Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¿¬ÀÚ¼º Àç·á ½ÃÀåÀº 2024³â¿¡ 899¾ï 8,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGRÀº 13.2%·Î 2030³â¿¡´Â 1,893¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
¿¬ÀÚ¼º Àç·á´Â º¯ÈÇÏ´Â ÀÚ±âÀå¿¡ ´ëÀÀÇÏ¿© ½Å¼ÓÇϰí È¿À²ÀûÀ¸·Î ÀÚÈ ¹× ¼ÒÀÚÈÇÒ ¼ö ÀÖ´Â µ¶Æ¯ÇÑ ´É·ÂÀ» °¡Áö°í ÀÖÀ¸¹Ç·Î Àü±â ¹× ÀüÀÚ°øÇп¡ ¾ø¾î¼´Â ¾È µÉ ºÎǰÀÔ´Ï´Ù. Çѹø ÀÚȵǸé ÀÚȸ¦ À¯ÁöÇÏ´Â °æÀÚ¼º Àç·á¿Í ´Þ¸® ¿¬ÀÚ¼º Àç·á´Â ³ôÀº ÅõÀÚÀ²°ú ³·Àº º¸ÀÚ·ÂÀ» º¸¿© º¯¾Ð±â, Àü±â ¸ðÅÍ, ÀδöÅÍ, ÀÚ±â Â÷Æó µî ºü¸£°í °¡¿ªÀûÀÎ ÀÚȰ¡ ÇÊ¿äÇÑ ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù.
ÀϺ»ÀüÀÚÁ¤º¸±â¼ú»ê¾÷Çùȸ(JEITA)¿¡ µû¸£¸é 2023³â±îÁö Àü ¼¼°è ÀüÀÚ-IT »ê¾÷ »ý»ê¾×Àº 3Á¶ 4,368¾ï ´Þ·¯(Àü³â ´ëºñ 3% Áõ°¡)¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÎÇÁ¶ó °³¹ß ¹× Çö´ëÈ
ÀÎÇÁ¶óÀÇ °³¹ß°ú Çö´ëÈ·Î ÀÎÇØ ¿¬ÀÚ¼º Àç·á¿¡ ´ëÇÑ ¼ö¿ä¿Í ÀÀ¿ëÀÌ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÚ±âÀåÀ» È¿À²ÀûÀ¸·Î À¯µµÇϰí Á¦¾îÇÏ´Â ´É·ÂÀ¸·Î Àß ¾Ë·ÁÁø ÀÌ ¼ÒÀçµéÀº ´Ù¾çÇÑ ÀÎÇÁ¶ó °ü·Ã ±â¼ú¿¡¼ Áß¿äÇÑ ÄÄÆ÷³ÍÆ®·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® ±×¸®µå, Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ, Àü±âÀÚµ¿Â÷, Åë½Å ³×Æ®¿öÅ©¿Í °°Àº ÀÎÇÁ¶óÀÇ ¹ßÀüÀº Àü±â ¿¡³ÊÁöÀÇ È¿À²ÀûÀÎ °ü¸®¿Í º¯È¯À» ÇÊ¿ä·Î Çϸç, ÀÌ´Â ¿¬ÀÚ¼º Àç·á¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù.
¿øÀç·áÀÇ ³ôÀº ºñ¿ë
±×·¯³ª ö, ´ÏÄÌ, ÄÚ¹ßÆ®, °¢Á¾ ÇÕ±Ý µî ÁÖ¿ä ¿øÀÚÀç °¡°ÝÀÌ ÃÖ±Ù ¼ö³â°£ »ó½ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ø°¡ »ó½ÂÀº Á¦Á¶¾÷ü¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÃÄ »ý»êºñ »ó½ÂÀ¸·Î À̾îÁ® °á±¹ ÃÖÁ¾ Á¦Ç° °¡°Ý¿¡ ¿µÇâÀ» ¹ÌÄ¡°Ô µË´Ï´Ù. ±× °á°ú, ±â¾÷Àº °æÀï·Â ÀÖ´Â °¡°Ý°ú ¼öÀͼºÀ» À¯ÁöÇØ¾ß ÇÏ´Â ¾î·Á¿ò¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¿øÀÚÀç ºñ¿ëÀÇ º¯µ¿Àº °ø±Þ¸Á°ú »ý»ê °èȹÀ» ¹æÇØÇÏ°í ½ÃÀå ¼ö¿ä¿¡ ÀϰüµÇ°Ô ´ëÀÀÇÏ·Á´Â ³ë·ÂÀ» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù.
