Stratistics MRC¿¡ µû¸£¸é ¼¼°è DNA ½ÃÄö½Ì ½ÃÀåÀº 2023³â¿¡ 125¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 19.1%¸¦ ³ªÅ¸³¾ Àü¸ÁÀ̸ç 2030³â¿¡´Â 425¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
DNA ½ÃÄö½ÌÀº ´Ù¸¥ DNA °¡´ÚÀÇ ¼¿À» °áÁ¤Çϱâ À§ÇØ ±¤¹üÀ§ÇÑ º´·Äȸ¦ »ç¿ëÇÏ´Â ÀýÂ÷ÀÔ´Ï´Ù. ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ¹× ±âŸ À¯ÀüÀÚ ºÐ¼® ±â¼ú¿¡ ´ëÇÑ DNA ½ÃÄö½ÌÀÇ ÀåÁ¡À¸·Î´Â Àú·ÅÇÑ ºñ¿ë, ³ôÀº Á¤È®µµ ¹× ¼Óµµ, ¼Ò·®ÀÇ »ùÇà ÅõÀÔÀ¸·Î ½Å·ÚÇÒ ¼ö ÀÖ´Â °á°ú µîÀÌ ÀÖ½À´Ï´Ù. DNA ½ÃÄö½ÌÀÇ ¿ëµµ·Î´Â ¹ÙÀÌ¿À¸¶Ä¿ÀÇ È®ÀÎ, Á¾¾çÇÐ Á¶»ç, °³ÀÎÈµÈ °Ç° °ü¸®, ¹ýÀÇÇÐ µîÀÌ ÀÖ½À´Ï´Ù.
National Human Genome Research Institute¿¡ µû¸£¸é 2021³â 8¿ù¿¡´Â Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀ¸·Î °Ô³ð´ç NGS ºñ¿ëÀº 562´Þ·¯, ¸Þ°¡º£À̽º´ç NGS ºñ¿ëÀº 0.006´Þ·¯°¡ µË´Ï´Ù.
°Ô³ð ½ÃÄö½ÌÀº ´Ù¾çÇÑ ºÐ¾ß¿¡ º¯È¸¦ °¡Á®¿À±â ¶§¹®¿¡ DNA ½ÃÄö½Ì ¾÷°è¿¡¼ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯ÀüÀÚ Áø´Ü, ¸ÂÃãÇü ÀÇ·á, ¾Ï ¿¬±¸¿¡¼ °Ô³ð ½ÃÄö½Ì°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ÀÓ»ó ÀÀ¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °Ô³ð ½ÃÄö½ÌÀÇ Çʿ伺Àº À¯ÀüüÇÐÀÌ Áúº´ÀÇ ±Ùº»ÀûÀÎ ¸ÞÄ¿´ÏÁò°ú ÀáÀçÀûÀÎ Ä¡·á¹ý¿¡ °è¼Ó ºûÀ» ¹ßÇÒ¼ö·Ï ³ô¾ÆÁú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ¶§¹®¿¡ DNA ½ÃÄö¼ÀÇ ½ÅÁ¦Ç° °³¹ß°ú ½ÃÀå °³Ã´ÀÌ ÃËÁøµÉ °ÍÀÔ´Ï´Ù.
