Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ³×Æ®¿öÅ© ºÐ¼® ½ÃÀåÀº 2023³â 29¾ï ´Þ·¯ ±Ô¸ð¿´°í, ¿¹Ãø ±â°£ µ¿¾È 22.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 121¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
³×Æ®¿öÅ© ºÐ¼®Àº ÄÄÇ»ÅÍ ³×Æ®¿öÅ©ÀÇ µ¥ÀÌÅÍ Æ®·¡ÇÈÀ» Á¶»çÇÏ°í °ËÅäÇÏ¿© ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» ÃßÃâÇÏ´Â °ÍÀÔ´Ï´Ù. ´Ù¾çÇÑ µµ±¸¿Í ±â¼úÀ» »ç¿ëÇÏ¿© ³×Æ®¿öÅ©ÀÇ ¼º´ÉÀ» Æò°¡Çϰí, ÀáÀçÀûÀÎ º´¸ñÇö»óÀ» ÆÄ¾ÇÇϸç, ½Ã½ºÅÛ Àå¾Ö¸¦ ¿¹ÃøÇϰí, º¸¾È Á¶Ä¡¸¦ °ÈÇÕ´Ï´Ù. ÀÌ ¾÷¹«´Â µ¥ÀÌÅÍ ºÐ¼®, ¸Ó½Å·¯´× ¾Ë°í¸®Áò, AI¸¦ Ȱ¿ëÇÏ¿© ³×Æ®¿öÅ© µ¥ÀÌÅÍ ÆÐÅÏÀ» ¸ð´ÏÅ͸µ, ÇØ¼®, ½Ã°¢ÈÇÕ´Ï´Ù. ³×Æ®¿öÅ© ºÐ¼®Àº Çö´ë ºñÁî´Ï½º ¿î¿µ¿¡¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, Á¶Á÷ÀÌ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸®°í, ³×Æ®¿öÅ© °ü¸®¸¦ °£¼ÒÈÇϸç, ¿ªµ¿ÀûÀÎ ±â¼ú ȯ°æ¿¡ ´Éµ¿ÀûÀ¸·Î ÀûÀÀÇÏ¿© Áö¼ÓÀûÀÎ È¿À²¼º°ú ź·Â¼ºÀ» È®º¸ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.
2021³â ¼ÒÇÁÆ®¿þ¾î °³¹ß ¹× ºÐ¼®¿¡ °üÇÑ ¼³¹®Á¶»ç¿¡ µû¸£¸é, ÀÀ´äÀÚÀÇ 3ºÐÀÇ 1 ÀÌ»ó(39%)ÀÌ µ¥ÀÌÅÍ ºÐ¼® µµ±¸ ¹× ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã·È´Ù°í ´äÇß½À´Ï´Ù. ¶ÇÇÑ ÀÀ´äÀÚÀÇ 41%´Â ³×Æ®¿öÅ© ¾×¼¼½º ¹× µ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÇÑ °í°´ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù°í ´äÇß½À´Ï´Ù.
¸Ó½Å·¯´×(ML)°ú ÀΰøÁö´É(AI) µµÀÔ È®´ë
Áö´ÉÇü ³×Æ®¿öÅ© °ü¸®¸¦ À§ÇÑ ¸Ó½Å·¯´×(ML)°ú ÀΰøÁö´É(AI)ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ¸é¼ ½ÃÀå¿¡ º¯È¸¦ ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ³×Æ®¿öÅ© ¿î¿µÀÇ È¿À²¼ºÀ» ³ôÀÌ°í »çÀü ¿¹¹æÀû ¹®Á¦ ÇØ°á, ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤, ÀûÀÀÇü ³×Æ®¿öÅ© ÃÖÀûȸ¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±â¾÷µéÀÌ º¸´Ù ½º¸¶Æ®Çϰí ÀÚÀ²ÀûÀÎ ³×Æ®¿öÅ© ¼Ö·ç¼ÇÀ» Ãß±¸ÇÔ¿¡ µû¶ó ³×Æ®¿öÅ© ºÐ¼®¿¡ ML°ú AI¸¦ ÅëÇÕÇÏ¸é ³×Æ®¿öÅ© ¼º´ÉÀ» °£¼ÒÈÇϰí, º¸¾È Á¶Ä¡¸¦ °ÈÇϸç, ¿î¿µ ¹Îø¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ³×Æ®¿öÅ© Çൿ¿¡ ´ëÇÑ Å¹¿ùÇÑ ÅëÂû·ÂÀ» Á¦°øÇÏ´Â Çõ½ÅÀû ±â´ÉÀÌ Çõ½ÅÀûÀÎ ±â´ÉÀ» À°¼ºÇÏ°í ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á Áõ°¡
