pc ¹öÀüÀ¸·Î À̵¿ Áß
Stratistics MRC¿¡ µû¸£¸é ¼¼°è ÀÚ¿¬ÀçÇØ °¨Áö IoT ½ÃÀåÀº 2023³â 5¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 34.1%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â 44¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÚ¿¬ÀçÇØ °¨Áö IoT´Â »ç¹°ÀÎÅͳÝ(IoT) ±â¼úÀ» È°¿ëÇØ ÁöÁø, È«¼ö, »êºÒ, Ç㸮ÄÉÀÎ µî ´Ù¾çÇÑ ÀÚ¿¬ÀçÇظ¦ ¸ð´ÏÅ͸µÇÏ°í °¨ÁöÇÏ´Â °ÍÀ¸·Î, IoT ¼¾¼¿Í ÀåÄ¡¸¦ ÀçÇØ°¡ ¹ß»ýÇϱ⠽¬¿î Áö¿ª¿¡ ¹èÄ¡ÇØ È¯°æ Á¶°Ç°ú ÁöÁúÇÐÀû È°µ¿¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ¼öÁýÇÕ´Ï´Ù. ½Ç½Ã°£À¸·Î ¼öÁýÇÕ´Ï´Ù. ÀÌ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© Á¶±â °æº¸¸¦ Á¦°øÇÏ°í ½Å¼ÓÇÑ ´ëÀÀ È°µ¿À» ÃËÁøÇÏ¿© À糿¡ ´ëÇÑ ´ëºñ¸¦ °ÈÇÏ°í ÇÇÇظ¦ ÃÖ¼ÒÈÇÏ¿© ÀθíÀ» ±¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.
GSMA ÀÎÅÚ¸®Àü½º(GSMA Intelligence)°¡ ¹ßÇ¥ÇÑ 2019³â ¸ð¹ÙÀÏ °æÁ¦ º¸°í¼¿¡ µû¸£¸é, ºÏ¹Ì¿¡¼´Â 2025³â±îÁö ¿¬°áÀÇ 46%°¡ 5G ³×Æ®¿öÅ©°¡ µÉ °ÍÀ̶ó°í ÇÕ´Ï´Ù.
Àç³ÀÌ ¹ß»ýÇϱ⠽¬¿î Áö¿ª¿¡ IoT ¼¾¼¿Í ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» ¹èÄ¡Çϸé Á¶±â °æº¸¿Í ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁýÀ» ÅëÇØ ´ç±¹°ú Áö¿ª »çȸ°¡ Ç㸮ÄÉÀÎ, È«¼ö, »êºÒ°ú °°Àº ÀÓ¹ÚÇÑ ÀÚ¿¬ÀçÇØ¿¡ ´ëºñÇÏ°í ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àû½Ã °æº¸´Â Àû½Ã¿¡ ´ëÇÇ, ÀÎÇÁ¶ó º¸È£, ÀÚ¿ø ¹èºÐÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ±Ã±ØÀûÀ¸·Î Àç»ê ÇÇÇØ, Àθí ÇÇÇØ ¹× °æÁ¦Àû ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, IoT ±â¹Ý Àç³ °¨Áö ¼Ö·ç¼ÇÀÇ ºñ¿ë È¿À²¼ºÀº µµÀÔÀ» ´õ¿í ÃËÁøÇÏ°í À糿¡ ´ëÇÑ ³»¼ºÀ» °ÈÇϸç, ±×·¯ÇÑ »ç°ÇÀÇ Æı«ÀûÀÎ ¿µÇâÀ» ÃÖ¼ÒÈÇÒ ¼ö ÀÖ½À´Ï´Ù. À糿¡ ´ëÇÑ ³»¼ºÀ» °ÈÇÏ°í, Àç³ÀÇ Ä¡¸íÀûÀÎ ¿µÇâÀ» ÃÖ¼ÒÈÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù.
