Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ÀμŶ Å×½ºÆ® ½ÃÀåÀº 2023³â 13¾ï 2,000¸¸ ´Þ·¯ ±Ô¸ð¿´À¸¸ç, ¿¹Ãø ±â°£ µ¿¾È 4.6%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 16¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀμŶ Å×½ºÆ®´Â Àμâ ȸ·Î ±âÆÇ ¾î¼Àºí¸®(PCBA)ÀÇ Ç°ÁúÀ» È®ÀÎÇϱâ À§ÇØ ÀüÀÚ Á¦Ç° Á¦Á¶¿¡ »ç¿ëµÇ´Â ¹æ¹ýÀ̸ç, PCB¿¡ ºÎǰÀ» ÀåÂø ÇÑ »óÅ¿¡¼ Å×½ºÆ®¸¦ ¼öÇàÇÏ¿© À߸øµÈ ºÎǰ °ª, °³¹æ ȸ·Î ¹× ´Ü¶ô°ú °°Àº °áÇÔÀ» ½Äº°ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù, PCBA°¡ »ý»ê ´Ü°è·Î ÀüȯµÇ±â Àü¿¡ ¹«°á¼ºÀ» È®ÀÎÇÏ´Â ºü¸£°í È¿À²ÀûÀÎ ¹æ¹ýÀ¸·Î Á¦Ç°ÀÇ ½Å·Ú¼º°ú Àü¹ÝÀûÀΠǰÁú °ü¸®¿¡ ±â¿©ÇÕ´Ï´Ù.
TPCA(Taiwan Printed Circuit Association)ÀÇ ÅëÂû·Â ÀÖ´Â ºÐ¼®¿¡ µû¸£¸é, ÀϺ»°ú Çѱ¹ÀÇ PCB ¾÷°è´Â ´Ü¸»±â Á¦Ç° ¼³°è ´É·ÂÀ» Ȱ¿ëÇÏ¿© Àü·«ÀûÀ¸·Î ·Î¿ì ·¹ÀÎÁö Á¦Ç°¿¡¼ ¹Ìµå ·¹ÀÎÁö Á¦Ç°À¸·Î ÀüȯÇÏ¿© ½ÃÀå Á¡À¯À²ÀÌ 15.31%¿¡ À̸£·¶´Ù°í ÇÕ´Ï´Ù. 15.31%¿¡ ´ÞÇϰí ÀÖ½À´Ï´Ù.
ÀüÀÚ±â±âÀÇ º¹ÀâÈ
ºÎǰÀÌ °í¹Ðµµ·Î ¹èÄ¡µÇ°í °íµµÀÇ ±â´ÉÀ» °®Ãá ÀüÀÚ±â±â°¡ º¹ÀâÇØÁü¿¡ µû¶ó ±âÁ¸ÀÇ °Ë»ç ¹æ¹ýÀ¸·Î´Â °áÇÔÀ» Á¤È®ÇÏ°Ô °¨ÁöÇÏÁö ¸øÇÒ ¼ö ÀÖÀ¸¸ç, ICT´Â º¹ÀâÇÑ È¸·Î ³»ÀÇ °áÇÔÀ» ½Äº°ÇÒ ¼ö ÀÖ´Â Á¤¹ÐÇÑ Å×½ºÆ® ±â´ÉÀ» Á¦°øÇÏ¿© ÀüÀÚ ¾î¼Àºí¸®ÀÇ Ç°Áú°ú ½Å·Ú¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº ¼ÒºñÀÚ¿Í »ê¾÷°è°¡ ¿ä±¸ÇÏ´Â ±î´Ù·Î¿î ǰÁú ±âÁØÀ» ÃæÁ·½Ã۱â À§ÇØ ICTÀÇ Á߿伺À» °Á¶ÇÏ¸ç ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.