µ¥ÀÌÅÍ ¼öÁý, ÀúÀå ¹× »ç¿ë¿¡ ´ëÇÑ ±ÔÁ¦ °È·Î ÀÎÇØ Á¾ÇÕÀûÀÎ ºÐ¼®¿¡ ÇʼöÀûÀÎ »ó¼¼ÇÑ ³×Æ®¿öÅ© µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¢±ÙÀÌ Á¦Çѵǰí ÀÖ½À´Ï´Ù. Á¶Á÷Àº °·ÂÇÑ ºÐ¼®¿¡ ÇÊ¿äÇÑ ¹Î°¨ÇÑ »ç¿ëÀÚ Á¤º¸¿¡ ´ëÇÑ Á¢±Ù¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç, ÀÌ´Â ³×Æ®¿öÅ© Æò°¡ÀÇ Á¤È®¼º°ú ±íÀÌ¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ¶óÀ̹ö½Ã Á¦¾àÀº ÀáÀçÀûÀ¸·Î ºÐ¼® ¼Ö·ç¼ÇÀÇ Çõ½ÅÀ» Á¦ÇÑÇϰí, °í±Þ ºÐ¼®ÀÇ ¹üÀ§¸¦ Á¦ÇÑÇϸç, »ç¿ëÀÚ ÇÁ¶óÀ̹ö½Ã º¸È£¿Í °¡Ä¡ ÀÖ´Â ÅëÂû·Â ÃßÃâ »çÀÌÀÇ ¹Ì¹¦ÇÑ ±ÕÇüÀ» ¿ä±¸Çϱ⠶§¹®¿¡ ³×Æ®¿öÅ© ºÐ¼® ½ÃÀåÀÇ ¼ºÀå ÀáÀç·ÂÀ» ¿ÏÀüÈ÷ ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
»ç¹°ÀÎÅͳÝ(IoT) ºÐ¼® ¼Ö·ç¼ÇÀÇ »ç¹°ÀÎÅͳÝ(IoT) °È
IoTÀÇ È®»êÀ¸·Î »óÈ£ ¿¬°áµÈ ±â±â¿¡¼ »ý¼ºµÇ´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅÍ´Â È¿°úÀûÀÎ µ¥ÀÌÅÍ Ã³¸® ¹× ÇØ¼®À» À§ÇÑ °í±Þ ºÐ¼®ÀÌ ÇÊ¿äÇϸç, IoT ȯ°æ¿¡ ¸Â°Ô Á¶Á¤µÈ ³×Æ®¿öÅ© ºÐ¼® ¼Ö·ç¼ÇÀº ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ ±â±â µ¿ÀÛ, ³×Æ®¿öÅ© ¼º´É, º¸¾È À§Çù¿¡ ´ëÇÑ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ÀåÄ¡ µ¿ÀÛ, ³×Æ®¿öÅ© ¼º´É, º¸¾È À§Çù¿¡ ´ëÇÑ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã³ÊÁö È¿°ú·Î ÀÎÇØ IoT¿¡¼ »ý¼ºµÇ´Â µ¥ÀÌÅÍ ½ºÆ®¸²À» È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö ÀÖ´Â Àü¹® ºÐ¼® µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ Ç°Áú ºÎÁ·
ºÎÁ¤È®Çϰųª ºÒ¿ÏÀüÇϰųª ¿À·¡µÈ µ¥ÀÌÅÍ´Â ³×Æ®¿öÅ© ºÐ¼®ÀÇ ½Å·Ú¼º°ú À¯È¿¼ºÀ» ¶³¾î¶ß¸³´Ï´Ù. µ¥ÀÌÅÍ Ç°ÁúÀÌ ³·À¸¸é ºÐ¼® µµ±¸¿¡¼ ¾òÀ» ¼ö ÀÖ´Â ÅëÂû·ÂÀÇ Á¤È®¼ºÀÌ ¶³¾îÁö°í, À߸øµÈ °á·Ð°ú ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àå¾Ö´Â ³×Æ®¿öÅ© ÃÖÀûÈ, ÀÌ»ó ¡ÈÄ Å½Áö ¹× º¸¾È Á¶Ä¡ÀÇ È¿°ú¸¦ ÀúÇØÇÕ´Ï´Ù. ºÒÃæºÐÇÑ µ¥ÀÌÅÍ Ç°ÁúÀº °·ÂÇÑ ¿¹Ãø ¸ðµ¨ °³¹ßÀ» ¹æÇØÇϰí, ³×Æ®¿öÅ© ¹®Á¦¸¦ Á¤È®ÇÏ°Ô ¿¹ÃøÇÏ´Â ´É·ÂÀ» ¹æÇØÇÕ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
Äڷγª19´Â ³×Æ®¿öÅ© ºÐ¼® ½ÃÀåÀ» ÀçÆíÇϰí, ¿ø°Ý ±Ù¹« ȯ°æ°ú µðÁöÅÐ ¾÷¹«·ÎÀÇ ±Þ¼ÓÇÑ ÀüȯÀ» °¿äÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ø°Ý ±Ù¹«ÀÇ ±ÞÁõÀº Æ®·¡ÇÈ Áõ°¡¸¦ °ü¸®ÇÏ°í µ¥ÀÌÅÍ º¸¾ÈÀ» º¸ÀåÇÏ¸ç ¼º´ÉÀ» ÃÖÀûÈÇϱâ À§ÇÑ °·ÂÇÑ ³×Æ®¿öÅ© ÀÎÇÁ¶ó¿Í ºÐ¼® µµ±¸¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½ÃÄ×½À´Ï´Ù. ±â¾÷µéÀº Ŭ¶ó¿ìµå ±â¹Ý ºÐ¼® ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» °¡¼ÓÈÇÏ°í ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú À§Çù ŽÁö¿¡ ÁßÁ¡À» µÎ¾ú½À´Ï´Ù. ¿ª°æ¿¡µµ ºÒ±¸Çϰí, ÀÌ ½Ã±â´Â ±â¼ú Çõ½Å¿¡ ¹ÚÂ÷¸¦ °¡ÇÏ¿© ³×Æ®¿öÅ© ºÐ¼® ½ÃÀåÀÌ µðÁöÅÐ Áß½ÉÀÇ ¼¼°è¿¡¼ º¯ÈÇÏ´Â ºñÁî´Ï½º ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇØ ¿ªµ¿ÀûÀ¸·Î ÁøÈÇÏ´Â °è±â°¡ µÇ¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Ŭ¶ó¿ìµå ¼ºñ½ºÀÇ È®»êÀ¸·Î Ŭ¶ó¿ìµå ½Ã½ºÅÛ ³» ³×Æ®¿öÅ© ¼º´ÉÀ» ¸ð´ÏÅ͸µ, °ü¸® ¹× ÃÖÀûÈÇϱâ À§ÇØ °íµµÀÇ ºÐ¼®ÀÌ ÇÊ¿äÇØÁö¸é¼ Ŭ¶ó¿ìµå ºÐ¾ß´Â À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ±â¾÷µéÀº ÇÏÀ̺긮µå Ŭ¶ó¿ìµå¿Í ¸ÖƼ Ŭ¶ó¿ìµå ±¸¼ºÀ» ÀÚÁÖ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ³×Æ®¿öÅ© ºÐ¼®Àº ´Ù¾çÇÑ Å¬¶ó¿ìµå Ç÷§Æû¿¡¼ ¾ÈÁ¤ÀûÀÎ ¼º´É°ú ¿¬°á¼ºÀ» Áö¿øÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ÀÎÇÁ¶ó´Â ´Ù¾çÇÑ ¿ä¼Ò, ¼ºñ½º ¹× »óÈ£ ÀÛ¿ëÀ¸·Î ÀÎÇØ º¹ÀâÇØÁú ¼ö ÀÖÀ¸¸ç, À̴ Ŭ¶ó¿ìµå ³×Æ®¿öÅ© ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Åë½Å »ç¾÷ÀÚ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Åë½Å»ç¾÷ÀÚ´Â ³×Æ®¿öÅ© ÀåÄ¡, ¼ºñ½º »óÈ£ ÀÛ¿ë ¹× °¡ÀÔÀÚ È°µ¿À¸·Î »ý¼ºµÇ´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ °ü¸®Çϰí ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© ºÐ¼® ¼Ö·ç¼ÇÀº »ý¼ºµÈ µ¥ÀÌÅÍ¿¡¼ ÀλçÀÌÆ®¸¦ µµÃâÇÏ¿© °í°´ ¼ºñ½º ¹× °í°´ °æÇèÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¶ÇÇÑ, 5G ³×Æ®¿öÅ© ±¸ÃàÀº Áõ°¡ÇÏ´Â µ¥ÀÌÅÍ ¾ç, µ¿Àû ³×Æ®¿öÅ© ¿¬°á, ÀúÁö¿¬¿¡ ´ëÇÑ ¼ö¿ä¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â °í±Þ ³×Æ®¿öÅ© ºÐ¼® ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. Åë½Å»ç Àü¹Ý¿¡ °ÉÃÄ ¿î¿µ È¿À²¼ºÀ» ³ôÀ̱â À§ÇÑ ³×Æ®¿öÅ© ºÐ¼® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÀÌ Áö¿ªÀÇ ±â¼ú ¹ßÀü°ú µðÁöÅÐ ÀüȯÀÇ ÁøÀüÀÌ ½ÃÀå ¼ö¿ä¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµÇ±â ¶§¹®ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ÁַΠ÷´Ü ±â¼ú°ú µðÁöÅÐ ÀÌ´Ï¼ÅÆ¼ºê¸¦ Áö¿øÇϱâ À§ÇØ ³×Æ®¿öÅ©¸¦ ÃÖÀûÈÇÕ´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì Àü¿ªÀÇ Á¶Á÷µéÀº µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ³×Æ®¿öÅ© ºÐ¼® ¼Ö·ç¼ÇÀ» ÅëÇØ ³×Æ®¿öÅ© ¼º´É, º¸¾È ¹× »ç¿ëÀÚ Çൿ¿¡ ´ëÇÑ ÅëÂû·ÂÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ÷´Ü ±â¼ú ¹× ÀåÄ¡ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µ¥ÀÌÅÍ »ç¿ë·®ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ À¯ÀÔÀ» °ü¸®Çϰí È¿À²ÀûÀÎ ³×Æ®¿öÅ© ¼º´ÉÀ» º¸ÀåÇÏ´Â ³×Æ®¿öÅ© ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ´Ù¾çÇÑ °æÁ¦¿Í ±â¼úÀÌ º¹ÀâÇÑ ³×Æ®¿öÅ© ȯ°æÀ» Çü¼ºÇϰí ÀÖÁö¸¸, ³×Æ®¿öÅ© ºÐ¼® ¼Ö·ç¼ÇÀ» ÅëÇØ ½±°Ô ÃÖÀûÈ ¹× °ü¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌó·³ ¾÷°è Àü¹Ý¿¡ °ÉÃÄ ¾÷¹« È¿À²À» ´Þ¼ºÇϱâ À§ÇÑ ÀÌÁ¡ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È ÀÌ ½ÃÀåÀº ¾öû³ ¼ö¿ä°¡ ¹ß»ýÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global Network Analytics Market is accounted for $2.9 billion in 2023 and is expected to reach $12.1 billion by 2030 growing at a CAGR of 22.5% during the forecast period. Network Analytics involves the study and examination of data traffic within computer networks to extract actionable insights. By employing various tools and techniques, it assesses network performance, identifies potential bottlenecks, predicts system failures, and enhances security measures. This practice utilizes data analysis, machine learning algorithms, and AI to monitor, interpret, and visualize network data patterns. Network analytics plays a pivotal role in modern business operations, empowering organizations to make informed decisions, streamline network management, and adapt proactively to dynamic technological landscapes for sustained efficiency and resilience.
According to the 2021 Software Development and Analytics Survey, more than a third of respondents (39%) said they have increased their investments in data analytics tools and technologies. In addition, 41% of respondents admitted the growing customer demand for network access and data analysis.
Growing adoption of machine learning (ML) and artificial intelligence (AI)
The increasing adoption of Machine Learning (ML) and Artificial Intelligence (AI) for intelligent network management is revolutionizing the market. These technologies enhance the efficiency of network operations, allowing for proactive problem-solving, rapid decision-making, and adaptive network optimization. As businesses seek smarter and more autonomous network solutions, the integration of ML and AI in network analytics is expected to drive market growth, fostering innovative capabilities that streamline network performance, bolster security measures, and offer unparalleled insights into network behaviours for improved operational agility.