IoT ÀåÄ¡´Â ¿ø°ÝÁö³ª ¿¾ÇÇÑ È¯°æ¿¡ ¼³Ä¡µÇ´Â °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ ¹°¸®Àû ¼Õ»ó, ³×Æ®¿öÅ© Àå¾Ö, »çÀ̹ö °ø°Ý¿¡ Ãë¾àÇϸç, IoT ¼¾¼¿Í Åë½Å ÀÎÇÁ¶ó°¡ À§Çè¿¡ ³ëÃâµÇ¸é Àç³ °¨Áö ¹× Á¶±â °æº¸ ½Ã½ºÅÛÀÇ ½Å·Ú¼º°ú Á¤È®¼ºÀÌ ¶³¾îÁö°í, ¿À°æº¸ ¹× ´ëÀÀ Áö¿¬À¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ¿À°æº¸ ¹× ´ëÀÀ Áö¿¬À¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áß¿äÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡¼ IoT ÀåÄ¡ÀÇ º¸¾È, ÀÌÁßÈ ¹× º¹¿ø·ÂÀ» º¸ÀåÇÏ´Â °ÍÀº ÀÚ¿¬ÀçÇØ °¨Áö IoT ½Ã½ºÅÛÀÇ ½Å·Ú¼º°ú À¯È¿¼ºÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, ÀÌ·¯ÇÑ Ãë¾àÁ¡À» ÇØ°áÇÏ´Â IoT ½Ã½ºÅÛÀº ½Å·ÚÇÒ ¼ö ÀÖ´Â ÀçÇØ °æ°¨ ¹× ´ëÀÀÀ» À§ÇØ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
°í±Þ ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú µ¥ÀÌÅÍ ºÐ¼®À» È°¿ëÇϸé IoT ½Ã½ºÅÛÀº ÁøÇà ÁßÀÎ Àç³À» °¨ÁöÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó ÀáÀçÀûÀÎ »ç°ÇÀ» º¸´Ù Á¤È®ÇÏ°Ô ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â °ú°Å µ¥ÀÌÅÍ, ȯ°æ ÆÐÅÏ ¹× ½Ç½Ã°£ ¼¾¼ Á¤º¸¸¦ ºÐ¼®ÇÏ¿© Á¶±â °æº¸¿Í ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »çÀü ¿¹¹æÀû Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ´ç±¹°ú Áö¿ª»çȸ´Â º¸´Ù È¿°úÀûÀ¸·Î ´ëºñÇÏ°í, ÀÚ¿øÀ» È¿À²ÀûÀ¸·Î ¹èºÐÇÏ°í, ÀÚ¿¬ÀçÇØÀÇ ¿µÇâÀ» ÃÖ¼ÒÈÇÒ ¼ö ÀÖÀ¸¸ç, AI¿Í µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇÑ ¿¹Ãø ºÐ¼®Àº ÀÚ¿¬ÀçÇØ °¨Áö IoTÀÇ ±â´ÉÀ» Çâ»ó½ÃÄÑ ±Ã±ØÀûÀ¸·Î ÀÎ¸í ±¸Á¶¿Í ÇÇÇØ °¨¼Ò·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÀÎ¸í±¸Á¶¿Í ÇÇÇØ °æ°¨À¸·Î À̾îÁý´Ï´Ù.