º¹ÀâÇÑ ºÎǰ Å×½ºÆ®ÀÇ ÇѰè
ÀμŶ Å×½ºÆ®(ICT)´Â ¾×¼¼½º Æ÷ÀÎÆ®ÀÇ Á¦ÇÑ, º¹ÀâÇÑ ¼³°è, ÁýÀû ȸ·Î¿Í °°Àº Á¢±ÙÀÌ ºÒ°¡´ÉÇÑ ±¸¼º ¿ä¼ÒÀÇ Å×½ºÆ® ºÒ°¡´É µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ º¹ÀâÇÑ ±¸¼º ¿ä¼Ò¸¦ Å×½ºÆ®ÇÒ ¶§ ÇѰ迡 Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦´Â °£ÇæÀû °áÇÔÀ̳ª º¹ÀâÇÑ ºÎǰ ³» °áÇÔ µî ƯÁ¤ À¯ÇüÀÇ °áÇÔÀ» °¨ÁöÇÏ´Â ICTÀÇ ´É·ÂÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î ICT´Â ¸Å¿ì º¹ÀâÇÑ ÀüÀÚ ºÎǰ ¾î¼Àºí¸®¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ Å×½ºÆ® ¹üÀ§¸¦ Á¦°øÇÏÁö ¸øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇѰè´Â Á¦Á¶¾÷üµéÀÌ º¸´Ù Á¾ÇÕÀûÀÎ °Ë»ç ¼Ö·ç¼ÇÀ» ã´Â °¡¿îµ¥ ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀüÀÚ ºÎǰÀÇ ¼ÒÇüÈ
ÀüÀÚ ºÎǰÀÇ ¼ÒÇüÈ Ãß¼¼´Â º¸´Ù Á¤¹ÐÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Å×½ºÆ® ¹æ¹ýÀ» ÇÊ¿ä·Î ÇÏ´Â ÀμŶ Å×½ºÆ®ÀÇ ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù. ÀüÀÚ ºÎǰÀÌ ¼ÒÇüȵǰí ȸ·Î ±âÆÇ¿¡ °í¹Ðµµ·Î ÀåÂøµÊ¿¡ µû¶ó °áÇÔ ¹× °íÀå À§ÇèÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ICT´Â ÀÌ·¯ÇÑ ¹®Á¦¸¦ °¨ÁöÇÏ°í ¼ÒÇüÈ µÈ ÀüÀÚ ¾î¼Àºí¸®ÀÇ Ç°Áú°ú ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇØ °íÁ¤¹Ð ¼ö´ÜÀ» Á¦°øÇÕ´Ï´Ù. °á°úÀûÀ¸·Î ICT ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â ¼ÒÇüÈ Ãß¼¼¿Í ÇÔ²² Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
ȣȯ¼º ¹®Á¦
ÀμŶ Å×½ºÆ®ÀÇ È£È¯¼º ¹®Á¦´Â ICT ½Ã½ºÅÛÀÌ ´Ù¾çÇÑ ÀüÀÚ ºÎǰ ¹× ¾î¼Àºí¸®¿Í È¿°úÀûÀ¸·Î ÀÎÅÍÆäÀ̽ºÇØ¾ß ÇÏ´Â Çʿ伺¿¡¼ ºñ·ÔµË´Ï´Ù. ȣȯ¼º ºÎÁ·Àº ºñÈ¿À², ºÎÁ¤È®¼º, Å×½ºÆ® ½Ã°£ Áõ°¡·Î À̾îÁ® »ý»ê¼ºÀ» ÀúÇØÇϰí Á¦Á¶¾÷üÀÇ ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ¶ÇÇÑ, ÁøÈÇÏ´Â »ê¾÷ Ç¥Áذú ±â¼úÀº ȣȯ¼º ¹®Á¦¸¦ ´õ¿í º¹ÀâÇÏ°Ô ¸¸µé°í ICT ¼Ö·ç¼ÇÀÇ È¿°ú¿Í äÅÃÀ» Á¦ÇÑÇÏ¿© ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
Äڷγª19´Â ÀμŶ Å×½ºÆ® ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Ãʱ⿡´Â ¼¼°è °ø±Þ¸Á°ú Á¦Á¶ ¿î¿µÀÇ È¥¶õÀ¸·Î ÀÎÇØ ICT ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ µÐȵǾú½À´Ï´Ù. ±×·¯³ª »ê¾÷°è°¡ ¿ø°Ý ±Ù¹«¿¡ ÀûÀÀÇÏ°í µðÁöÅÐ ÀüȯÀÌ °¡¼Óȵʿ¡ µû¶ó ICT ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù. ¶ÇÇÑ ¿ø°Ý ±Ù¹«¿Í ¿Â¶óÀΠȰµ¿À» Áö¿øÇϱâ À§ÇØ Åë½Å ÀÎÇÁ¶ó¿Í ÀüÀÚ ±â±â¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ICT ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í ³ô¾ÆÁ³½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ³¯·Î±× Å×½ºÆ® ºÐ¾ß°¡ ÃÖ´ë ±Ô¸ðÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾Æ³¯·Î±× Å×½ºÆ® ºÐ¾ß´Â ICT¿¡¼ ¾Æ³¯·Î±× Å×½ºÆ®´Â Àμâ ȸ·Î ±âÆÇ(PCB)ÀÇ ÀúÇ×±â, Ä¿ÆÐ½ÃÅÍ, ÁõÆø±â µî ¾Æ³¯·Î±× ºÎǰÀÇ ±â´É°ú ¼º´ÉÀ» °ËÁõÇÏ´Â °ÍÀ» Æ÷ÇÔÇϸç, ÇâÈÄ ¼ºÀå °¡´É¼ºÀÌ ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Å×½ºÆ®´Â ¾Æ³¯·Î±× ȸ·Î°¡ ÁöÁ¤µÈ °øÂ÷ ¹× ¼º´É Ç¥ÁØÀ» ÃæÁ·ÇÏ´ÂÁö È®ÀÎÇÕ´Ï´Ù. ƯÈ÷ ¿Àµð¿À, ºñµð¿À, ¼¾¼ ±â¹Ý ½Ã½ºÅÛ°ú °°ÀÌ Á¤È®ÇÑ ¾Æ³¯·Î±× ½ÅÈ£ 󸮰¡ ÇʼöÀûÀÎ ¿ëµµ¿¡¼ ¾Æ³¯·Î±× ÀüÀÚ ¾î¼Àºí¸®ÀÇ Ç°Áú°ú ½Å·Ú¼ºÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼³°è °ËÁõ Å×½ºÆ® ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼³°è °ËÁõ Å×½ºÆ® ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ICT´Â Á¦Ç° °³¹ß Ãʱ⠴ܰ迡¼ ÀüÀÚ ¼³°èÀÇ ±â´É°ú ¼º´ÉÀ» °ËÁõÇϱâ À§ÇØ DVT¿¡ Ȱ¿ëµË´Ï´Ù. ÇÁ·ÎÅäŸÀÔ°ú Ãʱ⠼³°è¿¡ ICT¸¦ Àû¿ëÇÔÀ¸·Î½á ¿£Áö´Ï¾î´Â ÀáÀçÀûÀÎ ¼³°è °áÇÔÀ» ½Äº°ÇÏ°í ¼öÁ¤ÇÏ¿© ÃÖÁ¾ Á¦Ç°ÀÌ ¼º´É »ç¾ç°ú ǰÁú ±âÁØÀ» ÃæÁ·ÇÏ´ÂÁö È®ÀÎÇÒ ¼ö ÀÖÀ¸¸ç, ICT´Â ¹®Á¦¸¦ Á¶±â¿¡ ¹ß°ßÇÏ¿© Á¦Ç° °³¹ß ÇÁ·Î¼¼½º¸¦ °£¼ÒÈÇϰí Á¦Á¶ ÁÖ±â ÈĹݿ¡ ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¼³°è ¼öÁ¤ÀÇ Çʿ伺À» ÁÙ¿© ÃÖÁ¾ Á¦Ç° °³¹ß ÇÁ·Î¼¼½º¸¦ °£¼ÒÈÇÕ´Ï´Ù. ¼öÁ¤ÀÇ Çʿ伺À» ÁÙ¿© ±Ã±ØÀûÀ¸·Î ½ÃÀå Ãâ½Ã ½Ã°£°ú Àüü Á¦Ç°ÀÇ ½Å·Ú¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀüÀÚÁ¦Ç° Á¦Á¶ ºÎ¹®ÀÇ È£Á¶·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹, ´ë¸¸°ú °°Àº ±¹°¡µéÀÌ ÁÖ¿ä ±â¿©ÀÚÀ̸ç, ¸¹Àº ÀüÀÚ Á¦Ç° Á¦Á¶¾÷ü¿Í Á¶¸³ °øÀåÀ» º¸À¯Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ¼÷·ÃµÈ ³ëµ¿·Â, ±â¼ú ¹ßÀü, ÀüÀÚ »ê¾÷À» Áö¿øÇÏ´Â À¯¸®ÇÑ Á¤ºÎ Á¤Ã¥ µîÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°, ÀÚµ¿Â÷¿ë ÀÏ·ºÆ®·Î´Ð½º, Åë½Å ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ICT ¼Ö·ç¼Ç äÅÃÀ» ´õ¿í ÃËÁøÇÏ°í ¼¼°è ICT ½ÃÀå¿¡¼ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼ºÀå°ú ¿ìÀ§¸¦ À¯ÁöÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â źźÇÑ ÀüÀÚÁ¦Ç° Á¦Á¶ »ýŰè¿Í ±â¼ú Çõ½ÅÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ƯÈ÷ ¹Ì±¹°ú ij³ª´Ù¸¦ Áß½ÉÀ¸·Î ÁÖ¿ä ICT ¼Ö·ç¼Ç Á¦°ø¾÷ü¿Í ÀüÀÚÁ¦Ç° ¾÷üµéÀÌ ¸¹ÀÌ ÁøÃâÇØ ÀÖ´Â Áö¿ªÀÔ´Ï´Ù. ¾ö°ÝÇÑ Ç°Áú ±âÁØ, ÷´Ü ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ³ôÀº ¼ö¿ä, ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÁýÁß µîÀÇ ¿äÀÎÀÌ ºÏ¹Ì ICT ½ÃÀåÀÇ ²ÙÁØÇÑ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global In-Circuit Test Market is accounted for $1.32 billion in 2023 and is expected to reach $1.64 billion by 2030 growing at a CAGR of 4.6% during the forecast period. In-Circuit Test is a method used in electronics manufacturing to verify the quality of