¼¼°èÀÇ »êÈ­¼¼·ý ³ª³ëÀÔÀÚ ½ÃÀå Àü¸Á(-2030³â) : ÇüÅÂ, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ºÐ¼®
Cerium Oxide Nanoparticles Market Forecasts to 2030 - Global Analysis By Form, Application (Chemical Mechanical Planarization, Polishing Agent, Coatings, Energy Storage, Sunscreen Cosmetics, Catalyst and Other Applications), End User and by Geography
»óǰÄÚµå : 1530720
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2024³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 6,004,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,596,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 9,187,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,851,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è »êÈ­¼¼·ý ³ª³ëÀÔÀÚ ½ÃÀå ±Ô¸ð´Â 2024³â 9¾ï 2,879¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 21.4%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 29¾ï 7,323¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

»êÈ­¼¼·ý ³ª³ëÀÔÀÚ, ÁÙ¿©¼­ CeO2 ³ª³ë ÀÔÀÚ´Â ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡ À¯¿ëÇÑ Æ¯¼öÇÑ Æ¯¼ºÀ» °¡Áö°í ÀÖÀ¸¸ç, Ce3¿Í Ce4ÀÇ »êÈ­ »óÅ »çÀÌÀÇ ÀüÀÌ ´É·ÂÀ¸·Î ÀÎÇØ ÀÌ ³ª³ë ÀÔÀÚ´Â »êÈ­ ȯ¿ø ¹ÝÀÀÀ» ÃËÁøÇÏ´Â ³ôÀº Ã˸ŠȰ¼ºÀ¸·Î Àß ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿Â÷ÀÇ Ã˸ŠÄÁ¹öÅÍ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ¶Ù¾î³­ »ê¼Ò ÀúÀå ´É·ÂÀ¸·Î ¹è±â°¡½º ¹èÃâÀ» °¨¼Ò½ÃŰ´Â µ¥¿¡µµ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

¹Ì±¹È­ÇÐȸ¿¡ µû¸£¸é, ³ª³ë±â¼úÀÇ ¹ßÀüÀº Àç·á°úÇп¡ Çõ¸íÀ» °¡Á®¿Ô°í, ÀÇ·á¿¡¼­ ¿¡³ÊÁö ÀúÀå¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ȹ±âÀûÀÎ ¹ßÀüÀ» °¡´ÉÇÏ°Ô Çß½À´Ï´Ù.

ÀÚµ¿Â÷ Ã˸ŠÄÁ¹öÅÍ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

È¿°úÀûÀÎ »ê¼Ò ÀúÀå ¹× ¹æÃâ ±â´ÉÀ» °¡Áø »êÈ­¼¼·ý ³ª³ëÀÔÀÚ´Â ÀÚµ¿Â÷ Ã˸ŠÄÁ¹öÅÍ¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ Æ¯¼ºÀÇ µµ¿òÀ¸·Î Áú¼Ò »êÈ­¹° ¹× ÀÏ»êȭź¼Ò¿Í °°Àº µ¶¼º °¡½º´Â Áú¼Ò ¹× ÀÌ»êȭź¼Ò¿Í °°Àº Àúµ¶¼º ¹èÃâ °¡½º·Î Àüȯ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¸¦ ÁؼöÇϱâ À§ÇØ ÀÚµ¿Â÷ »ê¾÷ÀÌ ÀÚµ¿Â÷ ¹è±â °¡½º °¨¼Ò¿¡ ÁßÁ¡À» µÎ¸é¼­ »êÈ­¼¼·ý ³ª³ëÀÔÀÚ¿¡ ´ëÇÑ ¼ö¿ä°¡ ´«¿¡ ¶ç°Ô Áõ°¡Çß½À´Ï´Ù.

È®À强 ¹× ºñ¿ë¿¡ ´ëÇÑ ¿ì·Á

»ó¾÷Àû ±Ô¸ð·Î »êÈ­¼¼·ý ³ª³ëÀÔÀÚ¸¦ Á¦Á¶ÇÏ´Â µ¥ ÀÖ¾î ³ôÀº ºñ¿ëÀº ÁÖ¿ä Àå¾Ö¹° Áß ÇϳªÀÔ´Ï´Ù. »ý»ê ºñ¿ëÀÌ ³ôÀº ÀÌÀ¯´Â ÀϰüµÈ ǰÁú°ú ¼øµµ¸¦ °¡Áø ³ª³ëÀÔÀÚ¸¦ ÇÕ¼ºÇϱâ À§ÇØ º¹ÀâÇÑ ÀýÂ÷¿Í Ư¼ö Àåºñ°¡ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, À̴ ƯÈ÷ ¿¹»êÀÌ ºÎÁ·ÇÑ ½ÃÀåÀ̳ª ±Ô¸ðÀÇ °æÁ¦°¡ ÇʼöÀûÀÎ »óȲ¿¡¼­ ³ª³ëÀÔÀÚ°¡ ³Î¸® »ç¿ëµÇ´Â °ÍÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