IoT ¼¾¼¿Í ÀåÄ¡´Â µ¥ÀÌÅÍ ¼öÁý°ú Á¶±â °æº¸ ½Ã½ºÅÛ¿¡ ÇʼöÀûÀÌÁö¸¸, ÁöÁøÀ̳ª Ç㸮ÄÉÀΰú °°Àº Àç³ ¹ß»ý ½Ã ³×Æ®¿öÅ© ¿¬°áÀÌ ½É°¢ÇÏ°Ô Áß´ÜµÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àå¾Ö´Â ´ç±¹°ú ±ä±Þ ±¸Á¶´ë¿ø¿¡°Ô Áß¿äÇÑ Á¤º¸°¡ Àû½Ã¿¡ Àü´ÞµÇ´Â °ÍÀ» ¹æÇØÇÏ°í, ±¸Á¶ ¹× ±¸È£ È°µ¿À» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À§Çù¿¡ ´ëÀÀÇϱâ À§Çؼ´Â Àç³ ¹ß»ý ½Ã¿¡µµ µ¥ÀÌÅÍ È帧ÀÌ ÁߴܵÇÁö ¾Êµµ·Ï °·ÂÇÑ Åë½Å ÀÌÁßÈ, ¹é¾÷ Àü¿ø ¹× ź·ÂÀûÀÎ ÀÎÇÁ¶ó°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ±Øº¹ÇÏ´Â °ÍÀº IoT ±â¹Ý Àç³ °¨Áö ¹× ´ëÀÀ ½Ã½ºÅÛÀÇ È¿°ú¸¦ ±Ø´ëÈÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
COVID-19°¡ ÀÚ¿¬ÀçÇØ °¨Áö IoT¿¡ ¹ÌÄ£ ¾Ç¿µÇâÀº ÁÖ·Î ¹°·ù ¹®Á¦¿Í ÀÚ¿ø Á¦¾àÀ¸·Î ÀÎÇØ ¹ß»ýÇß½À´Ï´Ù. ºÀ¼â¿Í À̵¿ Á¦ÇÑÀ¸·Î ÀÎÇØ °ø±Þ¸Á¿¡ È¥¶õÀÌ ¹ß»ýÇÏ¿© Àç³ ¸ð´ÏÅ͸µ¿¡ ÇʼöÀûÀÎ IoT ÀåÄ¡¿Í ¼¾¼ÀÇ »ý»ê°ú ¹èÄ¡°¡ Áö¿¬µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ÆÒµ¥¹Í °ü·Ã ¼ö¿ä¿¡ ´ëÇÑ ¿¹»ê ÀçºÐ¹è·Î ÀÎÇØ IoT ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÀÚ±ÝÀÌ ÁÙ¾îµé¾î ±¸Çö¿¡ ¿µÇâÀ» ¹ÌÃƽÀ´Ï´Ù. »çȸÀû °Å¸®µÎ±â Á¶Ä¡´Â ÀåºñÀÇ À¯Áöº¸¼ö¿Í ÇöÀå ¼³Ä¡¸¦ ¹æÇØÇÏ¿© ÁøÇàÀ» ´õ¿í ¹æÇØÇß½À´Ï´Ù. ±×·¯³ª À̹ø ÆÒµ¥¹ÍÀº À糿¡ °ÇÑ °¨Áö ¹× ´ëÀÀ ½Ã½ºÅÛÀÇ Á߿伺À» ºÎ°¢½ÃÄÑ IoT ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í ±â¼ú Çõ½ÅÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù.
Çϵå¿þ¾î ºÎ¹®Àº À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¹°¸®Àû ±¸¼º¿ä¼Ò´Â ÀçÇØ°¡ ¹ß»ýÇϱ⠽¬¿î Áö¿ª¿¡ Àü·«ÀûÀ¸·Î ¹èÄ¡µÇ¾î ȯ°æ Á¶°Ç, ÁöÁú È°µ¿ ¹× ±âŸ °ü·Ã ¸Å°³ º¯¼ö¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ¼öÁýÇÕ´Ï´Ù. ÁöÁø°è, È«¼ö ¼¾¼, ±â»ó °üÃø¼Ò, À§¼º Åë½Å Àåºñ µîÀº ÀÌ·¯ÇÑ ¸Æ¶ô¿¡¼ Áß¿äÇÑ Çϵå¿þ¾îÀÇ ¿¹ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±¸¼º¿ä¼Ò´Â Àç³ °¨Áö ¹× Á¶±â °æº¸ ½Ã½ºÅÛÀÇ Á¤È®¼º°ú ½Å·Ú¼ºÀ» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Çϵå¿þ¾îÀÇ Ç°Áú°ú ³»±¸¼ºÀº °¡È¤ÇÑ È¯°æ Á¶°ÇÀ» °ßµð°í Àû½Ã¿¡ µ¥ÀÌÅ͸¦ Á¦°øÇÏ¿© ±Ã±ØÀûÀ¸·Î Àû±ØÀûÀÎ Àç³ ¿ÏÈ ¹× ´ëÀÀ È°µ¿À» °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
È«¼ö °¨Áö ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ºü¸¥ CAGR ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼öÀ§ ¼¾¼³ª °¿ì·®°è¿Í °°Àº ±â´ÉÀ» °®Ãá ÀÌ ¼¾¼µéÀº °¿ì·®, ¼öÀ§, ±â»ó Á¶°Ç¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ Áö¼ÓÀûÀ¸·Î ¼öÁýÇÕ´Ï´Ù. ÀÌ ½Ç½Ã°£ µ¥ÀÌÅÍ´Â IoT ¿¬°áÀ» ÅëÇØ Áß¾Ó ¼¹ö³ª Ŭ¶ó¿ìµå Ç÷§ÆûÀ¸·Î Àü¼ÛµÇ¾î È«¼ö¸¦ ³ªÅ¸³»´Â ºñÁ¤»óÀûÀÎ ÆÐÅÏÀ̳ª ÀÓ°è°ªÀ» °¨ÁöÇÏ´Â ¾Ë°í¸®ÁòÀ» ÅëÇØ ºÐ¼®µË´Ï´Ù. È«¼ö °¡´É¼ºÀÌ È®ÀεǸé Á¶±â °æº¸°¡ ¹ß·ÉµÇ°í, ´ç±¹°ú Áö¿ª»çȸ¿¡ °æº¸¸¦ ¹ß·ÉÇÏ¿© ´ëÇÇ ¹× È«¼ö ´ëÃ¥°ú °°Àº