Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ÇÁ·ÎÅ׿À¹Í½º ½ÃÀåÀº 2023³â 522¾ï 8,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È CAGR 12.0%·Î ¼ºÀåÇÏ¿© 2030³â 1,155¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÇÁ·ÎÅ׿À¹Í½º·Î ¾Ë·ÁÁø »ý¸í°øÇÐÀÇ ÇÑ ºÐ¾ß´Â ºÐÀÚ»ý¹°ÇÐ, »ýÈÇÐ, À¯ÀüÇÐ ±â¼úÀ» ƯÁ¤ ¼¼Æ÷, Á¶Á÷, »ý¹°ÀÌ ¸¸µé¾î³»´Â ´Ü¹éÁúÀÇ ±¸Á¶, ±â´É, »óÈ£ÀÛ¿ëÀ» °Ë»çÇϰí, Á¤º¸¸¦ µ¥ÀÌÅͺ£À̽º¿¡ Á¤¸®Çϰí, µ¥ÀÌÅ͸¦ ÀÀ¿ëÇÏ´Â µ¥ Àû¿ëÇÏ´Â °ÍÀ¸·Î Á¤Àǵ˴ϴÙ. ÇÁ·ÎÅ׿À¹Í½º´Â ±¸Á¶Àû ÇÁ·ÎÅ׿À¹Í½º, ±â´ÉÀû ÇÁ·ÎÅ׿À¹Í½º, ¹ßÇö ÇÁ·ÎÅ׿À¹Í½º µî ´Ù¾çÇÑ ÇÏÀ§ ¹üÁÖ·Î ºÐ·ùÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÁ·ÎÅ׿À¹Í½º´Â Á¡Á¡ ´õ ¸¹Àº ´Ü¹éÁúÀ» ½Äº°ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ´Â ¼¼Æ÷³ª »ý¹°ÀÌ ¹Þ´Â ½Ã°£À̳ª ¸íÈ®ÇÑ ¿ä±¸ ¶Ç´Â ½ºÆ®·¹½º¿¡ µû¶ó ´Þ¶óÁý´Ï´Ù.
Globocan¿¡ µû¸£¸é 2020³â 12¿ù, Àü ¼¼°èÀûÀ¸·Î 1,930¸¸ ¸íÀÇ ¾Ï ȯÀÚ°¡ »õ·Î ¹ß»ýÇß°í, 1,000¸¸ ¸íÀÇ ¾Ï °ü·Ã »ç¸ÁÀÚ°¡ ¹ß»ýÇß´Ù°í ÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î CVDµµ ¼¼°è ÁÖ¿ä »ç¸Á ¿øÀÎ Áß ÇϳªÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, WHO(2021)¿¡ µû¸£¸é, ¿¬°£ 4,100¸¸ ¸íÀÇ È¯ÀÚ°¡ ÀÌ ÁúȯÀ¸·Î ÀÎÇØ »ç¸ÁÇÕ´Ï´Ù.
ÀλêÈ ÇÁ·ÎÅ׿À¹Í½º/»êÈ±Ý¼Ó ³ª³ëÀÔÀÚ, ´Ü¹éÁú ºÐ¸®¸¦ À§ÇÑ ³ª³ë±¸Á¶ Ç¥¸é, ¹ÙÀÌ¿À¸¶Ä¿/´Ü¹éÁú ºÐ¼® °ËÃâÀ» À§ÇÑ ¾î·¹ÀÌ ±â¼ú µî ¸¹Àº ÇÁ·ÎÅ׿À¹Í½º ÀÀ¿ë ºÐ¾ß°¡ ³ª³ë±â¼ú°ú °ü·ÃµÇ¾î ÀÖ½À´Ï´Ù. ³ª³ëÇÁ·ÎÅ׿À¹Í½º´Â ´Ü¹éÁúüÇÐ ±â¼úÀ» ³ª³ë±â¼ú¿¡ ÀÀ¿ëÇÑ °á°ú ¿¬±¸ ºÐ¾ß·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ³ª³ë ´Ù°ø¼º ±¸Á¶, ±â´ÉÈ ³ª³ëÀÔÀÚ, ¾çÀÚÁ¡, °íºÐÀÚ ³ª³ë±¸Á¶ µî ¼ö¸¹Àº ³ª³ë±â¼ú