Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ±Ý¼Ó ºÐ¸» ½ÃÀåÀº 2024³â 81¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 8.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 131¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
±Ý¼Ó ºÐ¸»Àº ±Ý¼Ó ¹°ÁúÀ» ¹Ì¼¼ÇÏ°Ô ºÐ¼âÇÑ ÀÔÀÚÀÔ´Ï´Ù. ¹Ì¸³È, ÈÇÐÀû ȯ¿ø, ºÐ¼â µî ´Ù¾çÇÑ ¹æ¹ýÀ¸·Î Á¦Á¶µË´Ï´Ù. ÀÌ ºÐ¸»Àº µ¶Æ¯ÇÑ Æ¯¼ºÀ» °¡Áö°í ÀÖÀ¸¸ç ´Ù¾çÇÑ »ê¾÷¿¡¼ À¯¿ëÇÏ°Ô »ç¿ëµË´Ï´Ù. ÇÁ·¹½º, ¼Ò°á, ¿Ã³¸®¿Í °°Àº ºÐ¸» ¾ß±Ý °øÁ¤¿¡ »ç¿ëµÇ¾î °í°µµ, ³»¸¶¸ð¼º ¹× Ä¡¼ö Á¤¹Ðµµ¸¦ °®Ãá º¹ÀâÇÑ ºÎǰÀ» ¸¸µå´Â µ¥ »ç¿ëµË´Ï´Ù. ¶ÇÇÑ, ±Ý¼Ó ºÐ¸»Àº ±Ý¼Ó ºÐ¸»ÀÇ ÃþÀ» ¼±ÅÃÀûÀ¸·Î À¶ÇÕÇÏ¿© º¹ÀâÇÑ Çü»óÀ» Á¤¹ÐÇÏ°Ô Á¦Á¶ÇÏ´Â 3D ÇÁ¸°ÆÃ°ú °°Àº ÀûÃþ °¡°ø ±â¼ú¿¡¼µµ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÇコÄɾî, ÀüÀÚÁ¦Ç° µîÀÇ »ê¾÷¿¡¼ ±Ý¼Ó ºÐ¸»Àº ¿£Áø ºÎǰºÎÅÍ ÀÇ·á¿ë ÀÓÇöõÆ®±îÁö ´Ù¾çÇÑ ºÎǰÀÇ Á¦Á¶¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. °¡°ø ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² ±Ý¼Ó ºÐ¸»ÀÇ ´ÙÀç´Ù´ÉÇÔÀº ±× ¿ëµµ¸¦ °è¼Ó È®ÀåÇÏ°í ´Ù¾çÇÑ ºÐ¾ßÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ÀÚµ¿Â÷ »ê¾÷ ¼ö¿ä Áõ°¡
ÀÚµ¿Â÷ »ê¾÷Àº ±Ý¼Ó ºÐ¸»ÀÇ »õ·Î¿î ¿ëµµ¸¦ ²÷ÀÓ¾øÀÌ ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ±Ý¼Ó ºÐ¸»Àº ¼º´É Çâ»ó°ú °æ·®È¸¦ À§ÇÑ ¿£Áø ºÎǰ, ¼³°è À¯¿¬¼ºÀ» À§ÇÑ º¹ÀâÇÑ º¯¼Ó±â ºÎǰ, ¹ÌÀû °¨°¢°ú ¾ÈÀü¼ºÀ» ³ôÀ̱â À§ÇÑ Â÷ü ÆÐ³Î µî¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¦Á¶¾÷üµéÀº ´õ ³ôÀº °µµ, ´õ ³ªÀº À¯µ¿¼º, 3D ÇÁ¸°ÆÃ ±â¼ú°úÀÇ È£È¯¼º µîÀÇ Æ¯¼ºÀ» °³¼±ÇÑ »õ·Î¿î ±Ý¼Ó ºÐ¸» ¹èÇÕÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ¼ö¿ä°¡ ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ´Â ¼±¼øÈ¯ ±¸Á¶¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù.