»ý¹°ÀÇÇÐ ¹× ÇコÄÉ¾î ±â¼ú °³¹ß

»êÈ­¼¼·ý ³ª³ëÀÔÀÚ´Â ÇコÄÉ¾î »ê¾÷¿¡¼­ »õ·Î¿î Ä¡·á¹ý, Ç¥Àû ¾à¹° Àü´Þ ¹æ¹ý ¹× Áø´Ü ±â±â¿¡ ´ëÇÑ Àü¸ÁÀ» Á¦½ÃÇϰí ÀÖ½À´Ï´Ù. »êÈ­¼¼·ý ³ª³ëÀÔÀÚÀÇ »ýüÀûÇÕ¼º°ú Ç×»êÈ­ Ư¼ºÀº ƯÈ÷ »êÈ­ ½ºÆ®·¹½º¿Í °ü·ÃµÈ Áúº´À» Ä¡·áÇϰí, »óó Ä¡À¯¸¦ ÃËÁøÇϸç, ¿µ»ó Áø´Ü¹ýÀ» ¹ßÀü½ÃŰ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¬±¸°¡ ÁøÀüµÇ¸é °Ç°­ °ü¸® °á°úÀÇ °³¼±°ú °³ÀÎ ¸ÂÃãÇü ÀǷḦ °¡´ÉÇÏ°Ô ÇÒ ¼öµµ ÀÖ½À´Ï´Ù.

¾öȤÇÑ °æÀï°ú ´ë¾È

¼¼·ý »êÈ­¹° ¹× ±âŸ ³ª³ë ÀÔÀÚ °ü·Ã Àç·á ¹× ±â¼úÀº ½ÃÀå¿¡¼­ Ä¡¿­ÇÑ °æÀïÀ» ¹úÀ̰í ÀÖÀ¸¸ç, µ¿µî ÀÌ»óÀÇ Ç°ÁúÀ» Á¦°øÇÕ´Ï´Ù. Àç·á°úÇаú ³ª³ë±â¼úÀÇ ¹ßÀüÀ¸·Î º¸´Ù °æÁ¦ÀûÀ̰í È¿°úÀûÀ̸ç ȯ°æ ģȭÀûÀÎ ´ëüǰÀÌ °³¹ßµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½ÃÀå°ú ¿ëµµ¿¡ µû¶ó »êÈ­¼¼·ý ³ª³ëÀÔÀÚÀÇ Çʿ伺ÀÌ °¨¼ÒÇÒ ¼öµµ ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

»êÈ­¼¼·ý ³ª³ëÀÔÀÚ ½ÃÀåÀº Äڷγª19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ ¿µÇâÀ» ¹Þ¾Ò½À´Ï´Ù. Ãʱ⿡´Â »ý»ê ¹× À¯Åë Áö¿¬À¸·Î ÀÎÇØ ¼¼°è °ø±Þ¸Á ¹× Á¦Á¶ ¿î¿µÀÇ È¥¶õÀ¸·Î ÀÎÇØ ½ÃÀå °¡¿ë¼º¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÀÚµ¿Â÷, ÀüÀÚ, °Ç¼³ ºÐ¾ß µî »êÈ­¼¼·ý ³ª³ëÀÔÀÚ¸¦ ¸¹ÀÌ »ç¿ëÇÏ´Â »ê¾÷ ºÐ¾ß ¼ö¿ä´Â »ê¾÷ Ȱµ¿ÀÇ Ãà¼Ò¿Í ¸¹Àº ±¹°¡¿¡¼­ ½ÃÇàµÈ ¾ö°ÝÇÑ ºÀ¼â Á¶Ä¡·Î ÀÎÇØ ´õ¿í ¾ïÁ¦µÇ¾ú½À´Ï´Ù. ±×·¯³ª °æÁ¦°¡ Á¡Â÷ ȸº¹µÊ¿¡ µû¶ó ¼ö¿ä°¡ Áõ°¡ÇßÀ¸¸ç, ƯÈ÷ »êÈ­¼¼·ý ³ª³ëÀÔÀÚ°¡ Áø´Ü ¹× Ä¡·á ¾à¹°¿¡ »ç¿ëµÇ´Â ÀÇ·á ºÐ¾ß¿¡¼­ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ºÐ¸» ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