Á¶Ä¡¸¦ Àû½Ã¿¡ ÃëÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ »çÀü ¿¹¹æÀû Á¢±Ù ¹æ½ÄÀº È«¼ö¿¡ ´ëÇÑ ´ëºñ¸¦ Å©°Ô °ÈÇÏ°í È«¼ö°¡ Àθí°ú Àç»ê¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì ÀÚ¿¬ÀçÇØ °¨Áö IoT ½ÃÀåÀÌ ½ÃÀå Á¡À¯À²ÀÇ ´ëºÎºÐÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÷´Ü ±â¼ú ÀÎÇÁ¶ó¿Í źźÇÑ Àç³ °ü¸® Àü·«ÀÌ Á¶±â °æº¸ ¹× Àç³ ´ëÀÀÀ» À§ÇÑ IoT ±â¹Ý ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ Á¤ºÎ, Á¶Á÷ ¹× Áö¿ª »çȸ´Â IoT ¼¾¼¿Í ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» È°¿ëÇÏ¿© ȯ°æ Á¶°Ç°ú ÁöÁúÇÐÀû È°µ¿ÀÇ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ¼öÁýÇÏ¿© Àç³ÀÇ ¿µÇâÀ» ÁÙÀ̱â À§ÇÑ ¼±Á¦Àû ´ëÀÀÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ȸº¹Åº·Â¼º°ú Çõ½Å¿¡ ÁßÁ¡À» µÐ ºÏ¹Ì´Â ÃÖ÷´Ü ÀÚ¿¬ÀçÇØ °¨Áö IoT ±â¼ú °³¹ß ¹× µµÀÔÀ» ¼±µµÇÏ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸¹Àº ¾Æ½Ã¾Æ ±¹°¡µéÀÇ ±Þ¼ÓÇÑ µµ½ÃÈ¿Í Àα¸ Áõ°¡·Î ÀÎÇØ À糿¡ ´ëÇÑ Ãë¾à¼ºÀÌ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¾Æ½Ã¾ÆÅÂÆò¾çÀº Á¶±â °æº¸ ½Ã½ºÅÛ ¹× Àç³ ´ëÀÀ È°µ¿À» °ÈÇϱâ À§ÇØ IoT ±â¼úÀ» ±¤¹üÀ§ÇÏ°Ô µµÀÔÇÏ°í ÀÖÀ¸¸ç, IoT ¼¾¼ ¹× ¸ð´ÏÅ͸µ ÀåÄ¡´Â ÁöÁø È°µ¿, ±â»ó ÆÐÅÏ ¹× ȯ°æ º¯È¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Á¦°øÇÏ¿© º¸´Ù È¿°úÀûÀÎ Àç³ ´ëÀÀ ¹× À§Çè Áö¿ª »çȸÀÇ Àû½Ã ´ëÇÇ°¡ °¡´ÉÇϵµ·Ï Áö¿øÇÕ´Ï´Ù. À§Çè¿¡ óÇÑ Áö¿ª»çȸ¸¦ Àû½Ã¿¡ ´ëÇǽÃų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »çÀü ¿¹¹æÀû Á¢±Ù ¹æ½ÄÀº Áö¿ª ³» ÀÚ¿¬ÀçÇØÀÇ Ä¡¸íÀûÀÎ ¿µÇâÀ» ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Natural Disaster Detection IoT Market is accounted for $0.5 billion in 2023 and is expected to reach $4.4 billion by 2030 growing at a CAGR of 34.1% during the forecast period. Natural Disaster Detection IoT is the use of Internet of Things (IoT) technology to monitor and detect various natural disasters, such as earthquakes, floods, wildfires, and hurricanes. IoT sensors and devices are deployed in disaster-prone areas to collect real-time data on environmental conditions and geological activity. This data is then analyzed to provide early warnings and facilitate rapid response efforts, enhancing disaster preparedness, minimizing damage, and saving lives.
According to the 2019 mobile economy report published by GSMA Intelligence, 46% of connections in North America will be on 5G networks by 2025.