°Ç°°ú ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á/p>
¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¤°ú °Ç° À§ÇèÀ» ÁÙÀ̱â À§ÇÑ ÇÁ·ÎÅäÄÝÀº ±Ý¼Ó ºÐ¸»ÀÇ Àüü »ý»ê ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ÀûÀýÇÑ È¯±â ½Ã½ºÅÛ, ÀÛ¾÷ÀÚ º¸È£ Àåºñ, Æó±â¹° ó¸® ÀýÂ÷¿¡ ´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ±Ý¼Ó ºÐ¸»Àº ±âÁ¸ Àç·á¿¡ ºñÇØ °¡°Ý °æÀï·ÂÀÌ ¶³¾îÁö°í, ÀáÀçÀûÀÎ °Ç° À§Çè°ú Ã¥ÀÓ ¹®Á¦¿¡ ´ëÇÑ ¿ì·Á´Â ƯÈ÷ °·ÂÇÑ ¾ÈÀü Á¶Ä¡¸¦ ½ÃÇàÇÒ ¼ö ÀÖ´Â ÀÚ¿øÀÌ Á¦ÇÑÀûÀÎ Áß¼Ò±â¾÷ÀÇ °æ¿ì ¾ïÁ¦¿äÀÎÀ¸·Î ÀÛ¿ëÇÑ´Ù, ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù.
Àü±â ¹× ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
Àü±â ¹× ÀüÀÚ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ±Ý¼Ó ºÐ¸» ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦Ç°Àº ´Ù¾çÇÑ ±Ý¼Ó ºÎǰ¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ±× Áß »ó´ç¼ö´Â ±Ý¼Ó ºÐ¸»À» »ç¿ëÇÏ¿© Á¦Á¶µË´Ï´Ù. Àü±â ¹× ÀüÀÚ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Àüµµ¼º, ³»¿¼º ¹× ³»±¸¼º°ú °°Àº Ư¼ºÀ» °¡Áø °í¼º´É Àç·á¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼ÒÇüÈ Ãß¼¼¿Í ´õ °¡º±°í ¿¡³ÊÁö È¿À²ÀûÀÎ ÀüÀÚÁ¦Ç°ÀÇ »ý»êÀº Ư¼ö ±Ý¼Ó ºÐ¸»¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
±â¼úÀû °úÁ¦
±Ý¼Ó AMÀº ±Ý¼Ó ºÐ¸»À» ÃþÃþÀÌ ³ì¿© ¿øÇÏ´Â ¹°Ã¼¸¦ ¸¸µì´Ï´Ù. ±×·¯³ª ÀμâµÈ ºÎǰÀÇ ¸ðµç °ø±Ø(°ø±Ø)À» ¾ø¾Ö´Â °ÍÀº ¿©ÀüÈ÷ ¾î·Á¿î °úÁ¦ÀÔ´Ï´Ù. °úµµÇÑ °ø±ØÀº ÃÖÁ¾ Á¦Ç°À» ¾àȽÃŰ°í ±¸Á¶Àû ¹«°á¼ºÀ» ¼Õ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. °ø±ØÀ» ÃÖ¼ÒÈÇϰí Á¶¹ÐÇÑ ºÎǰÀ» ±¸ÇöÇϱâ À§Çؼ´Â ÇÁ¸°ÆÃ ÆÄ¶ó¹ÌÅÍ¿Í ÆÄ¿ì´õ Ư¼ºÀ» ÃÖÀûÈÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. µû¶ó¼ ºÐ¸»ÀÇ Ç°ÁúÀÌ ÀÏÁ¤ÇÏÁö ¾ÊÀ¸¸é ÀμⰡ ½ÇÆÐÇϰųª Àç·á°¡ ³¶ºñµÇ°Å³ª ¿øÇÏ´Â Á¦Ç° »ç¾çÀ» ´Þ¼ºÇϱⰡ ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ ´ëÀ¯ÇàÀ¸·Î ÀÎÇØ ½ÃÀå¿¡¼ »ç¾÷À» ¿î¿µÇÏ´Â ±â¾÷µéÀº ºÒ±ÔÄ¢ÇÑ ¼ö¿ä¸¦ °æÇèÇß½À´Ï´Ù. °¢ ±â¾÷Àº »ê¾÷ ¼ºñ½º, ¿î¿µ, ¼ö¸® µî ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä°¡ ¾à°£ Áõ°¡ÇßÀ¸¸ç, Äڷγª19 »çÅ µ¿¾È ÀÚµ¿Â÷ °ü·Ã ±â¾÷µéµµ Æó¼â¿¡ Á÷¸éÇØ Àη ºÎÁ·°ú ¿øÀÚÀç ºÎÁ·À¸·Î ÀÎÇØ °øÀåÀ» Æó¼âÇϰųª »ý»ê ´É·ÂÀ» ÁÙ¿´½À´Ï´Ù. ¼ÒºñÀÚµéÀÌ ÇʼöÀûÀÎ ¼ºñ½º¿Í Á¦Ç°¿¡ ÁýÁßÇÏ¸é¼ ÀÚµ¿Â÷ ¼ö¿ä´Â °¨¼ÒÇß½À´Ï´Ù. ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº »ý»ê ¼Óµµ¸¦ ³·Ãß°í ¼¼°è ½ÃÀå Á¡À¯À²À» ³·Ãß¾ú½À´Ï´Ù.