printed circuit board assemblies (PCBAs). It involves testing components while they are still mounted on the PCB. ICT helps identify faults such as incorrect component values, open circuits, and shorts. It's a fast and efficient way to ensure the integrity of PCBAs before they move to further stages of production, contributing to overall product reliability and quality control.
According to the insightful analysis provided by the Taiwan Printed Circuit Association (TPCA), Japanese and South Korean PCB industries, by leveraging their design prowess in terminal products, have strategically transitioned from low to mid-range products with a market share of 15.31%.
Increasing complexity of electronic devices
As electronic devices become more intricate with densely packed components and advanced functionalities, traditional testing methods may fall short in detecting defects accurately. ICT offers precise testing capabilities that can identify faults within complex circuitry, ensuring the quality and reliability of electronic assemblies. This growing complexity underscores the importance of ICT in meeting the stringent quality standards demanded by consumers and industries, thereby fueling its market expansion.
Limitations in testing complex components
In-Circuit Test (ICT) faces limitations in testing complex components due to factors like limited access points, intricate designs, and the inability to test non-accessible components like integrated circuits. These challenges hinder ICT's ability to detect certain types of defects, such as intermittent faults or defects within complex components. Consequently, ICT may not provide comprehensive testing coverage for highly complex electronic assemblies. This limitation can hamper market growth as manufacturers seek more comprehensive testing solutions.
Miniaturization of electronic components
The rising trend of miniaturization in electronic components fuels the growth of the in-circuit test by necessitating more precise and reliable testing methods. As electronic components become smaller and more densely packed on circuit boards, the risk of defects and faults increases. ICT offers a highly accurate means of detecting these issues, ensuring the quality and reliability of miniaturized electronic assemblies. Consequently, the demand for ICT solutions rises in tandem with the miniaturization trend.
