¼¼°èÀÇ ¸·ºÐ¸® ±â¼ú ½ÃÀå ¿¹Ãø : Àç·á À¯Çüº°, ±â¼úº°, ¿ëµµº°, Áö¿ªº° ºÐ¼®(-2030³â)
Membrane Separation Technology Market Forecasts to 2030 - Global Analysis By Material Type, Technology, Application and By Geography
»óǰÄÚµå : 1494839
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2024³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 6,004,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,596,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 9,187,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,851,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¸·ºÐ¸® ±â¼ú ½ÃÀåÀº 2024³â 331¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 14.4%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 741¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸·ºÐ¸® ±â¼úÀº ¹ÝÅõ¸·À» »ç¿ëÇÏ¿© È¥ÇÕ¹° ³»ÀÇ ¼ººÐÀ» ºÐ¸®ÇÏ´Â °øÁ¤ÀÔ´Ï´Ù. ÀÌ °øÁ¤¿¡¼­´Â È¥ÇÕ¹°À» °¡¾ÐÇÏ¿¡ ¸·À» Åë°ú½Ã۰í ÇÊ¿äÇÑ ¼ººÐÀ» Åõ°ú½ÃŰ¸é¼­ ºÒÇÊ¿äÇÑ ¼ººÐÀ» À¯ÁöÇÕ´Ï´Ù. ¶ÇÇÑ ¼ººÐÀÇ È­ÇÐÀû Á¶¼ºÀ» ¹Ù²ÙÁö ¾Ê°íµµ Á¤È®ÇÑ ºÐ¸®¸¦ °¡´ÉÇÏ°Ô Çϱ⠶§¹®¿¡ ƯÈ÷ ¼¶¼¼ÇÑ ¿ëµµ¿¡ À¯¿ëÇÕ´Ï´Ù. ¸âºê·¹ÀÎ ºÐ¸® ±â¼úÀº °è¼Ó ÁøÇàµÇ°í ÀÖÀ¸¸ç, ÇöÀç ÁøÇà ÁßÀÎ Á¶»ç´Â º¸´Ù ±¤¹üÀ§ÇÑ »ê¾÷¿¡ ´ëÇÑ Ã¤ÅÃÀ» ÇâÇØ ¸âºê·¹ÀÎÀÇ ¼±Åüº, ³»±¸¼º ¹× ºñ¿ë È¿°ú¸¦ ³ôÀÌ´Â µ¥ ÁßÁ¡À» µÓ´Ï´Ù.

GWI Desal µ¥ÀÌÅͺ£À̽º¿¡ µû¸£¸é, °¡µ¿ ÁßÀÎ ÇØ¼ö ´ã¼öÈ­ Ç÷£Æ® ÀüüÀÇ ¾à 69%°¡ ¿ª»ïÅõ¸· ±â¼úÀ» »ç¿ëÇϰí ÀÖ½À´Ï´Ù.

ûÁ¤ ¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¼¼°è °¢±¹ÀÌ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̰í Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ ÀüȯÀ» ÃßÁøÇϸ鼭 È¿À²ÀûÀÎ ºÐ¸®±â¼úÀÇ Çʿ伺ÀÌ °¡Àå ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¸·ºÐ¸® ±â¼úÀº ÇØ¼ö ´ã¼öÈ­, °¡½º ºÐ¸® ¹× Æó¼ö 󸮸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ Ã»Á¤ ¿¡³ÊÁö °øÁ¤¿¡ ´ÙÀç´Ù´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. Å©±â, ¸ð¾ç ¹× ºÐÀÚ·®À» ±âÁØÀ¸·Î ¼ººÐÀ» È¿°úÀûÀ¸·Î ºÐ¸®ÇÏ´Â ´É·ÂÀº ûÁ¤ ¿¡³ÊÁö »ý»ê ¿ä±¸ »çÇ×°ú ¿Ïº®ÇÏ°Ô ÀÏÄ¡ÇÕ´Ï´Ù.