»êÈ­¼¼·ý ³ª³ëÀÔÀÚ ½ÃÀå¿¡¼­ ºÐ¸» ºÎ¹®Àº ÀϹÝÀûÀ¸·Î °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù. ºÐ¸» »êÈ­¼¼·ý ³ª³ëÀÔÀÚ´Â Ãë±ÞÀÌ ¿ëÀÌÇÏ°í ´ÙÀç´Ù´ÉÇÏ¸ç ´Ù¾çÇÑ Á¦Á¶ °øÁ¤¿¡ ÅëÇÕ µÉ ¼ö Àֱ⠶§¹®¿¡ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼¼·ý ³ª³ë ÀÔÀÚ´Â ³ôÀº Ç¥¸éÀû°ú Ã˸ŠƯ¼ºÀÌ Áß¿äÇÑ ¹è±â °¡½º Á¦¾î¿ë ÀÚµ¿Â÷ Ã˸ŠÄÁ¹öÅÍ¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÐ¸» »êÈ­¼¼·ý ³ª³ëÀÔÀÚ´Â ¿¬¸¶ Ư¼º°ú ¹Ì¼¼ÇÑ Ç¥¸é ¸¶¹«¸®¸¦ ´Þ¼ºÇÏ´Â ´É·ÂÀ¸·Î ÀÎÇØ Á¤¹Ð ±¤ÇÐ, ÀüÀÚ ¹× ¼¼¶ó¹Í¿ë ¿¬¸¶Á¦¿¡¼­ ÀÀ¿ë ºÐ¾ß°¡ ¹ß°ßµÇ¾ú½À´Ï´Ù.

ÇコÄÉ¾î ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

»êÈ­¼¼·ý ³ª³ëÀÔÀÚ ½ÃÀå¿¡¼­ ÇコÄÉ¾î ºÎ¹®Àº ÀϹÝÀûÀ¸·Î °¡Àå ³ôÀº CAGRÀ» º¸ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº »êÈ­¼¼·ý ³ª³ëÀÔÀÚ¸¦ »ý¹° ÀÇÇÐ ÀÀ¿ë ºÐ¾ß¿¡ Ȱ¿ëÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃá ¿¬±¸ °³¹ß Ȱµ¿ Áõ°¡¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­ ÀÌ·¯ÇÑ ³ª³ëÀÔÀÚ´Â Ç×»êÈ­ Ư¼º, »ýü ÀûÇÕ¼º, »êÈ­ ½ºÆ®·¹½º °ü·Ã Áúȯ Ä¡·á ¹× ¾à¹° Àü´Þ ½Ã½ºÅÛ °­È­¿¡ ÀÖ¾î ÀáÀçÀûÀÎ Ä¡·áÀû ÀÌÁ¡À¸·Î Æò°¡¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿µ»ó Áø´Ü ¹× ¹ÙÀÌ¿À¸¶Ä¿ °ËÃâ¿¡ ´ëÇÑ ¿ªÇÒÀÌ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» °¡Áø Áö¿ª :

»êÈ­¼¼·ý ³ª³ëÀÔÀÚ ½ÃÀå¿¡¼­ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀϹÝÀûÀ¸·Î °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹, Àεµ ¹× ±âŸ ±¹°¡, ƯÈ÷ ÀÚµ¿Â÷ ¹× ÀüÀÚ »ê¾÷ÀÇ ±¤¹üÀ§ÇÑ »ê¾÷ Ȱµ¿ÀÌ ÀÌ·¯ÇÑ ¿ìÀ§¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Ã˸Šº¯È¯±â, ÀüÀÚ Á¦Ç° ¿¬¸¶ ¹× ±âŸ »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼­ »êÈ­¼¼·ý ³ª³ëÀÔÀÚÀÇ ±¤¹üÀ§ÇÑ »ç¿ëÀº ÀÌµé ±¹°¡ÀÇ Ã·´Ü Àç·á ¿¬±¸ ¹× °³¹ßÀ»À§ÇÑ °­·ÂÇÑ ÀÎÇÁ¶ó¸¦ ÅëÇØ °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ Å« ½ÃÀå Á¡À¯À²Àº ÀÇ·á ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í ÷´Ü ÀÇ·á ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇÑ °ÍÀ̱⵵ ÇÕ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