ö±Ý¼Ó ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ö°è ±Ý¼ÓÀº ö°ú °Ã¶À» Æ÷ÇÔÇϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ö°è ±Ý¼ÓÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ö°è ±Ý¼ÓÀº Ä¡°ú ¼öº¹¹°, ¿ÀÀϸ®½º º£¾î¸µ, ÀÚµ¿Â÷ º¯¼Ó±â ±â¾î, Á¤Çü¿Ü°ú¿ë ÀÓÇöõÆ®, Ç×°ø±â¿ë ºê·¹ÀÌÅ© ÆÐµå µî ´Ù¾çÇÑ Á¦Ç°¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ö°è ±Ý¼ÓÀº ³»±¸¼º, ÀÎÀå °µµ, Àúºñ¿ë, Æø³ÐÀº À¯¿¬¼ºÀÌ ¶Ù¾î³ª ½ÃÀå ¼ºÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÀÚµ¿Â÷ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÚµ¿Â÷ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ß´Â ÀÔÀÚ ¾ß±Ý, ¿°£ µî¹æ¼º ÇÁ·¹½º, ¼Ò°á, »çÃâ ¼ºÇü µîÀÇ °øÁ¤¿¡¼ ºÐ¸» öÀ» »ç¿ëÇÕ´Ï´Ù. ÀÚµ¿Â÷ »ý»ê·® Áõ°¡, ÀÚµ¿Â÷ÀÇ ±â¼ú »ç¿ë Áõ°¡, ÀÚµ¿Â÷ °æ·®È·ÎÀÇ ÀüȯÀÌ ½ÃÀå ¼ºÀåÀ» °áÁ¤ÇÏ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ºÐ¸» ±Ý¼ÓÀº ±Ý¼Ó ºÎǰÀ» ¸¸µé±â À§ÇØ ¸¹Àº Á¦Á¶ ±â¼ú¿¡ »ç¿ëµË´Ï´Ù. ÀÌ Á¦Ç°Àº ±âÁ¸ °¡°ø°ú ´Þ¸® ³¶ºñ°¡ ¾ø°í, ´Ù¾çÇÑ ±Ý¼Ó ¹× ÇÕ±Ý ºÎǰÀ» ¼³°èÇÒ ¼ö ÀÖ´Â À¯¿¬¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¸®ÇÑ Æ¯¼ºÀº ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºÏ¹Ì´Â ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ÇÏÀ̺긮µå ÀÚµ¿Â÷ÀÇ º¸±ÞÀ¸·Î ÀÎÇØ º¯¼Ó±â ¹× ¿£ÁøÀÇ ´Ù¾çÇÑ ¼Ò°á ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ °¨¼ÒÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×·³¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀå °ø±Þ¾÷ü´Â ÇâÈÄ ¸î ³âµ¿¾È ºÐ¸» ´ÜÁ¶ ±â¼úÀ» ÅëÇØ À¯¸®ÇÑ ºñÁî´Ï½º ±âȸ¸¦ ¾òÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±Ý¼Ó ºÐ¸» »ê¾÷ ¿¬¸Í¿¡ µû¸£¸é, Àü ¼¼°è ÀÚµ¿Â÷ Ä¿Çøµ ·ÎµåÀÇ °ÅÀÇ 30%°¡ ºÐ¸» ´ÜÁ¶ °øÁ¤À» ÅëÇØ »ý»êµÇ°í ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹, ÀϺ», Àεµ, Çѱ¹ÀÌ ½ÃÀå ¼ºÀåÀ» ÁÖµµÇÏ¸é¼ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â Áß±¹ÀÌ ÀÚµ¿Â÷ OEM¿¡¼ ÀüÀÚÁ¦Ç°¿¡ À̸£±â±îÁö ´Ù¾çÇÑ Á¦Á¶ °ÅÁ¡À̱⠶§¹®À¸·Î ºÐ¼®µË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼´Â ´Ù¾çÇÑ Áß¼Ò ¹× Áß°ß Á¦Á¶¾÷üÀÇ Á¸Àç·Î ÀÎÇØ Áß±¹ÀÌ Àü ¼¼°è ºÐ¸» ¾ß±Ý Á¦Á¶¿¡¼ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. Â÷¼¼´ë Ç×°ø±â ¼ö¿ä·Î ÀÎÇÑ Ç×°ø±â ³³Ç° ¹× ÁÖ¹® Àåºñ Áõ°¡´Â ÀÌ Áö¿ª ¼ö¿ä¸¦ Áõ°¡½Ãų °ÍÀÔ´Ï´Ù.
According to Stratistics MRC, the Global Metal Powder Market is accounted for $8.1 billion in 2024 and is expected to reach $13.1 billion by 2030 growing at a CAGR of 8.3% during the forecast period. Metal powders are finely ground particles of metallic substances. It's produced through various methods like atomization, chemical reduction, or grinding. These powders possess unique properties, making them valuable in various industries. They're used in powder metallurgy processes like