DNA ½ÃÄö½Ì ±â¼úÀÇ ³ôÀº ºñ¿ëÀº ÁÖ¿ä ½ÃÀå Àå¾ÖÀÔ´Ï´Ù. Àåºñ, ¼Ò¸ðǰ ¹× µ¥ÀÌÅÍ Ã³¸®°¡ ÀÌ·¯ÇÑ ºñ¿ë¿¡ Æ÷ÇԵDZ⠶§¹®¿¡ ½ÃÄö½Ì ³ë·ÂÀÌ °æÁ¦ÀûÀ¸·Î ºÎ´ãµÇ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶ÇÇÑ, ½ÃÄö½Ì ÇÁ·Î±×·¥Àº ¿¬±¸ ±â°ü, ÀÓ»ó ½ÇÇè½Ç, °Ç° °ü¸® ½Ã¼³¿¡¼ ¸·´ëÇÑ ÀÚ±ÝÀÌ ÇÊ¿äÇϸç, ƯÈ÷ ÀÚ¿øÀÌ Á¦ÇÑµÈ È¯°æ¿¡¼´Â °í°¡ÀÇ ºñ¿ëÀÌ ÃÖ÷´Ü ½ÃÄö½Ì ±â¼ú¿¡ ´ëÇÑ ¾×¼¼½º¸¦ Á¦ÇÑÇÕ´Ï´Ù. ±×¸®°í È®»êÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ ½ÃÀå È®´ë¸¦ ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
°Ô³ð ¿¬±¸ ¹× ÀÓ»ó ÀÀ¿ëÀº DNA ½ÃÄö½ÌÀÇ ±â¼ú °³¹ßÀ» ÅëÇØ Çõ¸íÀ» ÀÌ·ç¾ú½À´Ï´Ù. ¶ÇÇÑ Illumina ¹× Oxford Nanopore¿Í °°Àº ±â¾÷ÀÌ Á¦°øÇÏ´Â Â÷¼¼´ë ½ÃÄö½Ì(NGS) ±â¼úÀ» ÅëÇØ ³ôÀº 󸮷® ½ÃÄö½Ì°¡ °¡´ÉÇØÁ³½À´Ï´Ù. °Ô´Ù°¡ ÀÌ·¯ÇÑ °³¹ßÀº ´ë±Ô¸ð °Ô³ð ¿¬±¸¸¦ º¸´Ù Àû´çÇÑ °¡°ÝÀ¸·Î ½Ç½ÃÇÒ ¼ö ÀÖ°Ô µÇ¾ú°í, µ¥ÀÌÅÍ ¼öÁýµµ °¡¼ÓÈÇß½À´Ï´Ù. DNA ½ÃÄö½ÌÀÇ Á¤È®µµ´Â 1ºÐÀÚ ½ÃÄö½Ì°ú ±ä ¸®µå ±â¼úÀ» ÅëÇØ Çâ»óµÇ¾î º¹ÀâÇÑ °Ô³ð ¿µ¿ªÀÇ ºÐ¼®À» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ ¿¬±¸ÀÚ¿Í ÀÓ»óÀǰ¡ Áö¹æ¿¡¼ ÀÓ»ó ½Ã¼³¿¡ À̸£±â±îÁö ´Ù¾çÇÑ »óȲ¿¡¼ ½ÃÄö½Ì Ȱµ¿À» ¼öÇàÇÒ ¼ö ÀÖ¾î À¯ÀüüÇÐÀÇ Á¢±Ù¼º°ú È¿°ú°¡ Çâ»óµÇ¾ú½À´Ï´Ù. µû¶ó¼ ÀÌ·¯ÇÑ ¿äÀÎÀº ½ÃÀå È®´ëÀÇ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
DNA ½ÃÄö½Ì ½ÃÀåÀº ÇÁ¶óÀ̹ö½Ã ¹®Á¦¿¡ ÀÇÇØ ÀúÇØµÇ¾ú½À´Ï´Ù. À¯ÀüÀÚ °Ë»çÀÇ ÀÌ¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó, »ç¶÷µé°ú Á¶Á÷Àº ±â¹Ð¼ºÀÌ ³ôÀº À¯ÀüÀÚ µ¥ÀÌÅÍÀÇ º¸¾È°ú ¾Ç¿ë °¡´É¼º¿¡ ´ëÇØ ¿ì·Á¸¦ Ç¥¸íÇÏ°Ô µÇ¾ú½À´Ï´Ù. °Ô´Ù°¡ À̰ÍÀÌ À¯ÀüÀÚ ¿¬±¸¿¡ Âü¿©Çϰųª °Ç° °ü¸® Àü¹®°¡¿Í Á¤º¸¸¦ °øÀ¯ÇÏ´Â °ÍÀ» ¸Á¼³ÀÌ°Ô Çϰí, À¯ÀüüÇÐ ¿¬±¸³ª Ä¡·á ¿ëµµÀÇ °³¹ßÀ» ´ÊÃß°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÃֽнÃÄö½Ì ±â¼úÀº ¾öû³ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇϱ⠶§¹®¿¡ ÄÄÇ»ÆÃ°ú µ¥ÀÌÅÍ ºÐ¼®¿¡ Å« Àå¾Ö°¡ »ý°Ü È¿°úÀûÀÎ ÇØ¼®°ú Ȱ¿ëÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
DNA ½ÃÄö½Ì ½ÃÀåÀº COVID-19ÀÇ À¯Çà¿¡ ÀÇÇØ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹Þ¾Ò½À´Ï´Ù. ÆÒµ¥¹ÍÀº °ø±Þ¸ÁÀ» È¥¶õ½º·´°Ô Çϰí, ¿¬±¸½Ç¿¡ ´ëÇÑ Á¢±ÙÀ» Á¦ÇÑÇϰí, °Ç° °ü¸® ±â°ü¿¡ ÀçÁ¤Àû Á¦¾àÀ» ÃÊ·¡ÇÔÀ¸·Î½á, ½ÃÄö½Ì initiative ¹× ºñÆÒµ¥¹Í ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¿¬±¸ Àڱݿ¡ ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¿¡µµ ºÒ±¸ÇÏ°í ÆÒµ¥¹ÍÀº °¨¿°Áõ ¿¬±¸¿¡ ½ÃÄö¼ µµÀÔÀ» °¡¼ÓÈÇÏ°í ½ÃÀå È®´ë¸¦ ¼¼È÷ ¾ïÁ¦Çß½À´Ï´Ù.
¼Ò¸ðǰ ºÎ¹®Àº DNA ´ÜÆíÈ, ³óÃà, adapter ligation, ÁõÆø, ǰÁú °ü¸® µî ¶óÀ̺귯¸® ±¸ÃàÀÇ ¸ðµç ´Ü°è¿¡ ´ëÀÀÇÏ´Â ½Ã¾à ¹× ŰƮ¸¦ ³Î¸® ÀÌ¿ëÇÒ ¼ö Àֱ⠶§¹®¿¡ ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¶ÇÇÑ »ùÇà Áغñ ¹× ºÐ¼®¿¡ »ç¿ëµÇ´Â ¼Ò¸ðǰ, ÇÃ·Î¿ì ¼¿, ÇÁ¶óÀ̸Ó, ¿ÏÃæ¾×, ½ÃÄö½Ì ½Ã¾àµµ Æ÷ÇԵ˴ϴÙ. ¼Ò¸ðǰÀº DNA ½ÃÄö½ÌÀÇ Á¤È®¼º°ú È¿´ÉÀ» º¸ÀåÇϱ⠶§¹®¿¡ ½ÃÄö½Ì Workflow¿¡ ÇʼöÀûÀÔ´Ï´Ù. µû¶ó¼ ¼Ò¸ðǰ »ê¾÷Àº Á¦Á¶¾÷ü¿¡°Ô Áß¿äÇÏ°í ¾ÈÁ¤ÀûÀÎ ¼öÀÔ¿øÀ» Á¦°øÇϸç À¯ÀüüÇÐ ¿¬±¸, ÀÓ»ó Áø´Ü ¹× ¸ÂÃãÇü ÀÇ·á Áøº¸¿¡ ÇʼöÀûÀÔ´Ï´Ù.
Â÷¼¼´ë ½ÃÄö½Ì ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀåÀ» ´Þ¼ºÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇÕ¸®ÀûÀÎ °¡°ÝÀ¸·Î °íǰÁúÀÇ ½ÃÄö½Ì µ¥ÀÌÅ͸¦ »ý¼ºÇÒ ¼ö Àֱ⠶§¹®¿¡ NGS´Â ½ÃÄö½Ì ±â¹ýÀÇ ÁÖ·ù°¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ NGS´Â ±âÁ¸ÀÇ ½ÃÄö½Ì ±â¼úº¸´Ù Á¤È®µµ°¡ ³ôÀº °ÍÀ¸·Î ³ªÅ¸³µÀ¸¸ç, ¾Ï °ËÃâÀ̳ª °Ô³ð ¿¬±¸ µîÀÇ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ Â÷¼¼´ë ½ÃÄö¼(NGS) ½Ã½ºÅÛÀ̶ó´Â Ãʺ´·Ä ½ÃÄö¼´Â ´Ü½Ã°£¿¡ ´ë·®ÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯¹Ç·Î Ź¿ùÇÑ Á¤È®¼º°ú ŽÁö ´É·ÂÀ¸·Î Â÷¼¼´ë ½ÃÄö¼ ±â¼úÀº ´õ Å« ½ÃÀå Á¡À¯À²À» ¾òÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀÌ Áö¿ªÀÇ °æÁ¦°¡ Àû±ØÀûÀ¸·Î ÁøÀÔÇ߱⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» ȹµæÇß½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀÇ ¸¹Àº ±¹°¡µéÀÌ ´ë±Ô¸ð À¯ÀüüÇÐ ±¸»ó°ú ¿¬±¸ °èȹÀ» ½ÃÀÛÇϰí ÀÖ½À´Ï´Ù. °Ç° °ü¸®¿¡ °Ô³ð ÀÀ¿ëÀ» Àå·ÁÇÏ´Â Áß¿äÇÑ initiativeÀÇ ¿¹·Î´Â ÀϺ»ÀÇ °Ô³ð ÀÇ·á ÇÁ·Î±×·¥°ú Áß±¹ÀÇ Á¤¹ÐÀÇ·á initiative°¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤ºÎÀÇ ÀÚ±Ý Áö¿ø°ú ´ë±â¾÷°úÀÇ Á¦ÈÞµµ ÀÌ ºÐ¾ßÀÇ ±â¼ú Çõ½ÅÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¾öû³ Àα¸´Â À¯ÀüÀÚ °Ë»ç¿Í ¸ÂÃãÇü ÀǷḦ À§ÇÑ Å« ½ÃÀåÀ» âÃâÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú ÀÌ Áö¿ªÀº °Ô³ð ¿¬±¸¿Í DNA ½ÃÄö¼ ºÐ¾ßÀÇ È®´ë¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È À¯·´ÀÇ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº Ȱ±âÂù °úÇÐ Ä¿¹Â´ÏƼ, Á¸°æ¹Þ´Â ¿¬±¸ ±â°ü, À¯ÀüüÇÐ ¿¬±¸¿¡ ´ëÇÑ Ã¢ÀǼº°ú ÀçÁ¤ ÅõÀÚ¸¦ ÃËÁøÇϴ ģÀýÇÑ ±ÔÁ¦ ȯ°æÀÇ ÇýÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ À¯·´ ±¹°¡¿¡¼´Â °Ç° °ü¸®¿¡ ´Ù¾×ÀÇ ÅõÀÚ°¡ ÀÌ·ç¾îÁø °á°ú, ¸ÂÃãÇü ÀÇ·á, À¯ÀüÀÚ Áø´Ü, ¾à¹° À¯ÀüüÇп¡ ÀÖ¾î¼ÀÇ °Ô³ð