½ÅÈï °æÁ¦±¹ ¼ö¿ä Áõ°¡
½ÅÈï ±¹°¡ ¼ö¿ä Áõ°¡´Â ¿¬ÀÚ¼º Àç·á ½ÃÀåÀ» Å©°Ô °ßÀÎÇϰí ÀÖ½À´Ï´Ù. Àεµ, Áß±¹, ºê¶óÁú°ú °°Àº ½ÅÈï ±¹°¡Àº ±Þ¼ÓÇÑ »ê¾÷È¿Í µµ½ÃÈ·Î ÀÎÇØ È¿À²ÀûÀÎ ¿¡³ÊÁö ¼Ö·ç¼Ç°ú ÷´Ü ÀüÀÚ±â±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¬ÀÚ¼º Àç·á´Â ºü¸¥ ÀÚÈ ¹× Å»ÀÚÈ ´É·ÂÀ¸·Î Àß ¾Ë·ÁÁ® ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ÀåºñÀÇ È¿À²¼º°ú ¼º´ÉÀ» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ ÀÌµé °æÁ¦±ÇÀÌ Àç»ý ¿¡³ÊÁö È®´ë¿Í Àü±âÀÚµ¿Â÷ »ý»ê¿¡ ÁýÁßÇÔ¿¡ µû¶ó ¿¬ÀÚ¼º Àç·á¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ÀÚ±âÀû Ư¼º, ³»±¸¼º, ºñ¿ë È¿À²¼ºÀ» °³¼±ÇÑ ¼ÒÀ縦 °³¹ßÇÏ¿© ÀÌ·¯ÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ Çõ½ÅÀ» °ÅµìÇϰí ÀÖ½À´Ï´Ù.
ÈñÅä·ù ¿ø¼ÒÀÇ ÇÑÁ¤µÈ °¡¿ë¼º
ÈñÅä·ù ¿ø¼ÒÀÇ ÇÑÁ¤µÈ °¡¿ë·®Àº ¿¬ÀÚ¼º Àç·áÀÇ °³¹ß ¹× »ý»ê¿¡ Å« µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀüÀÚ, Åë½Å, dz·Â Åͺó, Àü±âÀÚµ¿Â÷ µî Àç»ý¿¡³ÊÁö ±â¼ú¿¡ ÇʼöÀûÀÎ À̵é Àç·á´Â ³×¿Àµð¹Å, µð½ºÇÁ·Î½·, »ç¸¶·ý°ú °°Àº ÈñÅä·ù ¿ø¼Ò¿¡ ÀÚ±â Æ¯¼ºÀ» Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌµé ¿ø¼Ò´Â Èñ¼ÒÇÒ »Ó¸¸ ¾Æ´Ï¶ó Áö¿ªÀûÀ¸·Î ÁýÁߵǾî ÀÖÀ¸¸ç, Àü ¼¼°è °ø±ÞÀÇ ´ëºÎºÐÀÌ ¸î¸î ±¹°¡, ƯÈ÷ Áß±¹¿¡¼ °ø±ÞµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÁýÁßÀº °ø±Þ¸Á Ãë¾à¼º°ú °¡°Ý º¯µ¿À» ¾ß±âÇϰí, ÀÌ·¯ÇÑ Àç·á¿¡ ´ëÇÑ ¾ÈÁ¤ÀûÀÎ Á¢±Ù¿¡ ÀÇÁ¸ÇÏ´Â »ê¾÷¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº ¿¬ÀÚ¼º Àç·á ºÎ¹®¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °øÀå Æó¼â, ¿î¼Û Á¦ÇÑ, ³ëµ¿·Â °¨¼Ò·Î ÀÎÇØ °ø±Þ¸ÁÀº È¥¶õÀ» °Þ¾ú°í, Àç·á »ý»ê ¹× À¯Åë¿¡ Áö¿¬ÀÌ ¹ß»ýÇß½À´Ï´Ù. ¼ö¿ä º¯µ¿°ú ¿øÀÚÀç ºÎÁ·À¸·Î ÀÎÇÑ ½ÃÀåÀÇ ºÒÈ®½Ç¼ºÀº »óȲÀ» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µé¾ú½À´Ï´Ù. ¶ÇÇÑ ¿ø°Ý ±Ù¹«·ÎÀÇ Àüȯ°ú »ê¾÷ Ȱµ¿ÀÇ Ãà¼Ò·Î ÀÎÇØ Ãʱ⿡´Â Àüü ¼ö¿ä°¡ °¨¼ÒÇßÁö¸¸, ÀÌÈÄ »ê¾÷°è°¡ »õ·Î¿î ¾÷¹« ±Ô¹ü¿¡ ÀûÀÀÇÏ¸é¼ È¸º¹¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ÆÛ¸Ö·ÎÀÌ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ÆÛ¸Ö·ÎÀÌ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¬ÀÚ¼º Àç·áÀÇ ÀÏÁ¾ÀÎ ÆÛ¸Ö·ÎÀÌ´Â ¿¬ÀÚ¼º Àç·á ½ÃÀåÀÇ ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀϹÝÀûÀ¸·Î ö°ú ´Ù¾çÇÑ ¾çÀÇ ´ÏÄÌ(¾à 20-80%)·Î ±¸¼ºµÈ ÇÕ±ÝÀ¸·Î ³ôÀº ÅõÀÚÀ², ³·Àº º¸ÀÚ·Â, ³·Àº ÄÚ¾î ¼Õ½Ç°ú °°Àº ¿ì¼öÇÑ ÀÚ±âÀû Ư¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ƯÈ÷ IT ¹× Åë½Å, ÀÚµ¿Â÷, Àç»ý¿¡³ÊÁö µîÀÇ »ê¾÷¿¡¼ ÀüÀÚ±â±â ¹× Àü·Â ½Ã½ºÅÛÀÇ ¼º´É°ú È¿À²À» Çâ»ó½Ãų ¼ö ÀÖÀ¸¸ç, ÆÛ¸Ö·ÎÀÌ ºÎ¹® ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß »ê¾÷ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â »ê¾÷ ºÎ¹®ÀÔ´Ï´Ù. ö-½Ç¸®ÄÜ ÇÕ±Ý ¹× Æä¶óÀÌÆ®¿Í °°Àº ¿¬ÀÚ¼º Àç·á´Â Àü±â ¸ðÅÍ, º¯¾Ð±â ¹× ÀüÀÚ±â ÀåºñÀÇ È¿À²ÀûÀÎ ÀÛµ¿¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÃÖ¼ÒÇÑÀÇ ¿¡³ÊÁö ¼Õ½Ç(³·Àº È÷½ºÅ׸®½Ã½º)·Î ºü¸£°Ô ÀÚÈ ¹× Å»ÀÚÈÇÒ ¼ö ÀÖÀ¸¹Ç·Î °íÁÖÆÄ º¯¾Ð±â³ª Àü±âÀÚµ¿Â÷ ¸ðÅÍ¿Í °°ÀÌ ºó¹øÇÑ ÀÚ±âÀå º¯È°¡ ÇÊ¿äÇÑ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ÃÖ±Ù Ãß¼¼´Â ÇÕ±ÝÈ, ¹Ì¼¼±¸Á¶ Á¦¾î ¹× °¡°ø ±â¼úÀ» ÅëÇØ ÀÌ·¯ÇÑ Àç·áÀÇ ÀÚ±âÀû Ư¼ºÀ» °³¼±ÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °³¼±Àº ´õ ³ôÀº ÅõÀÚÀ², ´õ ³·Àº º¸ÀÚ·Â, ´õ ³·Àº ÄÚ¾î ¼Õ½Ç °¨¼Ò¸¦ ´Þ¼ºÇÏ¿© »ê¾÷ ÀåºñÀÇ È¿À²¼º°ú ½Å·Ú¼ºÀ» Çâ»ó½ÃŰ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. Á¤ºÎ¿Í »ê¾÷°è°¡ Áö¼Ó°¡´É¼º°ú ¿¡³ÊÁö È¿À²À» ¿ì¼±¼øÀ§¿¡ µÎ¸é¼ ¿¬ÀÚ¼º Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹, Àεµ¿Í °°Àº ±¹°¡µéÀº ±Þ¼ÓÇÑ »ê¾÷È, µµ½ÃÈ, ÷´Ü ±â¼ú µµÀÔÀ¸·Î ½ÃÀå È®´ëÀÇ ¼±µÎ¿¡ ¼ ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àç»ý ¿¡³ÊÁö ¹ßÀüÀ» ÃËÁøÇÏ´Â ±¸»óÀº ¹ßÀü ¹× ¹èÀü ½Ã½ºÅÛ¿¡¼ ¿¬ÀÚ¼º Àç·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù.