³ôÀº Ãʱâ ÅõÀÚ

¸âºê·¹ÀÎ ºÐ¸® °øÁ¤À» ¼ö¸³ÇÏ´Â °ÍÀº ÀåºñÀÇ ±¸¸Å, ¼³Ä¡ ¹× ¿î¿µ ¼³Á¤À» Æ÷ÇÔÇÑ Ãʱ⠺ñ¿ëÀÌ µé¸ç ¸¹Àº ÀáÀçÀûÀÎ ÅõÀÚÀÚ¿Í ±â¾÷¿¡ ´ëÇÑ ÁøÀÔ¿¡ Å« À庮ÀÌ µÉ °ÍÀÔ´Ï´Ù. ¸âºê·¹ÀÎ ½Ã½ºÅÛÀÇ º¹ÀâÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ À¯Áö º¸¼ö ¹× ÀÛµ¿¿¡´Â ¼÷·ÃµÈ ±â¼úÀÚ°¡ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹À¸¸ç Àü¹ÝÀûÀÎ ºñ¿ëÀÌ ´õ ¸¹ÀÌ ºÎ°úµË´Ï´Ù. ±×·¯³ª °í¾×ÀÇ Ãʱâ ÅõÀÚ´Â Áß¼Ò±â¾÷ÀÌ ÀÌ·¯ÇÑ ±â¼úÀ» äÅÃÇÏ´Â °ÍÀ» ¸Á¼³ÀϻӸ¸ ¾Æ´Ï¶ó ´Ù¾çÇÑ »ê¾÷¿¡ ´ëÇÑ º¸±ÞÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.

±Þ¼ÓÇÑ µµ½ÃÈ­ ¹× Àα¸ Áõ°¡

±Þ¼ÓÇÑ µµ½ÃÈ­ ¹× Àα¸ Áõ°¡´Â ±ú²ýÇÑ ¹°, È¿À²ÀûÀÎ ¿¡³ÊÁö »ý»ê ¹× Áö¼Ó °¡´ÉÇÑ »ê¾÷ °øÁ¤¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÏ¿© ¸·ºÐ¸® ±â¼ú ½ÃÀåÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. µµ½Ã°¡ È®´ëµÊ¿¡ µû¶ó À½·á¼ö ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϰí ȯ°æ ¿À¿°À» ÁÙÀ̱â À§ÇØ °í±Þ ¹° ¹× Æó¼ö ó¸® ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸·ºÐ¸® ±â¼úÀº Á¤¼ö, ÇØ¼ö ´ã¼öÈ­, Æó¼ö ó¸®, °¡½º ºÐ¸® µî ´Ù¾çÇÑ ¿ëµµ¿¡ ¹ü¿ëÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