ÀÀ¿ëÀ» ÅëÇØ ÀÌ ±â¼úÀº ´Ü¹éÁúÇп¡ Çõ¸íÀ» ÀÏÀ¸Å°±â À§ÇÑ º¸Á¶ÀûÀÎ ¿ä¼Ò·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌó·³ »ý¸íÀ» À§ÇùÇÏ´Â Áúº´ÀÇ À¯Çà°ú ÇÔ²² °³ÀÎ ¸ÂÃãÇü Ä¡·áÀÇ Çʿ伺Àº ¿¹Ãø ±â°£ µ¿¾È ¾÷°è¿¡ ÀÌÀÍÀ» °¡Á®´Ù ÁÙ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
°ø±â¾÷Àº °ø°³µÈ ±¸Á¶ µ¥ÀÌÅÍ¿Í ½ÃÇàÂø¿À¸¦ ÅëÇØ Ç¥Àû ´Ü¹éÁúÀ» ÀÚ±ØÇϰųª ¾ïÁ¦ÇÏ´Â ¹°ÁúÀ» ¾ò½À´Ï´Ù. ´Ü¹éÁú ±¸Á¶ ¿¬±¸¿¡´Â °íó¸® ÀåºñÀÇ »ç¿ëÀÌ ÇÊ¿äÇϸç, X¼± °áÁ¤±¸Á¶ºÐ¼®À» ÀÌ¿ëÇÑ ÇÁ·ÎÅ׿À¹Í½º¿¡¼´Â À¯ÀüÀÚ Å¬·Î´×, ´Ü¹éÁú ¹ßÇö, ´Ü¹éÁú Á¤Á¦, ´Ü¹éÁú °áÁ¤È°¡ ºó¹øÇÏ°Ô ÀÌ·ç¾îÁý´Ï´Ù. ÀÌ ¸ðµç °úÁ¤¿¡´Â ¸¹Àº ½ÇÇè ½Ã°£ÀÌ ÇÊ¿äÇϸç, ÀÌ´Â °¢ »ùÇÃÀÇ °Ë»ç °¡°ÝÀ» »ó½Â½ÃŰ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù. ¶ÇÇÑ, °³¹ßµµ»ó±¹¿¡¼´Â Àåºñ¿Í ¼Ò¸ðǰ ºñ¿ëÀÌ ºñ½Î±â ¶§¹®¿¡ ÇÁ·ÎÅ׿À¹Í½º ºÐ¾ß ÁøÀÔ¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº ½ÃÀå È®´ë¿¡ °É¸²µ¹ÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
°¨µµ¿Í ÇØ»óµµÀÇ ´ëÆøÀûÀÎ Çâ»ó, ³ôÀº 󸮷® ¹× ¸ÖƼÇ÷º½º ºÐ¼®, µ¥ÀÌÅÍ ÅëÇÕ ÃËÁø, »ùÇà Á¶Á¦ ¹× ºÐȹ ±â¼ú °³¼±, Áú·® ºÐ¼® ±â¹Ý À̹Ì¡, °í±Þ µ¥ÀÌÅÍ ºÐ¼® ¹× Á¤º¸ÇÐ µµ±¸ Á¦°ø µîÀÇ ±â¼ú ¹ßÀüÀº ÇÁ·ÎÅ׿À¹Í½º ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. Çõ¸íÀ» °¡Á®¿Ô½À´Ï´Ù. ÇÁ·ÎÅ׿ȿ¡ ´ëÇÑ ¿Ïº®Çϰí öÀúÇÑ ÀÌÇØ¸¦ °¡´ÉÄÉ ÇÏ´Â ÀÌ·¯ÇÑ ±â¼ú °³¹ßÀº ½ÃÀå È®´ë¸¦ ÃËÁøÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çß½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ±â¼ú °³¹ßÀº ´Ü¹éÁú ºÐ¼®ÀÇ ¹üÀ§¸¦ ³ÐÇô ´Ù¾çÇÑ »ý¹°ÇÐÀû ¹è°æÀÇ ´Ü¹éÁú¿¡ ´ëÇÑ ½ÉÃþÀûÀÌ°í »ó¼¼ÇÑ Á¶»ç¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.