À¯·´Àº ¿¹Ãø ±â°£ Áß ¼öÀͼº ÀÖ´Â ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´ Á¤ºÎ´Â ¾ö°ÝÇÑ È¯°æ ±âÁذú Áö¿ø Á¤Ã¥À» ÅëÇØ »ê¾÷³» ±â¼ú Çõ½Å°ú Áö¼Ó°¡´ÉÇÑ °üÇàÀ» Àå·ÁÇϰí ÀÖÀ¸¸ç, REACH(ÈÇÐ ¹°Áú µî·Ï, Æò°¡, Çã°¡ ¹× Á¦ÇÑ)¿Í °°Àº ±ÔÁ¦´Â Àç·áÀÇ ¾ÈÀüÇÑ »ç¿ëÀ» º¸ÀåÇÏ°í ´õ ±ú²ýÇÑ »ý»ê ¹æ¹ýÀ» ÃËÁøÇϸç ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÔ´Ï´Ù. ¶ÇÇÑ Ã·´Ü ¼ÒÀç ±â¼ú ¿¬±¸°³¹ßÀ» ÃËÁøÇϱâ À§ÇÑ ±¸»óÀº ¼¼°è ½ÃÀå¿¡¼ À¯·´ ±â¾÷ÀÇ °æÀï·ÂÀ» °ÈÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Soft Magnetic Materials Market is accounted for $89.98 billion in 2024 and is expected to reach $189.33 billion by 2030 growing at a CAGR of 13.2% during the forecast period. Soft magnetic materials are essential components in electrical engineering and electronics due to their unique ability to magnetize and demagnetize quickly and efficiently in response to changing magnetic fields. Unlike hard magnetic materials, which retain their magnetization once magnetized, soft magnetic materials exhibit high permeability and low coercivity, making them ideal for applications where rapid and reversible magnetization is necessary, such as in transformers, electric motors, inductors, and magnetic shielding.
According to the Japan Electronics and Information Technology Industries Association (JEITA), the production by the global electronics and IT industry was expected to reach USD 3,436.8 billion, with a growth rate of 3 percent year on year, by 2023.
Development and modernization of infrastructure
The development and modernization of infrastructure have significantly enhanced the demand and application of soft magnetic materials. These materials, known for their ability to efficiently direct and control magnetic fields, are crucial components in a wide array of infrastructure-related technologies. Advancements in infrastructure, such as smart grids, renewable energy systems, electric vehicles, and telecommunications networks, require efficient management and conversion of electrical energy, which relies heavily on soft magnetic materials.
High cost of raw materials
However, the primary raw materials used in their production, such as iron, nickel, cobalt, and various alloys, have experienced price increases in recent years. This escalation in costs directly impacts manufacturers, leading to higher production expenses and ultimately influencing the final product prices. As a result, companies face challenges in maintaining competitive pricing and profitability. Fluctuations in raw material costs can disrupt supply chains and production planning, further complicating efforts to meet market demand consistently.
Rising demand from emerging economies
The increasing demand from emerging economies is significantly bolstering the market for soft magnetic materials. Emerging economies like India, China, Brazil, and others are experiencing rapid industrialization and urbanization, driving up the need for efficient energy solutions and advanced electronic equipment. Soft magnetic materials, known for their ability to quickly magnetize and demagnetize, are essential in improving the efficiency and performance of these devices. Moreover, as these economies focus on renewable energy expansion and electric vehicle production, the demand for soft magnetic materials further intensifies. Manufacturers are innovating to meet this growing demand by developing materials with improved magnetic properties, durability, and cost-effectiveness.
