µû¶ó Ç÷º¼ºí ÀüÀÚ ½ÃÀåÀÇ Àå±âÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß Ç÷º¼ºí µð½ºÇ÷¹ÀÌ ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Ç÷º¼ºí µð½ºÇ÷¹ÀÌ´Â ½º¸¶Æ®Æù, ¿þ¾î·¯ºí, Â÷·®¿ë ÀÎÅÍÆäÀ̽º µî ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ¸é¼ Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º ½ÃÀåÀ» Àå¾ÇÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ µð½ºÇ÷¹ÀÌ´Â ³»±¸¼º Çâ»ó, °æ·®È, °î¸é¿¡ ´ëÇÑ ÀûÀÀ·Â µîÀÇ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. Á¢À» ¼ö ÀÖ´Â ½º¸¶Æ®Æù°ú ȸÀü½Ä TV¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ÀÌ ºÐ¾ßÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ç÷º¼ºí µð½ºÇ÷¹ÀÌ´Â ´Ù¾çÇÑ °¡ÀüÁ¦Ç°¿¡¼ »õ·Î¿î ÆûÆÑÅÍ¿Í »ç¿ëÀÚ °æÇèÀ» °¡´ÉÇÏ°Ô ÇÏ¿© Àüü ½ÃÀå ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù.
ÇコÄÉ¾î ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÇコÄÉ¾î ºÐ¾ß´Â ¿þ¾î·¯ºí ÀÇ·á±â±â, ¹ÙÀÌ¿À¼¾¼, ½º¸¶Æ® ÇコÄÉ¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º ½ÃÀåÀÌ ±Þ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º´Â »ýü ½ÅÈ£ ¹× ±âŸ °Ç° ÁöÇ¥¸¦ Áö¼ÓÀûÀ¸·Î ÃßÀûÇÒ ¼ö ÀÖ´Â Æí¾ÈÇÏ°í ºñħ½ÀÀûÀÎ ¸ð´ÏÅ͸µ Àåºñ¸¦ °³¹ßÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ȯÀÚ Ä¡·á °³¼±, ¿ø°Ý ¸ð´ÏÅ͸µ, ¸ÂÃãÇü ÀÇ·áÀÇ °¡´É¼ºÀº ÀÌ ºÐ¾ß¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¿Í Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è ÀÇ·á ½Ã½ºÅÛÀÌ º¸´Ù È¿À²ÀûÀ̰í ȯÀÚ Áß½ÉÀûÀÎ ¼Ö·ç¼ÇÀ» Ãß±¸ÇÔ¿¡ µû¶ó ÀÇ·á ¿ëµµ¿¡¼ Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½ºÀÇ Ã¤ÅÃÀº °¡¼Ó鵃 °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ƯÈ÷ Áß±¹, Çѱ¹, ÀϺ»°ú °°Àº ±¹°¡µéÀÇ °·ÂÇÑ Á¦Á¶°ÅÁ¡¿¡ ÈûÀÔ¾î Ç÷º¼ºí ÀüÀÚÁ¦Ç° ½ÃÀå¿¡¼ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀº ÀüÀÚ »ê¾÷ÀÌ Àß ¹ß´ÞµÇ¾î ÀÖ°í, ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚµµ Ȱ¹ßÇϸç, ÀüÀÚÁ¦Ç°ÀÇ ¼ÒºñÀÚ ½ÃÀåµµ Å®´Ï´Ù. ¶ÇÇÑ Â÷¼¼´ë ±â¼ú °³¹ßÀ» Áö¿øÇÏ´Â Á¤ºÎÀÇ ±¸»ó°ú ´ëÇü µð½ºÇ÷¹ÀÌ Á¦Á¶¾÷üÀÇ Á¸Àç´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º ºÐ¾ß¿¡¼ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿ìÀ§¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå¿¡¼ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½Å±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, Àεµ ¹× µ¿³²¾Æ½Ã¾Æ ±¹°¡µéÀÇ Á¦Á¶ ´É·Â È®´ë°¡ ÀÌ·¯ÇÑ ¼ºÀåÀÇ ¹è°æÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ±â¼ú Çõ½Å¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, Áß»êÃþ Áõ°¡¿Í IoT ¹× ¿þ¾î·¯ºí ±â±âÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ¸é¼ Ç÷º¼ºí ÀüÀÚ ±â¼úÀÇ °³¹ß ¹× äÅÃÀ» °¡¼ÓÈÇÒ ¼ö ÀÖ´Â ÁÁÀº ȯ°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Flexible Electronics Market is accounted for $30.7 billion in 2024 and is expected to reach $66.1 billion by 2030 growing at a CAGR of 13.6% during the forecast period. The flexible electronics market encompasses the production and development of bendable, stretchable, and foldable electronic devices. These include flexible displays, sensors, batteries, and circuits made from materials such as plastic, metal foil, and organic compounds. Key sectors that contribute are consumer electronics, healthcare, and automotive.
According to IEEE Spectrum, "Flexible display shipments are expected to grow from 3.2 million units in 2019 to over 74 million units by 2030, representing a compound annual growth rate of 34%."