pressing, sintering, and heat treatment to create intricate components with high strength, wear resistance, and dimensional accuracy. Additionally, metal powders are crucial in additive manufacturing techniques such as 3D printing, where layers of metal powder are selectively fused to fabricate complex shapes with precision. Industries like aerospace, automotive, healthcare and electronics rely on metal powders for manufacturing components ranging from engine parts to medical implants. Their versatility, coupled with advancements in processing technologies, continues to expand their applications, driving innovation across multiple sectors.
Rising demand from the automotive industry
The automotive industry is constantly exploring new applications for metal powder. Metal powder is being used in engine components for better performance and weight reduction, complex transmission parts due to its design flexibility, and even body panels for enhanced aesthetics and safety. Moreover manufacturers are developing new metal powder formulations with improved properties like higher strength, better flow characteristics, and compatibility with 3D printing techniques. This fosters a positive cycle where innovation is driven by demand.
Health and safety concerns
Stringent safety regulations and protocols to mitigate health risks add to the overall production cost of metal powders. Proper ventilation systems, protective gear for workers, and waste disposal procedures all require investment, making metal powders less price-competitive compared to traditional materials and the fear of potential health risks and liability issues can act as a deterrent, especially for smaller companies with limited resources for implementing robust safety measures hampering the market growth.
Increasing demand for electrical & electronics products
The increasing demand for electrical and electronics products has a significant impact on the metal powder market. These products rely on a wide range of metal components, many of which are manufactured using metal powders. As the demand for electrical and electronics products rises, so does the need for high-performance materials that offer properties like conductivity, thermal resistance, and durability. Additionally, the trend towards miniaturization and the production of lighter, more energy-efficient electronics further fuels the demand for specialized metal powders.