Á¦ÇÑµÈ Àç·á ȣȯ¼º

¸·ºÐ¸® ±â¼úÀÇ Á¦ÇÑµÈ Àç·á ÀûÇÕ¼ºÀº ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä Àå¾Ö¹°ÀÔ´Ï´Ù. ¸· ºÐ¸® °øÁ¤Àº È¥ÇÕ¹°·ÎºÎÅÍ ¿øÇÏ´Â ¼ººÐÀ» È¿°úÀûÀ¸·Î ºÐ¸®Çϱâ À§ÇØ ¸·ÀÇ Àç·á Ư¼º¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. ¸· Á¦Á¶¿¡ ÀûÇÕÇÑ Àç·áÀÇ ¹üÀ§´Â Á¦ÇѵǾî ÀÖÀ¸¸ç ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¸·ºÐ¸® ±â¼úÀÇ Àû¿ë¼ºÀ» Á¦ÇÑÇÕ´Ï´Ù. ±×·¯³ª ¸·ÀÌ °¡È¤ÇÑ »ç¿ë Á¶°Ç, °ø°ÝÀûÀÎ È­ÇÐ ¹°Áú, ±Ø´ÜÀûÀÎ ¿Âµµ¿¡ ³ëÃâµÇ¸é ¿­È­, ¼º´É ÀúÇÏ ¹× ¼ö¸í ´ÜÃàÀ¸·Î À̾îÁö´Â ÀûÇÕ¼º ¹®Á¦°¡ ¹ß»ýÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ À¯ÇàÀº ¸·ºÐ¸® ±â¼ú ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ´çÃÊ ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ ¿øÀç·á³ª ±â±â Á¶´Þ¿¡ Áö¿¬ÀÌ »ý°Ü »ý»ê°ú ³³Ç° ÀÏÁ¤¿¡ ÁöÀåÀÌ »ý°å½À´Ï´Ù. ¾ö°ÝÇÑ ºÀ¼â Á¶Ä¡¿Í »çȸÀû °Å¸®¸¦ µÎ´Â ÇÁ·ÎÅäÄÝÀº Á¦Á¶ ½Ã¼³ÀÇ ÀϽÃÀûÀÎ ¿î¿µ Áß´ÜÀ¸·Î À̾îÁ® ½ÃÀå ¼ºÀåÀ» ´õ¿í ÀúÇØÇß½À´Ï´Ù. ÆÒµ¥¹ÍÀº ±ú²ýÇÑ ¹°, È¿À²ÀûÀÎ ¿©°ú, ºÐ¸® °øÁ¤ÀÇ Á߿伺À» µ¸º¸ÀÌ°Ô Çϰí, ¼öó¸®, ÇコÄɾî, »ý¸í°øÇÐ µî ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡ ´ëÇÑ ¸· ±â¼úÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Æú¸®¸Ó ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

°íºÐÀÚ ºÎ¹®Àº È¿À²¼º, ³»±¸¼º, ¹ü¿ë¼ºÀ» Å©°Ô Çâ»ó½ÃÅ´À¸·Î½á ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸ÁÀÔ´Ï´Ù. Æú¸®¿¡Æ¿·», Æú¸®ÇÁ·ÎÇÊ·», Æú¸®¼³Æù, Æú¸®¾Æ¹Ìµå µî ´Ù¾çÇÑ Æú¸®¸Ó·Î ±¸¼ºµÈ ÀÌ ºÐ¾ß´Â ¸âºê·¹ÀÎ Àû¿ë¿¡ ÀÌ»óÀûÀΠŹ¿ùÇÑ Æ¯¼ºÀ» ³ªÅ¸³À´Ï´Ù. °ß°í¼ºÀº °¡È¤ÇÑ Á¶°Ç¿¡¼­ Àå±â°£ »ç¿ëÀ» °¡´ÉÇÏ°Ô ÇÏ°í »ê¾÷ °øÁ¤ÀÇ ¼ö¸í°ú ºñ¿ë È¿°ú¸¦ º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, °íºÐÀÚ ºÎ¹®ÀÇ ±¸Á¶¿Í Á¶¼ºÀ» Á¶Á¤ÇÏ´Â ´É·ÂÀº ƯÁ¤ ºÐ¸® ¿ä±¸ »çÇ׿¡ ¸Â°Ô ¸ÂÃãÇü ¸âºê·¹ÀÎÀ» °¡´ÉÇÏ°Ô Çϸç, ±× Àû¿ë ¹üÀ§°¡ ´õ¿í È®´ëµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ³ª³ë¿©°ú ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó

³ª³ë¿©°ú ºÎ¹®Àº ºÐÀÚ¸¦ ºÐ¸®ÇÒ ¶§ ºñ±³ÇÒ ¼ö ¾ø´Â Á¤È®µµ¿Í È¿À²¼ºÀ¸·Î ¿¹Ãø±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµË´Ï´Ù. Á¤¹Ð ¿©°ú¸·À̳ª ÇÑ¿Ü ¿©°ú¸·º¸´Ù ÀÛÀº ±¸¸ÛÀ» °¡Áø ³ª³ë¿©°ú¸·Àº À̿°ú ÀúºÐÀÚÀÇ ºÐ¸®¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ÇÑÆí, º¸´Ù Å« ºÐÀÚ´Â Åë°ú½Ãų ¼ö ÀÖ½À´Ï´Ù. ±× ¿ëµµ´Â ÇØ¼ö ´ã¼öÈ­ ¹× Æó¼ö 󸮿¡¼­ ¿À¿° ¹°ÁúÀÇ ¼±ÅÃÀû Á¦°Å ¹× ±ÍÁßÇÑ ¼ººÐÀÇ ³óÃà¿¡ À̸£±â±îÁö ´Ù¾çÇÕ´Ï´Ù. °Ô´Ù°¡, ³ª³ë¿©°ú °øÁ¤Àº ´Ù¸¥ ¸·¿©°ú ±â¼ú¿¡ ºñÇØ ³·Àº ÀÛµ¿ ¾Ð·ÂÀ» ÇÊ¿ä·Î Çϰí, ³ôÀº Åõ°ú À¯¼ÓÀ» Á¦°øÇÏ´Â °æ¿ì°¡ ¸¹¾Æ ¿¡³ÊÁö È¿À² ¹× ºñ¿ë È¿°ú°¡ Çâ»óµË´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹, Àεµ, µ¿³²¾Æ½Ã¾Æ ±¹°¡ µîÀÇ ±Þ¼ÓÇÑ »ê¾÷È­¿Í µµ½ÃÈ­·Î ±ú²ýÇÑ ¹°¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ¸·ºÐ¸® ±â¼úÀÌ ¼öó¸® °øÁ¤¿¡ Áß¿äÇØÁö±â ¶§¹®¿¡ ÃßÁ¤±â°£ µ¿¾È ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. È¿À²¼º, ³»±¸¼º ¹× ºñ¿ë È¿À²¼º Çâ»óÀ» Æ÷ÇÔÇÑ ¸âºê·¹ÀÎ ±â¼úÀÇ ¹ßÀüÀ¸·Î ¸âºê·¹ÀÎÀº ´Ù¾çÇÑ ¿ëµµ¿¡ ¸Å·ÂÀûÀÎ ¼Ö·ç¼ÇÀÌ µÇ¾ú½À´Ï´Ù. ½ÅÈï°æÁ¦ ±¹°¡µéÀÌ ¹ßÀüÀ» Áö¼ÓÇϰí Áö¼Ó°¡´É¼ºÀ» ¿ì¼±½ÃÇÔ¿¡ µû¶ó ¸·ºÐ¸® ±â¼ú¿¡ ´ëÇÑ Áö¿ªÀû ¼ö¿ä´Â È®´ëµÇ°í ´çºÐ°£ ½ÃÀå ¼ºÀåÀ» À̲ø °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

À¯·´Àº ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼºÀÌ ³ôÀº ¼ºÀåÀ» À¯ÁöÇÒ Àü¸ÁÀÔ´Ï´Ù. »ê¾÷¹èÃâ¹°À» ÁÙÀ̰í Áö¼Ó°¡´ÉÇÑ °üÇàÀ» ÃËÁøÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ´Â ¾ö°ÝÇÑ È¯°æ±ÔÁ¦´Â ÀǾàǰ, ½ÄÀ½·á, Æó¼öó¸® µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¸·ºÐ¸® ±â¼úÀÇ Áö¿ªÀû ä¿ëÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â Á¾Á¾ ¿À¿°¹°ÁúÀÇ ¹èÃâ ¼öÁØ¿¡ Á¦ÇÑÀ» ºÎ°úÇϰí, ȯ°æ ģȭÀûÀÎ ºÐ¸® ¹æ¹ýÀÇ »ç¿ëÀ» Àå·ÁÇÏ¿©, ¸·ºÐ¸® ±â¼ú Á¦°ø¾÷ü¿¡°Ô À¯¸®ÇÑ È¯°æÀ» »ý¼ºÇÕ´Ï´Ù. ¶ÇÇÑ, ½ÅÀç»ý ¿¡³ÊÁö¿øÀÇ »ç¿ë°ú ¼øÈ¯Çü °æÁ¦¸¦ ÃËÁøÇÏ´Â ÀÌ´Ï¼ÅÆ¼ºê´Â Æó±â¹° ¹× ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖ¼ÒÈ­ÇÏ´Â ¸· ±â¹Ý °øÁ¤ÀÇ Ã¤ÅÃÀ» Àå·ÁÇÔÀ¸·Î½á Áö¿ª ½ÃÀåÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃã¼³Á¤ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¸·ºÐ¸® ±â¼ú ½ÃÀå : Àç·á À¯Çüº°