Growing data privacy concerns
Heightened scrutiny over data collection, storage, and usage regulations limits access to granular network data crucial for comprehensive analytics. Organizations face hurdles in accessing sensitive user information necessary for robust analytics, impacting the accuracy and depth of network assessments. These privacy constraints potentially restrict innovation in analytics solutions, limit the scope of advanced analytics, and demand a delicate balance between preserving user privacy and extracting valuable insights, thereby impeding the full potential of network analytics market growth.
Enhancements of internet of things (IoT) in analytics solutions
IoT proliferation generates vast amounts of data from interconnected devices, necessitating advanced analytics for effective data processing and interpretation. Network Analytics solutions tailored for IoT environments enable real-time data analysis, offering insights into device behavior, network performance, and security threats. This synergy drives demand for specialized analytics tools capable of handling IoT-generated data streams efficiently.
Lack of data quality
Inaccurate, incomplete, or outdated data compromises the reliability and efficacy of network analysis. Poor data quality undermines the precision of insights derived from analytics tools, leading to erroneous conclusions and decision-making. This impediment hampers the effectiveness of network optimization, anomaly detection, and security measures. Insufficient data quality obstructs the development of robust predictive models, hindering the ability to foresee network issues accurately.
Covid-19 Impact
The COVID-19 pandemic reshaped the network analytics market, compelling a rapid shift towards remote work setups and digital operations. This surge in remote working led to heightened demand for robust network infrastructures and analytics tools to manage increased traffic, ensure data security, and optimize performance. Enterprises accelerated their adoption of cloud-based analytics solutions, emphasizing real-time monitoring and threat detection. Despite adversities, this period spurred innovation and propelled the network analytics market towards dynamic evolution to meet changing business needs in a digitally driven world.
The cloud segment is expected to be the largest during the forecast period
The cloud segment is estimated to have a lucrative growth, as advanced analytics are now required to monitor, manage, and optimize network performance inside cloud systems because of the wide adoption of cloud services. Organizations frequently use hybrid or multi-cloud configurations. Cloud network analytics support dependable performance and connectivity across various cloud platforms. Cloud infrastructures can be complicated due to their many different elements, services, and interactions which boost the growth of the market.
The telecom providers segment is expected to have the highest CAGR during the forecast period
The telecom providers segment is anticipated to witness the highest CAGR growth during the forecast period, telecom providers manage huge amounts of data created by network devices, service interactions, and subscriber activities. Network analytics solutions allow organizations to extract insights from the generated data to optimize customer services and experience. In addition, deploying 5G networks necessitates advanced network analytics solutions to handle the increased volume of data, dynamic network connectivity, and low latency demand. The growing demand for network analytics solutions to enhance operations efficiency across telecom providers is expected to drive the market growth.
North America is projected to hold the largest market share during the forecast period owing to the growing technological advancements and digital transformation across the region are expected to drive the demand for the market. These solutions majorly optimize networks to support advanced technologies and digital initiatives. Furthermore, organizations across North America focus on data-driven decisions, where network analytics solutions allow organizations to offer insights into network performance, security, and user behavior.
Asia Pacific is projected to have the highest CAGR over the forecast period, owing to the rising adoption of advanced technologies and devices. The growing data usage has anticipated the need for network analytics as they help to manage the data influx and assure efficient network performance. Further, diverse economies and technologies form complex network environments, which can be easily optimized and managed by network analytics solutions. These growing benefits toward achieving operational efficiency across industries are expected to generate huge demand for the market over the forecast period.
Key players in the market
Some of the key players in the Network Analytics Market include Accenture PLC, Alcatel-Lucent Enterprise SA , Broadcom, Inc., Ciena Corporation, Cisco Systems, Inc., Extreme Networks., Fortinet, Inc., Hewlett Packard Enterprise Development LP, Huawei Technologies Co., Ltd., IBM Corporation, International Business Machines Corporation, Juniper Networks, Inc., Nivid Technologies., Nokia Corporation, Sandvine Corporation, SAS Institute Inc., Telefonaktiebolaget LM Ericsson, Tibco Software Inc. and Trend Micro Incorporated
In January 2024, Accenture has completed its acquisition of management consultancy Vocatus, which uses behavioral economics modeling to develop pricing strategies and sales concepts for business-to-business and business-to-consumer models.
In December 2023, Cisco to acquire Isovalent to Define the Future of Multicloud Networking and Security, the acquisition of Isovalent will build on Cisco's commitment to its Cisco Security Cloud vision, an AI-driven, cloud delivered, integrated security platform for organizations of any shape and size.