Technical challenges
Metal AM involves melting metal powder layer by layer to build the desired object. However, eliminating all porosity (air gaps) within the printed part remains a challenge. Excess porosity can weaken the final product and compromise its structural integrity. Optimizing printing parameters and powder characteristics is crucial for achieving dense parts with minimal porosity. Thus inconsistencies in powder quality can lead to failed prints, wasted materials, and difficulty achieving desired product specifications.
Covid-19 Impact
Companies operating in the market experienced an irregular demand due to the COVID-19 pandemic. The companies experienced a slight increase in demand for applications such as industrial services, operations, and repairs. Automotive companies were also facing closures during the COVID-19 pandemic, and companies were either closing their plants or lowering their production capacity due to staff shortages and lack of raw materials. The demand for automobiles declined as consumers focused on having essential services and products. Key automotive manufacturers have lowered their production rates, which reduced their market share in the global market.
The ferrous metals segment is expected to be the largest during the forecast period
The ferrous metals is expected to be the largest during the forecast period because the ferrous metal type includes iron and steel. They find applications in a variety of products such as dental restoration, oil-less bearings, automotive transmission gears, orthopedic implants, and aircraft brake pads. Ferrous metal offers better durability, tensile strength, lower cost, and broad flexibility, which is expected to boost the market growth.
The automotive segment is expected to have the highest CAGR during the forecast period
The automotive segment is expected to have the highest CAGR during the forecast period. Powdered iron is utilized in the automotive sector for processes such as particle metallurgy, hot isostatic pressing, sintering, and injection molding. Increasing vehicle production, rising use of technology in vehicles, and shifting focus to lighter vehicles are key attributes that determine the market growth. Powdered metal is used in many manufacturing techniques to create metal parts. With this product, unlike traditional machining, there is no waste and there is a flexibility to design a wide variety of metal and alloy parts. Such favorable properties are expected to promote the growth of the segment.
North America is projected to hold the largest market share during the forecast period owing to demand for different sintered parts in transmissions and engines have been reduced as a result of the increasing popularity of vehicles that are both energy-efficient and hybrids. Nevertheless, the market vendors are expected to have lucrative opportunities over the next few years through powder forging technology. According to the Federation of Metal Powder Industries, almost 30% of automotive coupling rods are produced through powder forging processes worldwide.
Asia Pacific is projected to hold the highest CAGR over the forecast period as China, Japan, India, and South Korea are driving the growth of the market in the region. This is largely due to China being a manufacturing center for products covering automotive OEMs to electronic products. In Asia Pacific, China has the largest share in global powdered metal production due to the presence of various medium & small-sized manufacturers. Increasing aircraft delivery and ordering facilities due to the demand for new generation aircraft will boost regional demand.
Key players in the market
Some of the key players in Metal Powder market include Advanced Technology & Materials Co., Ltd, Alcoa Inc, Allegheny Technologies Incorporated, BASF SE, Carpenter Technology Corporation, CRS Holdings Inc., GKN PLC, Hitachi Chemicals Co. Ltd, Hoganas AB, Metaldyne Performance Group, MolyWorks Materials Corporation, POLEMA, Pometon Powder, Rio Tinto Metal Powders, Rusal, Sandvik AB and Yingtan Longding New Materials & Technologies Ltd
In June 2024, CPGC and BASF sign Framework Agreement on actual ship application of Onboard Carbon Capture System. OASE blue is BASF's gas treatment technology designed for CO2 capture application in flue gas, with low energy consumption, low solvent losses, and an exceptionally flexible operating range.
In June 2024, BASF is expanding its Biopolymers portfolio by introducing biomass-balanced ecoflex(R) (PBAT). The biomass-balanced ecoflex(R) not only contributes to reducing the use of fossil resources, but it also offers a 60% lower Product Carbon Footprint (PCF) (2) than the standard ecoflex(R) F Blend C1200.