Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ³ó¾÷¿ë ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦ ½ÃÀåÀº 2023³â 17¾ï 5,000¸¸ ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 9.5% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 33¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
³ó¾÷¿ë ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦´Â ±¹È²É¿¡ ÇÔÀ¯µÈ õ¿¬ ÇÇ·¹Æ®¸°¿¡¼ ÃßÃâÇÑ ÇÕ¼º ÈÇÕ¹°ÀÔ´Ï´Ù. ³ó¾÷¿¡¼ ³Î¸® »ç¿ëµÇ¸ç °ïÃæ, Áøµå±â, Áøµå±â µî ´Ù¾çÇÑ ÇØÃæÀ» È¿°úÀûÀ¸·Î ¹æÁ¦ÇÕ´Ï´Ù. ÇÇ·¹½º·ÎÀ̵å´Â ³ªÆ®·ý ä³ÎÀ» Ç¥ÀûÀ¸·Î »ï¾Æ °ïÃæÀÇ ½Å°æ ±â´ÉÀ» ÆÄ±«ÇÏ¿© ¸¶ºñ ¶Ç´Â »ç¸Á¿¡ À̸£°Ô ÇÕ´Ï´Ù. Æ÷À¯·ù¿¡ ´ëÇÑ µ¶¼ºÀÌ ³·°í ȯ°æ¿¡¼ ºü¸£°Ô ºÐÇØµÇ±â ¶§¹®¿¡ ºñÇ¥Àû »ý¹°¿¡ ´ëÇÑ ÀÜ·ù ÇÇÇØ°¡ Àû½À´Ï´Ù. »ìÆ÷ ¹æ¹ýÀº ½ºÇÁ·¹ÀÌ, ºÐÁø, °ú¸³Á¦ µî ´Ù¾çÇϸç, Á¾ÇÕÀûÀÎ ÇØÃæ °ü¸® Àü·«¿¡¼ ÇÇ·¹½º·ÎÀ̵å´Â ´Ù¿ëµµ µµ±¸·Î »ç¿ëµË´Ï´Ù.
FAO(À¯¿£½Ä·®³ó¾÷±â±¸)¿¡ µû¸£¸é 2020³â ¼¼°è Àα¸´Â 2050³â±îÁö 100¾ï ¸í¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ³ó¾÷ ¼ö¿ä´Â 2020³â ´ëºñ 50% ÀÌ»ó Áõ°¡ÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.
ÇØÃæ ¹æÁ¦ ¿ä±¸ »çÇ×
³ó¾÷Àº °ïÃæ, Áøµå±â, Áøµå±â, Áøµå±â µî ´Ù¾çÇÑ ÇØÃæÀÇ ²÷ÀÓ¾ø´Â À§Çù¿¡ Á÷¸éÇϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ÇØÃæÀ» ¹æÁ¦ÇÏÁö ¾ÊÀ¸¸é »ó´çÇÑ ¼öÈ®·® ¼Õ½ÇÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦´Â ´Ù¾çÇÑ ÇØÃæÀ» È¿°úÀûÀÌ°í ±¤¹üÀ§ÇÏ°Ô ¹æÁ¦Çϱ⠶§¹®¿¡ ³óÀÛ¹°À» º¸È£Çϰí ÃÖÀûÀÇ »ý»ê¼ºÀ» º¸ÀåÇϰíÀÚ ÇÏ´Â ³óºÎµé¿¡°Ô ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. µû¶ó¼ ³ó¾÷¿¡¼ È¿°úÀûÀÎ ÇØÃæ ¹æÁ¦ ¼Ö·ç¼Ç¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä°¡ ³ó¾÷¿ë ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦ ½ÃÀåÀÇ ¼ºÀå°ú °ü·Ã¼ºÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
ģȯ°æ
ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦´Â ÀϹÝÀûÀ¸·Î ´Ù¸¥ »ìÃæÁ¦¿¡ ºñÇØ Æ÷À¯·ù¿Í Á¶·ù¿¡ ´ú ÇØ·Ó´Ù°í ¿©°ÜÁöÁö¸¸, ¼ö»ý »ý¹°°ú ²Ü¹ú, ³ªºñ µî À¯ÀÍÇÑ °ïÃæ¿¡ ´ëÇÑ À§ÇèÀº ¿©ÀüÈ÷ Á¸ÀçÇÕ´Ï´Ù. ÇÇ·¹½º·ÎÀ̵å´Â »ìÆ÷ Áß À¯ÃâÀ̳ª Ç¥·ù·Î ÀÎÇØ ¼ö¿ª¿¡ À¯ÀÔµÇ¾î ¼ö»ý ¼½ÄÁö¸¦ ¿À¿°½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¤¹üÀ§ÇÑ È°µ¿Àº ¼öºÐ ¸Å°³ÀÚ ¹× ÇØÃæÀÇ ÃµÀû°ú °°ÀÌ »ýÅÂ°è ±â´É¿¡ Áß¿äÇÑ ºñÇ¥Àû °ïÃæ¿¡ ÇØ¸¦ ³¢Ä¥ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ ½ÃÀå ¼ö¿ä¸¦ ÀúÇØÇϰí ÀÖ½À´Ï´Ù.
À¯±â³ó¹ý µµÀÔ È®´ë
À¯±â³ó¾÷Àº ³ó¾àÀ» Æ÷ÇÔÇÑ ÇÕ¼º ÈÇÐÁ¦Ç°¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÃÖ¼ÒÈÇÏ¸é¼ ÀÛ¹°À» Àç¹èÇϱâ À§ÇØ ÀÚ¿¬ ÅõÀÔ¹°°ú Áö¼Ó°¡´ÉÇÑ °üÇàÀ» »ç¿ëÇÏ´Â µ¥ ÁßÁ¡À» µÓ´Ï´Ù. ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦´Â À¯±â³ó ³óºÎµéÀÌ À¯±â³ó ±âÁØÀ» ÁؼöÇÏ¸é¼ ÇØÃæ ¹ß»ýÀ» È¿°úÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ´Â ¼ö´ÜÀ» Á¦°øÇÕ´Ï´Ù. ±× °á°ú, À¯±â³ó¹ýÀÇ È®´ë´Â ³ó¾÷¿¡¼ ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
³»¼º±ÕÀÇ ¹ß»ý
ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦¸¦ Àå±â°£ ±¤¹üÀ§ÇÏ°Ô »ç¿ëÇϸé ÀúÇ×¼º ÇØÃæÀÌ ¼±ÅÃµÇ¾î ½Ã°£ÀÌ Áö³²¿¡ µû¶ó »ìÃæÁ¦ÀÇ È¿´ÉÀÌ °¨¼ÒÇÕ´Ï´Ù. ÇØÃæ Á¾Àº Ç¥Àû ºÎÀ§ ºÒ°¨Áõ, ´ë»ç ÇØµ¶, Çൿ ÀûÀÀ µî ´Ù¾çÇÑ ¸ÞÄ¿´ÏÁòÀ» ÅëÇØ ÀúÇ×¼ºÀ» °³¹ßÇÕ´Ï´Ù. ±×·¯³ª Ç¥ÀûºÎÀ§ ºÒ°¨ÁõÀº ÇÇ·¹½º·ÎÀ̵尡 Ç¥ÀûÀ¸·Î »ï´Â ³ªÆ®·ý ä³ÎÀÇ º¯À̸¦ ¼ö¹ÝÇÏ¿© »ìÃæÈ¿°ú¿¡ ´ú ¹Î°¨ÇÏ°Ô ¸¸µì´Ï´Ù. Àü¹ÝÀûÀ¸·Î ÀúÇ×¼º °³¹ßÀº ½ÃÀå È®´ë¸¦ ¹æÇØÇÏ´Â Å« ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19´Â ³ó¾÷¿ë ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Ãʱ⿡´Â °ø±Þ¸Á È¥¶õ, ¹°·ù ¹®Á¦, ³ëµ¿·Â ºÎÁ·À¸·Î ÀÎÇØ »ìÃæÁ¦¸¦ Æ÷ÇÔÇÑ ³ó¾÷ ÅõÀÔ¹°ÀÇ »ý»ê°ú À¯Åë¿¡ Â÷ÁúÀ» ºú¾ú½À´Ï´Ù. ¶ÇÇÑ, ÆÒµ¥¹ÍÀº Áö¼Ó°¡´ÉÇÑ ³ó¾÷°ú ½Ä·® ÀÚ±ÞÀÚÁ·¿¡ ´ëÇÑ Ãß¼¼¸¦ °¡¼ÓÈÇÏ¿© Á¾ÇÕÀûÀÎ ÇØÃæ °ü¸® ¹æ¹ý°ú À¯±â³ó¹ýÀ» äÅÃÇÏ´Â ³ó°¡°¡ Áõ°¡Çß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Æç¸ÞÆ®¸° ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»ó