ÇÁ·ÎÅ׿À¹Í½º ½ÃÀåÀÇ ¼ºÀåÀº ±â¼úÀÇ º¹À⼺, µ¥ÀÌÅÍ ºÐ¼®ÀÇ ¾î·Á¿ò, Ç¥ÁØÈ ¹®Á¦·Î ÀÎÇØ ÀúÇØµÉ ¼ö ÀÖ½À´Ï´Ù. ÇÁ·ÎÅ׿À¹Í½º ¿¬±¸¿¡ »ç¿ëµÇ´Â º¹ÀâÇÑ ±â¼ú°ú ¹æ¹ýÀº Àü¹®ÀûÀÎ Áö½Ä°ú ±â¼úÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ÇÁ·ÎÅ׿À¹Í½º µ¥ÀÌÅÍ ºÐ¼®°ú °á°ú ÇØ¼®Àº ¾î·Æ°í, ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º¿Í µ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÇÑ Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÇÁ·ÎÅ׿À¹Í½º ½ÇÇè¿¡¼ ¾òÀº ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ºÐ¼®Çϰí ÇØ¼®ÇÏ´Â °ÍÀº ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ç¥ÁØÈµÈ °üÇàÀÇ ºÎÁ·°ú °·ÂÇÑ µ¥ÀÌÅÍ ºÐ¼® ÆÄÀÌÇÁ¶óÀÎÀÇ Çʿ伺À¸·Î ÀÎÇØ ½ÃÀå È®´ë¿¡ ¾î·Á¿ò°ú À庮ÀÌ Á¸ÀçÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÇÁ·ÎÅ׿À¹Í½º ¼ºñ½º´Â COVID-19 »çÅ·ΠÀÎÇØ ½ÃÀå ¼ºÀåÀÌ °¡¼Óȵǰí ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. ¸¹Àº ±â¾÷µéÀÌ ÀÓ»ó½ÃÇèÀ» À§ÇÑ R&D ºñ¿ëÀ» ÀÌÀü°ú ´Þ¸® ÁÙÀ̰í ÀÖ´Â °ÍÀ¸·Î È®ÀεǾî, ÆÒµ¥¹ÍÀÇ ¿µÇâ·ÂÀÌ ¾ó¸¶³ª Å«Áö ¾Ë ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, CRO°¡ Áú ³ôÀº °á°ú¸¦ ¾ò±â À§ÇØ ±â¼úÀûÀ¸·Î Áøº¸µÈ Áú·® ºÐ¼®±â¸¦ »ç¿ëÇÏ´Â µî »õ·Î¿î ÀÓ»ó½ÃÇè ¹æ¹ý ¹× ¸ðµ¨ÀÇ µîÀåÀ¸·Î ½Å¼ÓÇÑ ÀÓ»ó½ÃÇèÀÌ º¸°íµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ¯Â¡À¸·Î ÀÎÇØ ÇÁ·ÎÅ׿À¹Í½º »ê¾÷Àº °·ÂÇÑ ¹ßÀü ±âȸ¸¦ °¡Áö°í ÀÖ½À´Ï´Ù.
½Å¾à °³¹ß ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ±Ô¸ð¸¦ Çü¼ºÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ÀÌ »ê¾÷ÀÇ È®´ë´Â ±¸Á¶ ±â¹Ý ¾à¹° ¼³°èÀÇ ¹ßÀü, ¸ÂÃãÇü ÀǾàǰ °³¹ß¿¡ ´ëÇÑ ÁýÁß, ÀÌ ºÐ¾ß¿¡ ´ëÇÑ ÀÚ±Ý Á¶´Þ Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ¶ÇÇÑ, ÇÁ·ÎÅ׿À¹Í½º ±â¼úÀº ½Å¾à °³¹ß °úÁ¤ Ãʱ⿡ ÀǾàǰÀÇ ÀáÀç·ÂÀ» ÀÔÁõÇÒ ¼ö ÀÖ´Â ¸ÞÄ¿´ÏÁòÀ» Á¦°øÇÏ¿© Á¦¾à ȸ»ç°¡ ¸¹Àº ÀÚ±ÝÀ» Àý¾àÇÏ°í ±Ã±ØÀûÀ¸·Î ȯÀÚ¿Í ÀÇ·á ½Ã½ºÅÛÀ» Áö¿øÇÒ ¼ö ÀÖ¾î ÀÌ ºÎ¹®ÀÇ È®ÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
ºÐ±¤ÇÐ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇÁ·ÎÅ׿À¹Í½º ¿¬±¸´Â ÁÖ·Î ºÐ±¤Çп¡ ÀÇÁ¸Çϸç, ºÐ±¤ÇÐÀº ´Ü¹éÁú°ú ±× ±¸Á¶Àû Ư¼ºÀ» ºÐ¼®ÇÏ´Â µ¥ ÀϹÝÀûÀ¸·Î »ç¿ëµË´Ï´Ù. À̸¦ ÅëÇØ ´Ü¹éÁúÀ» ÀνÄ, ÃøÁ¤ ¹× Ư¼ºÈÇÏ¿© ´Ü¹éÁúÀÇ ¿ªÇÒ, »óÈ£ ÀÛ¿ë ¹× º¯È¿¡ ´ëÇÑ Áß¿äÇÑ ¼¼ºÎ Á¤º¸¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÐ±¤ ±â¼ú°ú µ¥ÀÌÅÍ ºÐ¼® µµ±¸ÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î ´Ü¹éÁú ºÐ¼® ½ÃÀå¿¡¼ ºÐ±¤¹ýÀÇ ±â´É°ú ¿ëµµ°¡ ´õ¿í È®´ëµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ÇÁ·ÎÅ׿À¹Í½º »ê¾÷ È®´ë´Â ÀÌ Áö¿ª Á¦¾à ±â¾÷ÀÇ Á¸Àç¿Í Áß±¹, Àεµ µîÀÇ °í·É Àα¸ Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ¶ÇÇÑ, °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½Å¾à°³¹ß¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖÀ¸¸ç, »ý¸í°øÇÐ »ê¾÷ÀÇ ½ÅÈï±¹ ½ÃÀå °³Ã´Àº ÀÌ Áö¿ªÀÇ ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àå Å« Á¦¾à »ê¾÷À» º¸À¯Çϰí ÀÖÀ¸¸ç, ÇÁ·ÎÅ׿À¹Í½º ±â¹Ý Á¦Ç° »ý»êÀÚµéÀÌ ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ´Â ±â¼úÀûÀ¸·Î Áøº¸µÈ ÀÇ·á±â±â°¡ dzºÎÇÑ Áö¿ªÀÔ´Ï´Ù.