»êÈ­¼¼·ý ³ª³ëÀÔÀÚ ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÑ Áö¿ªÀº ºÏ¹ÌÀÔ´Ï´Ù. ¿¬±¸ °³¹ß, ƯÈ÷ ȯ°æ ¹× »ý¹° ÀÇÇÐ ÀÀ¿ë ºÐ¾ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡°¡ ÀÌ·¯ÇÑ ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀ̾ú½À´Ï´Ù. »êÈ­¼¼·ý ³ª³ëÀÔÀÚ¿Í °°Àº ÷´Ü Àç·áÀÇ »ç¿ëÀ» ÃËÁøÇÏ´Â ±â¼ú Çõ½Å°ú ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ºÏ¹Ì¿¡¼­ ³ôÀº Æò°¡¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ ÅºÅºÇÑ ÇコÄÉ¾î ºÎ¹®°ú ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦·Î ÀÎÇØ ûÁ¤ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ½ÃÀå ¼ºÀå¿¡ ÈûÀ» º¸Å°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ »êÈ­¼¼·ý ³ª³ëÀÔÀÚ ½ÃÀå : Çüź°

Á¦6Àå ¼¼°èÀÇ »êÈ­¼¼·ý ³ª³ëÀÔÀÚ ½ÃÀå : ¿ëµµº°

Á¦7Àå ¼¼°èÀÇ »êÈ­¼¼·ý ³ª³ëÀÔÀÚ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦8Àå ¼¼°èÀÇ »êÈ­¼¼·ý ³ª³ëÀÔÀÚ ½ÃÀå : Áö¿ªº°

Á¦9Àå ÁÖ¿ä ¹ßÀü

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Cerium Oxide Nanoparticles Market is accounted for $928.79 million in 2024 and is expected to reach $2973.23 million by 2030 growing at a CAGR of 21.4% during the forecast period. Cerium oxide nanoparticles, or CeO2 nanoparticles for short, have special qualities that make them useful for a range of applications. Because of their capacity to transition between the oxidation states of Ce3+ and Ce4+, these nanoparticles are well-known for their high catalytic activity, which promotes redox reactions. They also play a critical role in automobile catalytic converters, which reduce exhaust emissions owing to their remarkable oxygen storage capacity.

According to the American Chemical Society, advancements in nanotechnology have revolutionized materials science and enabled breakthroughs in fields ranging from medicine to energy storage.

Market Dynamics:

Driver:

Increasing demand for car catalytic converters

Due to their effective oxygen storage and release capabilities, cerium oxide nanoparticles are widely utilized in automotive catalytic converters. With the help of this characteristic, toxic gases like nitrogen oxides and carbon monoxide can be converted into less toxic emissions like nitrogen and carbon dioxide. Additionally, the heightened emphasis on vehicle emissions reduction by the automotive industry in order to comply with strict environmental regulations has led to a notable increase in the demand for cerium oxide nanoparticles.

Restraint:

Scalability and cost concerns

The high cost of producing cerium oxide nanoparticles on a commercial scale is one of the main obstacles. Higher production costs are often caused by the need for complex procedures and specialized equipment in the synthesis of nanoparticles with consistent quality and purity. Furthermore, this may prevent them from being widely used, especially in markets with tight budgets or in situations where economies of scale are essential.

Opportunity:

Technological developments in biomedicine and healthcare

Cerium oxide nanoparticles present prospects for novel therapeutic treatments, targeted drug delivery methods, and diagnostic instruments in the healthcare industry. Their biocompatibility and antioxidant qualities are especially helpful in treating diseases linked to oxidative stress, promoting wound healing, and advancing imaging methods. Moreover, improved healthcare outcomes and personalized medicine may be possible with further research.

Threat:

Severe rivalry and substitution

Cerium oxide and other nanoparticles-related materials and technologies are fierce competitors in the market, offering comparable or better qualities. Developments in materials science and nanotechnology could result in the creation of more economical, effective, or environmentally friendly alternatives. Additionally, in some markets and applications, this might lessen the need for cerium oxide nanoparticles.