ÆÛ¸ÞÆ®¸° ºÎ¹®ÀÌ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. Æç¸ÞÆ®¸°Àº ÇØÃæ ¹æÁ¦¸¦ À§ÇØ ³ó¾÷ ºÐ¾ß¿¡¼ ³Î¸® »ç¿ëµÇ´Â ÇÕ¼º ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦ÀÔ´Ï´Ù. Æç¸ÞÆ®¸°Àº °ïÃæÀÇ ½Å°æ°è¸¦ ±³¶õ½ÃÄÑ ¸¶ºñ ¹× ÃÖÁ¾ »ç¸Á¿¡ À̸£°Ô ÇÏ´Â ¹æ½ÄÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù. ¶ÇÇÑ, ÆÛ¸ÞÆ®¸°Àº ³ÐÀº ½ºÆåÆ®·³ Ȱ¼º, ºü¸¥ ³ì´Ù¿î È¿°ú ¹× »ó´ëÀûÀ¸·Î ³·Àº Æ÷À¯·ù µ¶¼º°ú °°Àº ¸î °¡Áö ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ±× ÀÜ·ù Ȱ¼ºÀº ÇØÃæ¿¡ ´ëÇÑ Àå±âÀûÀÎ º¸È£¸¦ Á¦°øÇÏ°í ºó¹øÇÑ Àç»ìÆ÷ÀÇ Çʿ伺À» ÁÙÀ̰í ÀÛ¹°¿¡ ´ëÇÑ ÇÇÇØ¸¦ ÃÖ¼ÒÈÇÕ´Ï´Ù.
³ó¾÷ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó
³ó¾÷ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦´Â °ïÃæ, Áøµå±â, Áøµå±â µî ±¤¹üÀ§ÇÑ ÇØÃæÀ¸·ÎºÎÅÍ ÀÛ¹°À» º¸È£ÇÏ°í ³ó¾÷ »ý»ê¼º°ú ½Ä·® ¾Èº¸¸¦ º¸È£ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦´Â ´Ù¾çÇÑ ¿ëµµ·Î ±¤¹üÀ§ÇÏ°Ô ÀÛ¿ëÇϱ⠶§¹®¿¡ Á¾ÇÕÀû ÇØÃæ °ü¸®(IPM) Àü·«¿¡ ÇʼöÀûÀÎ µµ±¸·Î, ³óºÎµéÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇÏ¸é¼ ÇØÃæ ¹ß»ý¿¡ È¿°úÀûÀ¸·Î ´ëóÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ±¤È°ÇÑ ³ó¾÷ ÁöÇü, ´Ù¾çÇÑ ÀÛ¹° »ý»ê, Àα¸ Áõ°¡·Î ÀÎÇØ ÃßÁ¤ ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÌ Áö¿ª¿¡´Â ¿´ëºÎÅÍ ¿Â´ë±îÁö ´Ù¾çÇÑ ±âÈĸ¦ °¡Áø ±¹°¡µéÀÌ Æ÷ÇԵǾî ÀÖ¾î ´Ù¾çÇÑ ÀÛ¹°¿¡ ÀÌ»óÀûÀÎ Á¶°ÇÀ» Á¦°øÇÏ´Â µ¿½Ã¿¡ ÇØÃæÀÇ ¹ø½Ä¿¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦´Â Áøµ÷¹°, ¾Ö¹ú·¹, Áøµå±â, Áøµå±â µî ÇØÃæÀ» ÅðÄ¡Çϱâ À§ÇØ ÀÌ Áö¿ªÀÇ º, ¹Ð, ä¼Ò, °úÀÏ, ¸éÈ µî ´Ù¾çÇÑ ÀÛ¹°¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.