ºÏ¹Ì Áö¿ªÀº ±¸Á¶ ±â¹Ý ¾à¹° µðÀÚÀÎ °³¹ß, ¿À¹Í½º ¿¬±¸ °³¹ß, µ¥ÀÌÅÍ ÀçÇö¼ºÀ» À§ÇÑ °íǰÁú ¿¬±¸ µµ±¸¿¡ ´ëÇÑ ¿ä±¸, °³ÀÎ ¸ÂÃãÇü Ä¡·á¹ý °³¹ß¿¡ ÁýÁßÇÏ¸é¼ Áö¹è ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇß½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ÁÖ¿ä ±â¾÷ °£ Á¦ÈÞ ¹× Çù·Â °ü°èµµ ÀÌ »ê¾÷ÀÇ È®Àå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Thermo Fisher Scientific Inc.¿Í SymphogenÀº º¹ÀâÇÑ Ä¡·á¿ë ´Ü¹éÁúÀÇ Æ¯¼ºÈ ¹× ǰÁú ¸ð´ÏÅ͸µÀ» °¡¼ÓÈÇϱâ À§ÇØ ÀÔÁõµÈ Ç÷§Æû ÇÁ·Î¼¼½º¸¦ °³¹ßÇß½À´Ï´Ù.
According to Stratistics MRC, the Global Proteomics Market is accounted for $52.28 billion in 2023 and is expected to reach $115.57 billion by 2030 growing at a CAGR of 12.0% during the forecast period. The branch of biotechnology known as proteomics is defined as the application of molecular biology, biochemistry, and genetics techniques to the examination of the structure, function, and interactions of the proteins made by a specific cell, tissue, or organism, the organization of the information in databases, and the applications of the data. Proteomics can be categorized into a number of different subcategories, including structural, functional, and expression proteomics. Proteomics enables the identification of ever-increasing numbers of proteins. This varies with time and distinct requirements, or stresses, that a cell or organism undergoes.
According to Globocan, in December 2020, there were 19.3 million new cases of cancer across the world and 10 million cancer-related deaths were reported. Similarly, CVDs are one of the major causes of death worldwide. For instance, as per the WHO (2021), target diseases kill 41 million patients per year.
Many proteomics applications have been linked to nanotechnology, including phosphoproteomics/metal oxide nanoparticles, nanostructured surfaces for protein separation, and array techniques for analytical detection of biomarker proteins. Nanoproteomics has emerged as a field of study as a result of the application of proteomics techniques to nanotechnology. Through numerous nanotechnology applications, including nanoporous structures, functionalized nanoparticles, quantum dots, and polymeric nanostructures, this technique is used as a supporting element to revolutionize proteomics. Thus, the need for personalized therapies, along with the prevalence of life-threatening diseases, is anticipated to benefit the industry throughout the forecast period.
Companies obtain substances that either stimulate or inhibit target proteins using publicly available structural data and trial-and-error techniques. The study of protein structure necessitates the use of high-throughput equipment. Gene cloning, protein expression, protein purification, and protein crystallization are all frequently done in proteomics using X-ray crystallography. These processes all require a significant amount of laboratory time, which drives up the price of testing each sample. Moreover, developing nations struggle to enter the proteomics field due to the high cost of equipment and supplies. Such factors are anticipated to impede market expansion.
Technological advances that have greatly increased sensitivity and resolution, permitted high-throughput and multiplexed analysis, facilitated data integration, improved sample preparation and fractionation techniques, permitted mass spectrometry-based imaging, and provided sophisticated data analysis and informatics tools have revolutionized the field of proteomics. By enabling a complete and thorough understanding of the proteome, these developments have been crucial in fostering the market's expansion. Additionally, these technological developments have increased the scope of proteomics research, allowing thorough and in-depth investigation of proteins in a variety of biological contexts, which is fueling market expansion.
Proteomics market growth may be hampered by technological complexity, data analysis difficulties, and standardization issues. Complex technologies and methodologies used in proteomics research call for specialized knowledge and skills. Proteomic data analysis and result interpretation can be difficult and require expertise in bioinformatics and data analysis. The analysis and interpretation of the enormous amounts of data produced by proteomics experiments can be challenging. Additionally, there may be difficulties and barriers to the market's expansion due to a lack of standardization practices and the requirement for strong data analysis pipelines.
The proteomics services have shown to benefit from the COVID-19 pandemic, which has accelerated market growth. A number of businesses were observed to reduce their R&D expenditures for clinical trials in contrast to earlier expenditures, indicating the extent of the pandemic's impact. Additionally, due to the rise of novel clinical trial methodologies or models, which include the use of technologically advanced mass spectrometers by CROs specifically for quality outcomes, rapid clinical trials have been reported. The proteomics industry has strong development opportunities as an outcome of these traits.
The drug discovery segment is estimated to be the largest during the extrapolated period. The expansion of this industry can be attributed to the development of structure-based drug design, a greater focus on developing personalized medicines, and increased funding in these fields. Additionally, proteomics technologies also provide a mechanism to demonstrate a medicine's potential early in the drug discovery process, saving pharmaceutical companies a large sum of money and ultimately assisting patients and healthcare systems, which support the segment's expansion.
Spectroscopy segment is anticipated to have highest CAGR during the projected period. Proteomics research relies primarily on spectroscopy, which is also commonly used for analyzing proteins and their structural properties. It makes it possible to recognize, measure, and characterize proteins, providing essential details about their roles, interactions, and changes. Additionally, continuous advancements in spectroscopy technologies and data analysis tools are further expanding the capabilities and applications of spectroscopy in the proteomics market.
Asia-Pacific is anticipated to have largest share during the forecast period. The expansion of the proteomics industry in this area is due to the presence of pharmaceutical businesses there as well as the rising elderly population in nations like China and India. Additionally, as demand for personalized medicine rises, so does the need for drug discovery and developments in the biotechnology industry fuel market expansion in the region. The Asia-Pacific area has the largest pharmaceutical sector, and a wealth of technologically advanced medical devices that may be easily accessed by producers of proteomics-based goods.
North America commanded highest CAGR throughout the domination period due to the development of structure-based drug design, expansion of omics research, desire for high-quality research tools for data reproducibility, and focus on the creation of personalized treatments. Partnerships and collaborations among significant businesses in this region are also helping to expand this industry. Furthermore, in order to accelerate the characterisation and quality monitoring of complex therapeutic proteins, Thermo Fisher Scientific Inc. and Symphogen developed a proven platform process.
Some of the key players in Proteomics Market include: Agilent Technologies, inc., Illumina, Inc., Ge Healthcare, Bio - Rad Laboratories, Inc., Bruker Corporation, Thermo fisher Scientific, Inc., Promega Corporation , F.Hoffmann-La Roche Ltd., Danaher, Merck Kgaa., Waters Corporation, Caprion Proteomics Inc., Luminex Corporation, PerkinElmer, Inc., SomaLogic Operating Co. and Olink.
In February 2023, Waters Corporation acquired Wyatt Technology, which enhances the portfolio of Separation and Detection, which provides customers with an unmatched set of analytical solutions across a wide range of applications.
In October 2022, Agilent Technologies Inc. and CMP Scientific Corp. entered into a co-marketing agreement to provide an integrated capillary electrophoresis-mass spectrometry (CE-MS) solution for the life science and pharmaceutical industries.
In August 2022, Bruker Corporation introduced the new nano Elute 2 nano-LC, MetaboScape, and TASQ software to promote the study of protein-protein interaction and metaproteomics applications. These products also support fluxomics and the most recent developments in PaSER intelligent acquisition.