Covid-19 Impact:

The market for cerium oxide nanoparticles has experienced a variety of effects from the COVID-19 pandemic. Initially, delays in production and distribution had an impact on market availability due to disruptions in global supply chains and manufacturing operations. The demand from industries that use cerium oxide nanoparticles extensively, like the automotive, electronics, and construction sectors, was further suppressed by a reduction in industrial activity and strict lockdown measures implemented in many nations. However, demand increased as economies gradually recovered, especially in healthcare applications where cerium oxide nanoparticles are used in diagnostics and therapeutics.

The Powder segment is expected to be the largest during the forecast period

The powder segment typically holds the largest share in the cerium oxide nanoparticles market. Powdered cerium oxide nanoparticles are widely used across various industries due to their ease of handling, versatile applications, and ability to be integrated into different manufacturing processes. They are extensively employed in automotive catalytic converters for emissions control, where their high surface area and catalytic properties are crucial. Additionally, powdered cerium oxide nanoparticles find applications in polishing agents for precision optics, electronics, and ceramics due to their abrasive properties and ability to achieve fine surface finishes.

The Healthcare segment is expected to have the highest CAGR during the forecast period

The healthcare segment typically exhibits the highest CAGR in the cerium oxide nanoparticles market. This growth is driven by increasing research and development activities focused on utilizing cerium oxide nanoparticles in biomedical applications. In healthcare, these nanoparticles are valued for their antioxidant properties, biocompatibility, and potential therapeutic benefits in treating oxidative stress-related diseases and enhancing drug delivery systems. Moreover, their role in diagnostic imaging and biomarker detection further boosts demand.

Region with largest share:

In the cerium oxide nanoparticle market, the Asia-Pacific region usually holds the largest share. Widespread industrial activity in nations like China, Japan, South Korea, and India, especially in the automotive and electronics industries, is what fuels this dominance. The extensive use of cerium oxide nanoparticles in catalytic converters, electronics polishing, and other industrial applications is made possible by these countries strong infrastructures for advanced material research and development. Furthermore, the region's substantial market share is also largely due to rising investments in healthcare infrastructure and rising demand for cutting-edge medical technologies.

Region with highest CAGR:

The North American region has the highest CAGR in the cerium oxide nanoparticles market. Growing investments in R&D, especially in environmental and biomedical applications, are the main driver of this growth. Technological innovation and regulatory frameworks that facilitate the use of cutting-edge materials such as cerium oxide nanoparticles are highly valued in North America. Moreover, propelling market growth is the region's robust healthcare sector and strict environmental regulations that are creating a demand for cleaner technologies.

Key players in the market

Some of the key players in Cerium Oxide Nanoparticles market include Solvay, Nyacol Nano Technologies Inc., BASF, Advanced Nano Products Co., Ltd., Evonik Industries, Inframat Corporation, Strem Chemicals, Inc., Meliorum Technologies, Inc., Nanoshell, American Elements Inc, SkySpring Nanomaterials, Inc., Umicore, Cerion, LLC, Nanophase Technologies Corporation and Plasmachem GmbH.

Key Developments:

In July 2024, BASF and ENGIE have signed a seven year biomethane purchase agreement (BPA). Under the BPA, ENGIE will supply BASF with 2.7 to 3.0 terawatt hours of biomethane throughout the term of the agreement. BASF uses certified biomethane at its Ludwigshafen,Germany and Antwerp,Belgium sites as a sustainable alternative to fossil raw materials in its manufacturing process.

In June 2024, Solvay, a leader in rare earth materials supply for catalysis and electronics, and Cyclic Materials, an advanced metals recycling company building a circular supply chain for rare earth elements and other critical metals, announced the signing of an agreement for the supply of recycled mixed rare earth oxide (rMREO) from Cyclic Materials to Solvay, with shipments to begin in late 2024.

In February 2024, Vattenfall and Evonik have inked new long-term electricity supply contracts, aiming to bolster Evonik's green energy consumption for chemical production. Commencing in 2025, two solar parks operated by Vattenfall in Schleswig-Holstein will furnish Evonik with approximately 120 gigawatt hours of solar power annually over a decade, under fixed conditions termed as "Power Purchase Agreements" (PPA).

Forms Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Cerium Oxide Nanoparticles Market, By Form

6 Global Cerium Oxide Nanoparticles Market, By Application

7 Global Cerium Oxide Nanoparticles Market, By End User

8 Global Cerium Oxide Nanoparticles Market, By Geography

9 Key Developments

10 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â