Á¦6Àå ¼¼°èÀÇ ¸·ºÐ¸® ±â¼ú ½ÃÀå : ±â¼úº°

Á¦7Àå ¼¼°èÀÇ ¸·ºÐ¸® ±â¼ú ½ÃÀå : ¿ëµµº°

Á¦8Àå ¼¼°èÀÇ ¸·ºÐ¸® ±â¼ú ½ÃÀå : Áö¿ªº°

Á¦9Àå ÁÖ¿ä ¹ßÀü

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Membrane Separation Technology Market is accounted for $33.1 billion in 2024 and is expected to reach $74.1 billion by 2030 growing at a CAGR of 14.4% during the forecast period. Membrane separation technology is a process that separates components within a mixture by using semi-permeable membranes. The process involves driving the mixture through the membrane under pressure, allowing the desired components to permeate through while retaining the undesired ones. Moreover, it enables precise separation without altering the chemical composition of the components, making it particularly valuable in sensitive applications. Membrane separation technology continues to advance, with ongoing research focused on enhancing membrane selectivity, durability, and cost-effectiveness for broader industrial adoption.

According to the GWI Desal database, approximately 69% of the total operational desalination plants used reverse osmosis technology.

Market Dynamics:

Driver:

Rising demand for clean energy

As nations worldwide commit to reducing their carbon footprint and transitioning towards sustainable energy sources, the need for efficient separation technologies becomes paramount. Membrane separation technology offers a versatile solution for various clean energy processes, including desalination, gas separation, and wastewater treatment. Its ability to effectively separate components based on size, shape, and molecular weight aligns perfectly with the requirements of clean energy production.

Restraint:

High initial investment

The upfront costs associated with establishing membrane separation processes, including purchasing equipment, installation, and operational setup, pose a significant barrier to entry for many potential investors and businesses. The complex nature of membrane systems often demands skilled technicians for maintenance and operation, further adding to the overall expenses. However, high initial investment not only deters small and medium-sized enterprises from adopting these technologies but also limits their widespread implementation across various industries.

Opportunity:

Rapid urbanization and population growth

Rapid urbanization and population growth are driving the demand for clean water, efficient energy production, and sustainable industrial processes, thereby enhancing the Membrane Separation Technology Market. As cities expand, the need for advanced water and wastewater treatment solutions intensifies to meet the growing demand for potable water and to mitigate environmental pollution. Furthermore, membrane separation technology offers a versatile and cost-effective solution for various applications, including water purification, desalination, wastewater treatment, and gas separation.

Threat:

Limited material compatibility

Limited material compatibility in membrane separation technology poses a significant hindrance to its market growth. Membrane separation processes rely heavily on the material properties of membranes to effectively separate desired components from a mixture. The range of materials suitable for membrane fabrication is restricted, limiting the applicability of membrane separation technology in various industries. However, compatibility issues arise when membranes are exposed to harsh operating conditions, aggressive chemicals, or extreme temperatures, leading to deterioration, reduced performance, and shorter lifespan.