Rising demand for wearable devices and IoT integration
The increasing popularity of wearable devices and the growing integration of IoT technology are driving the flexible electronics market. Consumers are seeking more compact, lightweight, and versatile electronic devices that can be seamlessly incorporated into their daily lives. Flexible electronics enable the development of bendable, stretchable, and conformable devices that can be worn on the body or integrated into clothing. This trend is fueling demand for flexible displays, sensors, and batteries, pushing manufacturers to innovate and expand their product offerings in the flexible electronics space.
Complex manufacturing processes
Flexible devices require specialized materials, advanced fabrication techniques, and precise control over manufacturing conditions. These complexities can lead to higher production costs, longer development cycles, and potential quality control issues. The need for specialized equipment and expertise in areas such as flexible substrates, conductive inks, and bonding techniques can limit the number of manufacturers capable of producing flexible electronics at scale, potentially slowing market growth.
Continuous technological development
Innovations in areas such as stretchable conductors, organic semiconductors, and flexible batteries are expanding the possibilities for new applications and improving the performance of existing devices. As research progresses, we can expect to see more efficient, durable, and cost-effective flexible electronic components. This continuous technological development opens doors for novel products and applications across various industries, potentially accelerating market growth and expanding the reach of flexible electronics.
Competition from established technologies
Many consumers and industries are accustomed to traditional electronic devices and may be hesitant to adopt newer, more flexible alternatives. Additionally, as rigid electronics continue to improve in terms of miniaturization and efficiency, they may meet some of the needs that flexible electronics aim to address. This competition could potentially slow the adoption of flexible electronics in certain sectors, particularly where the benefits of flexibility are not critical to the application.
The COVID-19 pandemic initially disrupted the flexible electronics supply chain and manufacturing processes. However, it also accelerated demand for healthcare-related applications like wearable health monitors and touchless interfaces. The pandemic highlighted the importance of flexible, adaptable technologies, potentially driving long-term growth in the flexible electronics market as industries seek more resilient and versatile solutions.
The flexible displays segment is expected to be the largest during the forecast period
Flexible displays are anticipated to dominate the flexible electronics market due to their wide-ranging applications in smartphones, wearables, and automotive interfaces. These displays offer advantages such as improved durability, lighter weight, and the ability to conform to curved surfaces. The growing demand for foldable smartphones and rollable televisions is driving innovation in this segment. Additionally, flexible displays enable new form factors and user experiences in various consumer electronics, contributing significantly to overall market growth.
The healthcare segment is expected to have the highest CAGR during the forecast period
The healthcare segment is poised for rapid growth in the flexible electronics market due to increasing demand for wearable medical devices, biosensors, and smart healthcare solutions. Flexible electronics enable the development of comfortable, non-invasive monitoring devices that can continuously track vital signs and other health metrics. The potential for improved patient care, remote monitoring, and personalized medicine is driving significant investment and innovation in this area. As healthcare systems worldwide seek more efficient and patient-centric solutions, the adoption of flexible electronics in medical applications is expected to accelerate.
Asia Pacific is likely to hold the largest share of the flexible electronics market due to its strong manufacturing base, particularly in countries like China, South Korea, and Japan. The region has a well-established electronics industry, significant investments in R&D, and a large consumer market for electronic devices. Additionally, government initiatives supporting the development of next-generation technologies and the presence of major display manufacturers contribute to Asia Pacific's dominance in the flexible electronics sector.
Asia Pacific is also expected to experience the highest growth rate in the flexible electronics market. This rapid growth is driven by increasing investments in emerging technologies, rising demand for consumer electronics, and the expansion of manufacturing capabilities in countries like India and Southeast Asian nations. The region's focus on innovation, coupled with a growing middle class and increasing adoption of IoT and wearable devices, creates a favorable environment for the accelerated development and adoption of flexible electronics technologies.
Key players in the market
Some of the key players in Flexible Electronics market include Samsung Electronics Co., Ltd., LG Display Co., Ltd., Panasonic Corporation, Flex Ltd., E Ink Holdings Inc., Kateeva, Inc., Royole Corporation, PragmatIC Ltd., Ensurge Micropower ASA, Palo Alto Research Center Incorporated (PARC), Blue Spark Technologies, Inc., Cymbet Corporation, Heliatek GmbH, Multi-Fineline Electronix, Inc. (MFLEX), American Semiconductor, Inc., and FlexEnable.
In March 2024, Samsung secured a patent for another rollable display technology, as they were waiting for the first devices with rollable displays to arrive. Foldable smartphones have been around for quite some time now, but phones with rollable displays-not exactly. The new patent has been submitted to the United States Patent and Trademark Office (USPTO).
In September 2023, Panasonic has developed a new material for flexible printed circuit boards that can be used to create metasurface designs for 6G radio applications as well as wearables and lightweight designs. The Copper Clad Stretch (CCS) flexible printed circuit technology developed by Panasonic can be stretched, unlike conventional copper clad laminates (CCLs). The same resin system is used for both the circuitry layer and the insulative coverlay.
In July 2020, Kateeva reported that Tianma Microelectronics Co., Ltd. (Tianma) has ordered a YIELDjet EXPLORE inkjet printing system to expand its R&D programs for next-generation OLED displays. The new system, which is built for 200mm glass substrates, will be used to develop devices and materials for various new mobile device applications.