Compatibility issues
Compatibility issues in in-circuit test arise due to the need for ICT systems to interface effectively with a wide range of electronic components and assemblies. Lack of compatibility can lead to inefficiencies, inaccuracies, and increased testing times, hampering productivity and increasing costs for manufacturers. Moreover, evolving industry standards and technologies further compound compatibility challenges, potentially limiting the effectiveness and adoption of ICT solutions, thereby impeding market growth.
Covid-19 Impact
The covid-19 pandemic has had a mixed impact on the in-circuit test market. Initially, disruptions in global supply chains and manufacturing operations led to a slowdown in demand for ICT solutions. However, as industries adapted to remote work and digital transformation accelerated, there was a subsequent increase in demand for ICT technologies. Additionally, the growing emphasis on telecommunication infrastructure and electronic devices to support remote work and online activities further boosted the demand for ICT solutions, albeit with some fluctuations due to ongoing economic uncertainties.
The analog testing segment is expected to be the largest during the forecast period
The analog testing segment is estimated to have a lucrative growth. Analog testing in ICT involves verifying the functionality and performance of analog components such as resistors, capacitors, and amplifiers on a printed circuit board (PCB). This testing ensures that analog circuits meet specified tolerances and performance criteria. It plays a crucial role in ensuring the quality and reliability of analog electronic assemblies, especially in applications where precise analog signal processing is essential, such as audio, video, and sensor-based systems.
The design verification testing segment is expected to have the highest CAGR during the forecast period
The design verification testing segment is anticipated to witness the highest CAGR growth during the forecast period. ICT is utilized in DVT to validate the functionality and performance of electronic designs during the early stages of product development. By subjecting prototypes or initial designs to ICT, engineers can identify and rectify potential design flaws, ensuring that the final product meets performance specifications and quality standards. It helps streamline the product development process by detecting issues early, reducing the need for costly design revisions later in the production cycle, and ultimately improving time-to-market and overall product reliability.
Asia Pacific is projected to hold the largest market share during the forecast period due to its robust electronics manufacturing sector. Countries like China, Japan, South Korea, and Taiwan are key contributors, hosting numerous electronics manufacturers and assembly plants. The region benefits from factors such as skilled labor, technological advancements, and favorable government policies supporting the electronics industry. Additionally, the increasing demand for consumer electronics, automotive electronics, and telecommunications infrastructure further drives the adoption of ICT solutions in the Asia-Pacific region, sustaining its growth and prominence in the global ICT market.
North America is projected to have the highest CAGR over the forecast period, owing to its robust electronics manufacturing ecosystem and technological innovation. The region boasts a significant presence of leading ICT solution providers and electronics companies, particularly in the United States and Canada. Factors such as stringent quality standards, high demand for advanced electronic products, and a focus on research and development contribute to the steady growth of the ICT market in North America.
Key players in the market
Some of the key players profiled in the In-Circuit Test Market include Keysight Technologies, Teradyne, Advantest Corporation, SPEA S.p.A., Test Research Inc. (TRI), Digitaltest GmbH, JTAG Technologies, Seica S.p.A., Hioki E.E. Corporation, ASSET InterTech, Averna, Acculogic Inc. and Konrad GmbH.
In November 2020, Hioki launched the In-Circuit Tester FA1220-02. It is the space-saving design system generating pass/fail judgments for circuit boards that are populated with electronic components. Its slide-in mechanism simplifies installation and removal of test fixtures, reducing man-hours and workload and improving productivity in populated board testing and production environments.
In February 2020, Test Research, Inc. (TRI) launched the TR5001 SII LED Series, a multicore In-Circuit Test (ICT) solution for LED lighting. The TR5001 SII LED Series is an ICT+FCT innovation that can test up to 1080 LED channels for color and brightness simultaneously. It has up to four independent cores for multi-core parallel testing and a quick disconnection interface.