ºÏ¹Ì Áö¿ªÀº ¼±ÁøÀûÀÎ ³ó¾÷ °üÇà°ú ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¸¦ Ư¡À¸·Î Çϸç, ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ³ôÀº ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â ³ó¾÷ »ý»êÀÇ ÁÖ¿ä ±¹°¡·Î °î¹°, Á¾ÀÚ, °úÀÏ, ä¼Ò, Ư¼ö ÀÛ¹° µî ´Ù¾çÇÑ ÀÛ¹°À» Àç¹èÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÇ·¹½º·ÎÀÌµå »ìÃæÁ¦´Â ºÏ¹Ì Àü¿ª¿¡¼ Áøµ÷¹°, ¾û°ÏÄû, ³ë¸°Àç, ¾Ö¹ú·¹, ¾Ö¹ú·¹¿Í °°Àº ÇØÃæÀ» ¹æÁ¦Çϱâ À§ÇØ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ÀÛ¹°¿¡ Å« ÇÇÇØ¸¦ ÀÔÈ÷°í ¼öÈ®·®À» °¨¼Ò½Ãų ¼ö ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Agricultural Pyrethroid Insecticides Market is accounted for $1.75 billion in 2023 and is expected to reach $3.30 billion by 2030 growing at a CAGR of 9.5% during the forecast period. Agricultural pyrethroid insecticides are synthetic compounds derived from natural pyrethrins found in chrysanthemum flowers. Widely used in agriculture, they effectively control a broad spectrum of pests, including insects, mites, and ticks. Pyrethroids disrupt nerve function in insects by targeting sodium channels, leading to paralysis and death. They are favoured for their low mammalian toxicity and rapid degradation in the environment, reducing residual harm to non-target organisms. Application methods vary, including sprays, dusts, and granules, making pyrethroids versatile tools in integrated pest management strategies.
According to The Food and Agriculture Organization (FAO) in 2020, the global population is likely to reach 10 billion by 2050 and would result in a growth of over 50% in agricultural demand as compared with 2020.
Pest control needs
Agriculture faces constant threats from a wide array of pests, including insects, mites, and ticks, which can cause substantial yield losses if left uncontrolled. Pyrethroid insecticides offer effective and broad-spectrum control against a variety of pests, making them indispensable tools for farmers seeking to safeguard their crops and ensure optimal productivity. As such, the continuous demand for effective pest control solutions in agriculture sustains the growth and relevance of the agricultural pyrethroid insecticide market.
Environmental concerns
Pyrethroids are generally considered less harmful to mammals and birds compared to some other pesticide classes, but they can still pose risks to aquatic life and beneficial insects such as bees and butterflies. Pyrethroids can enter water bodies through runoff or drift during application, leading to contamination of aquatic habitats. Furthermore, their broad-spectrum activity may also harm non-target insects crucial for ecosystem functioning, including pollinators and natural predators of pests. These factors hamper market demand.
Growing adoption of organic farming practices
Organic farming emphasizes the use of natural inputs and sustainable practices to cultivate crops while minimizing reliance on synthetic chemicals, including pesticides. Pyrethroid insecticides provide organic farmers with an effective tool for managing pest outbreaks while maintaining compliance with organic standards. As a result, the growth of organic farming practices contributes to the sustained demand for pyrethroid insecticides in agriculture.