Covid-19 Impact:

The Covid-19 pandemic significantly impacted the membrane separation technology market. Initially, disruptions in the global supply chain caused delays in the procurement of raw materials and equipment, hindering production and delivery schedules. Stringent lockdown measures and social distancing protocols led to temporary shutdowns of manufacturing facilities, further impeding market growth. The pandemic highlighted the importance of clean water, efficient filtration, and separation processes, accelerating the adoption of membrane technologies for various applications, including water treatment, healthcare, and biotechnology.

The Polymeric segment is expected to be the largest during the forecast period

Polymeric segment is expected to be the largest during the forecast period by offering significant enhancements in efficiency, durability, and versatility. These sector, composed of various polymers like polyethylene, polypropylene, polysulfone, and polyamide, exhibit exceptional properties ideal for membrane applications. Their robustness enables prolonged usage under harsh conditions, ensuring longevity and cost-effectiveness for industrial processes. Furthermore, the ability to tailor the structure and composition of polymeric segments allows for customizable membranes tailored to specific separation requirements, further expanding their applicability.

The Nanofiltration segment is expected to have the highest CAGR during the forecast period

Nanofiltration segment is expected to have the highest CAGR during the forecast period due to its unparalleled precision and efficiency in separating molecules. With pores smaller than those of microfiltration and ultrafiltration membranes, nanofiltration membranes enable the separation of ions and small molecules while allowing larger molecules to pass through. Its applications range from desalination and wastewater treatment to selective removal of contaminants and concentration of valuable components. Moreover, nanofiltration processes often require lower operating pressures and offer higher permeate flux rates compared to other membrane filtration techniques, resulting in improved energy efficiency and cost-effectiveness.

Region with largest share:

Asia Pacific region commanded the largest share of the market over the extrapolated period due to the rapid industrialization and urbanization in countries like China, India, and Southeast Asian nations have led to increased demand for clean water, making membrane separation technology crucial for water treatment processes. Advancements in membrane technology, including improved efficiency, durability, and cost-effectiveness, have made it an attractive solution for diverse applications. As these economies continue to develop and prioritize sustainability, the regional demand for membrane separation technology is expected to escalate, driving market growth in the foreseeable future.

Region with highest CAGR:

Europe region is poised to hold profitable growth during the projection period. Stringent environmental regulations aimed at reducing industrial emissions and promoting sustainable practices have propelled the regional adoption of membrane separation technologies across various industries such as pharmaceuticals, food and beverages, and wastewater treatment. These regulations often impose limits on pollutant discharge levels and encourage the use of eco-friendly separation methods, thereby creating a favorable environment for membrane separation technology providers. Additionally, initiatives promoting the use of renewable energy sources and the circular economy further bolster the regional market by incentivizing the adoption of membrane-based processes that minimize waste and energy consumption.

Key players in the market

Some of the key players in Membrane Separation Technology market include AXEON Water Technologies, Toray Industries, Inc, Hyflux Ltd, Merck KGgA, Koch Membrane Systems, Inc, Pentair plc, Huber SE, Parker-Hannifin Corporation, 3M Company and DuPont de Nemours, Inc.

Key Developments:

In April 2023, Koch Membrane Systems acquired Toray Membrane America for an undisclosed amount. This deal gives Koch access to Toray's portfolio of membrane filtration products, which are used in a variety of applications, including water treatment, food and beverage processing, and medical diagnostics.

In February 2023, Solecta, Inc. and the Lubrizol Corporation announced an alliance to develop and market novel membrane solutions that will increase separations industry productivity and efficiency.

In November 2022, Alfa Laval introduced the MultiSystem, the newest laboratory and industrial apparatus line addition. It is a new cross-flow, skid-mounted membrane filtration system that can be seamlessly coupled to upstream and downstream operations, increasing its adaptability across various process applications.

Material Types Covered:

Technologies Covered:

Applications Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Membrane Separation Technology Market, By Material Type

6 Global Membrane Separation Technology Market, By Technology

7 Global Membrane Separation Technology Market, By Application

8 Global Membrane Separation Technology Market, By Geography

9 Key Developments

10 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â