ÀÀ¿ë¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ´ë±Ô¸ð À¯ÀüüÇÐÀÇ ³ë·ÂÀº ±¹Á¦Çù·Â¿¡ ÀÇÇØ Àå·ÁµÇ°í, ÀÌ Áö¿ªÀÇ °æÀïÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ±×·¯¹Ç·Î À¯·´ ±¹¹Î ¸ðµÎ º¸Çè Á¦µµ´Â °Ô³ð µ¥ÀÌÅ͸¦ ÀÓ»ó Áø·á¿¡ µµÀÔÇÏ´Â °ÍÀ» ¿ëÀÌÇÏ°Ô ÇÏ°í ½ÃÀå È®´ë¸¦ ÀÚ±ØÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global DNA Sequencing Market is accounted for $12.5 billion in 2023 and is expected to reach $42.5 billion by 2030 growing at a CAGR of 19.1% during the forecast period. DNA sequencing is a procedure that uses extensive parallelization to sequence different DNA strands. The advantages of DNA sequencing over microarray and other genetic analysis techniques include cheaper cost, higher accuracy and speed, and reliable results even with small sample input, applications for DNA sequencing include the identification of biomarkers, oncology research, individualized healthcare, forensics, and others.
According to National Human Genome Research Institute, due to continuous innovations, the cost of NGS per genome is USD 562, and the cost of NGS per megabase is USD 0.006 in August 2021.
Genome sequencing is in greater demand in the DNA sequencing industry due to its transformational effects across a number of fields. Additionally, a rise in clinical applications is being caused by the necessity of genome sequencing in genetic diagnostics, customized medicine, and cancer research. Furthermore, the need for genome sequencing is anticipated to increase as genomics continues to shed light on the mechanisms underlying disease and potential treatments. Thus, this will encourage new product development and market expansion for DNA sequencing.
The high cost of DNA sequencing technologies is a key market obstacle. Equipment, consumables, and data processing are included in these costs, which frequently make sequencing efforts financially burdensome. Additionally, sequencing programs require huge amounts of cash from research institutions, clinical laboratories, and healthcare facilities, particularly in environments with limited resources, high expenses can restrict access to cutting-edge sequencing techniques and deter widespread adoption. Therefore, hampers the market expansion.