Resistance development
Prolonged and extensive use of pyrethroids selects for resistant pest populations, reducing the efficacy of these insecticides over time. Pest species can develop resistance through various mechanisms, including target site insensitivity, metabolic detoxification, and behavioral adaptations. However, target site insensitivity involves mutations in the sodium channels targeted by pyrethroids, rendering them less susceptible to the insecticidal effects. Overall, resistance development is a significant factor hindering market expansion.
Covid-19 Impact
The COVID-19 pandemic had a significant impact on the agricultural pyrethroid insecticide market. Initially, disruptions in supply chains, logistical challenges, and labor shortages hampered the production and distribution of agricultural inputs, including insecticides. Moreover, the pandemic accelerated trends towards sustainable agriculture and food self-sufficiency, with more farmers adopting integrated pest management practices and organic farming methods.
The permethrin segment is expected to be the largest during the forecast period
The permethrin segment is estimated to hold the largest share. Permethrin is a synthetic pyrethroid insecticide widely used in the agricultural sector for pest control. Permethrin acts by disrupting the nervous system of insects, leading to paralysis and eventual death. Additionally, permethrin offers several advantages, including its broad-spectrum activity, fast knockdown effect, and relatively low mammalian toxicity. Its residual activity provides extended protection against pests, reducing the need for frequent reapplications and minimizing crop damage.
The agriculture segment is expected to have the highest CAGR during the forecast period
The agriculture segment is anticipated to have lucrative growth during the forecast period. Pyrethroid insecticides play a crucial role in protecting crops from a wide range of damaging pests, including insects, mites, and ticks, thereby safeguarding agricultural productivity and food security. The versatility and broad-spectrum activity of pyrethroids make them indispensable tools for integrated pest management (IPM) strategies, enabling farmers to combat pest outbreaks efficiently while minimizing environmental impact.
Asia Pacific commanded the largest market share during the extrapolated period, due to its vast agricultural landscape, diverse crop production, and growing population. This region encompasses countries with varying climates, from tropical to temperate, providing ideal conditions for a wide range of crops but also creating favourable environments for pest proliferation. Moreover, pyrethroid insecticides are extensively used across various crop types in the region, including rice, wheat, vegetables, fruits, and cotton, to combat pests such as aphids, caterpillars, and mites.
North America is expected to witness profitable growth over the projection period, characterized by its advanced agricultural practices and stringent regulatory frameworks. The United States and Canada are major players in agricultural production, cultivating a wide range of crops, including grains, oilseeds, fruits, vegetables, and specialty crops. Furthermore, pyrethroid insecticides are widely used across North America to control pests such as aphids, thrips, beetles, and caterpillars, which can cause substantial damage to crops and reduce yields.
Key players in the market
Some of the key players in the Agricultural Pyrethroid Insecticides Market include Adama Agricultural Solutions, Syngenta Ag., Basf Corporation, Nufarm, Fmc Corporation, Bayer Cropscience Ag., United Phosphorus Limited, Sumitomo Chemical Co. Ltd., Arysta Lifescience India Limited, Sinoharvest Corporation, DuPont and Amvac Chemicals.
In January 2024, BASF announced a new collaboration with Envision Energy, a leading green technology provider of comprehensive net zero solutions. The collaboration aims to further develop the conversion of green hydrogen and CO2 into e-methanol through an advanced, dynamic process design.
In July 2023, Sumitomo Chemical Co., Ltd and Ginkgo Bioworks announced a new program to develop functional chemicals with synthetic biology and expand upon the companies' existing bio manufacturing partnership.
In May 2022, Sumitomo Chemical Co., Ltd. and OOYOO Ltd. announced that their joint project to develop a new system for separating and capturing CO2 from factory exhaust gas using CO2 separation membranes has been selected by Japan's New Energy and Industrial Technology Development Organization (NEDO).
In March 2022, AMVAC(R) and BASF announced a collaboration to develop Rhizo-Flo(R) granular soybean inoculant as an exciting addition to the expanding SIMPAS-applied Solutions(TM) portfolio.