Limited availability of rare earth elements
The limited availability of rare earth elements poses a significant challenge to the development and production of soft magnetic materials. These materials, crucial for applications in electronics, telecommunications, and renewable energy technologies like wind turbines and electric vehicles, rely heavily on rare earth elements such as neodymium, dysprosium, and samarium for their magnetic properties. However, these elements are not only scarce but also geographically concentrated, with a significant portion of global supply coming from a few countries, particularly China. This concentration creates supply chain vulnerabilities and price volatility, impacting industries that depend on consistent access to these materials.
The COVID-19 pandemic significantly affected the soft magnetic materials sector. Supply chains experienced disruptions due to factory closures, transportation restrictions, and reduced workforce capacity, leading to delays in material production and distribution. Market uncertainties caused by fluctuating demand and raw material shortages further complicated the situation. Additionally, the shift towards remote work and reduced industrial activities initially dampened overall demand but later saw a recovery as industries adapted to new operational norms.
The Permalloy segment is expected to be the largest during the forecast period
Permalloy segment is expected to be the largest during the forecast period. Permalloy, a type of soft magnetic material, is significantly contributing to the growth of the soft magnetic materials market. It is an alloy typically composed of iron and varying amounts of nickel (around 20-80%) and exhibits excellent magnetic properties such as high permeability, low coercivity, and low core loss. The demand for Permalloy segments is rising due to its ability to enhance the performance and efficiency of electronic devices and power systems, particularly in industries like telecommunications, automotive, and renewable energy.
The Industrial segment is expected to have the highest CAGR during the forecast period
Industrial segment is expected to have the highest CAGR during the forecast period. Soft magnetic materials, such as iron-silicon alloys and ferrites, play a crucial role in the efficient operation of electric motors, transformers, and electromagnetic devices. Their ability to magnetize and demagnetize rapidly with minimal energy loss (low hysteresis) makes them ideal for applications requiring frequent magnetic field changes, like in high-frequency transformers and electric vehicle motors. Recent developments focus on improving the magnetic properties of these materials through alloying, microstructural control, and processing techniques. This enhancement aims to achieve higher magnetic permeability, lower coercivity, and reduced core losses, thereby increasing the efficiency and reliability of industrial equipment.
Asia Pacific region commanded the largest share of the market over the projection period. As governments and industries prioritize sustainability and energy efficiency, the demand for soft magnetic materials has grown significantly. Countries like China, Japan, South Korea, and India are at the forefront of this market expansion, driven by rapid industrialization, urbanization, and the adoption of advanced technologies. Moreover, initiatives promoting renewable energy sources further bolster the demand for soft magnetic materials in power generation and distribution systems.
Europe region is estimated to witness profitable growth during the extrapolated period. Through stringent environmental standards and supportive policies, European governments are fostering innovation and sustainable practices within the industry. Regulations such as REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) ensure the safe use of materials, promoting cleaner production methods and reducing environmental impact. Moreover, initiatives aimed at promoting research and development in advanced materials technology are bolstering the competitiveness of European firms in global markets.
Key players in the market
Some of the key players in Soft Magnetic Materials market include Dexter Magnetic Technologies, Electron Energy Corporation, Carpenter Technology Corporation, Mitsubishi Materials Corporation, TDK Corporation, Hitachi Metals, Ltd, Voestalpine AG, Mate Group and Intermetallics India Pvt. Ltd.
In January 2022, Daido Steel Co., Ltd. has introduced a new product, called STARPAS-50PC2S permalloy foil, which is designed to effectively suppress EMC noise, particularly magnetic noise, at low frequencies below approximately 100kHz. This noise is usually caused by higher frequencies in communication and IoT devices, as well as electric automobiles.
In January 2022, JFE Steel Corporation has also launched Denjiro, which is an insulation-coated pure iron powder for soft magnetic composites. This product is ideally suited to axial gap motors and has been added to their broad lineup of soft magnetic materials.