Genomic research and clinical applications have undergone a revolution due to technological developments in DNA sequencing. Additionally, high-throughput sequencing is made possible by next-generation sequencing (NGS) technologies from companies like Illumina and Oxford Nanopore. Moreover, because of the developments, large-scale genomic studies it has become more affordable, and data gathering has been speed up. The accuracy of DNA sequencing has increased because of single-molecule sequencing and long-read technologies, which also make it easier to analyze complex genomic areas. Furthermore, this has increased the accessibility and effect of genomics by enabling researchers and clinicians to conduct sequencing activities in a variety of contexts, from rural locations to clinical facilities. Therefore, these factors significantly have driven the market expansion.
The market for DNA sequencing has been hampered by privacy issues, as the use of genetic testing increases, people and organizations express concern about the security and potential abuse of highly sensitive genetic data. Additionally, this has made people hesitant to take part in genetic research and share information with healthcare professionals, which has slowed the development of genomics research and therapeutic applications. Furthermore, modern sequencing technologies create enormous amounts of data, which poses substantial computing and data analytic obstacles and hampers effective interpretation and utilization.
The market for DNA sequencing was negatively impacted by the COVID-19 epidemic. The pandemic impacted sequencing initiatives and research funding for non-pandemic projects by disrupting the supply chain, limiting laboratory access, and creating financial restrictions in healthcare institutions. Despite these challenges, the pandemic accelerated the adoption of sequencing for the research of infectious diseases, which gradually restrained market expansion.
The consumables segment is estimated to hold the largest share, due to the widespread availability of reagents and kits for all library construction phases, including DNA fragmentation, enrichment, adapter ligation, amplification, and quality control. Additionally, this includes consumables used for sample preparation and analysis, flow cells, primers, buffers, and sequencing reagents. Consumables are essential to the sequencing workflow because they guarantee the precision and effectiveness of DNA sequencing. Therefore, the consumables industry provides manufacturers with a crucial and consistent source of income and is essential to the advancement of genomics research, clinical diagnostics, and customized medicine.
The next-generation sequencing segment is anticipated to have lucrative growth during the forecast period, due to its capacity to produce high-quality sequence data at affordable prices, NGS has become the predominant sequencing methodology. Furthermore, NGS has been shown to be more accurate than conventional sequencing techniques, making it appropriate for uses like cancer detection and genomics research. Moreover, massively parallel sequencers called next-generation sequencing (NGS) systems can produce a lot of data in a short amount of time. Therefore, due to its excellent accuracy and detection capacities, next-generation sequencing technology is anticipated to gain a greater market share.
Asia Pacific commanded the largest market share during the extrapolated period due to the active participation of the region's economies. Additionally, many nations in the region have started large-scale genomics initiatives and research plans. Examples of significant initiatives encouraging genomics applications in healthcare include Japan's "Japanese Genomic Medicine Program" and China's "Precision Medicine Initiative". Furthermore, governmental funding and partnerships with business titans are also encouraging innovation in the sector. The enormous population of the Asia-Pacific area creates a sizable market for genetic testing and tailored medicine. Thus, as a result, the area is gradually becoming a focus for genomics research and the expansion of the DNA sequencing sector.
Europe is expected to witness highest CAGR over the projection period. The area benefits from a vibrant scientific community, esteemed research institutions, and a friendly regulatory environment that promotes creativity and financial investment in genomics research. Additionally, the demand for genomic applications in personalized medicine, genetic diagnostics, and pharmacogenomics has increased as a result of significant investments made in healthcare in European nations. Furthermore, large-scale genomics initiatives are encouraged by international cooperation, which raises the region's competitiveness. Therefore, the universal healthcare systems in Europe make it easier to incorporate genomic data into clinical practice, which stimulates market expansion.
Some of the key players in the DNA Sequencing Market include: Agilent Technologies Inc., Pacific Biosciences of California Inc., Hamilton Thorne Biosciences, Bio-Rad Laboratories Inc., Danaher Corporation, Hoffmann-La Roche Ltd, Illumina Inc., Merck KGaA, Qiagen, PerkinElmer Inc., Macrogen Inc., Myriad Genetics Inc. and Eurofins Scientific.
In March 2023, llumina Inc. a global leader in DNA sequencing and array-based technologies, announced that its first product based on its novel Illumina Complete Long Read technology is now available to order.
In September 2022, Illumina, Inc. announced the launch of the NovaSeq™ X Series (NovaSeq X and NovaSeq X Plus), new production-scale sequencers that will push the limits of what is possible with genomic medicine, enabling faster, more powerful, and more sustainable sequencing.
In January 2019, NRGene and Macrogen Corp announced the launch of a joint sequencing-based genotyping service, ArrayMAGIC, at the Plant and Animal Genome (PAG) conference in San Diego.