By deploying IoT sensors and monitoring systems in disaster-prone areas, early warnings and real-time data collection enable authorities and communities to prepare and respond swiftly to impending natural disasters, such as hurricanes, floods, or wildfires. These timely alerts allow for timely evacuation, infrastructure protection, and resource allocation, ultimately reducing property damage, loss of life, and economic impact. The cost-effectiveness of IoT-based disaster detection solutions further incentivizes their implementation, making them a crucial tool in enhancing disaster resilience and minimizing the devastating consequences of such events.
As these devices are often deployed in remote and harsh environments, they can be susceptible to physical damage, network disruptions, or cyber attacks. If IoT sensors and communication infrastructure are compromised, the reliability and accuracy of disaster detection and early warning systems can be compromised, leading to false alarms or delayed responses. Ensuring the security, redundancy, and resilience of IoT devices in such critical applications is essential to maintaining the trust and effectiveness of natural disaster detection IoT systems addressing these vulnerabilities are crucial for reliable disaster mitigation and response.
By harnessing advanced machine learning algorithms and data analytics, IoT systems can not only detect ongoing disasters but also predict and forecast potential events with greater accuracy. These tools can analyze historical data, environmental patterns, and real-time sensor information to provide early warnings and actionable insights. This proactive approach enables authorities and communities to prepare more effectively, allocate resources efficiently, and minimize the impact of natural disasters. Embracing predictive analysis through AI and data analytics enhances the capabilities of the Natural Disaster Detection IoT, ultimately saving lives and reducing devastation.
While IoT sensors and devices are vital for data collection and early warning systems, they rely on network connectivity that can be severely disrupted during catastrophic events like earthquakes or hurricanes. Such breakdowns can impede the timely transmission of critical information to authorities and emergency responders, hindering coordinated rescue and relief efforts. Addressing this threat requires robust communication redundancies, backup power sources, and resilient infrastructure to ensure uninterrupted data flow during disasters. Overcoming these challenges is essential to maximizing the effectiveness of IoT-based disaster detection and response systems.
The negative impact of COVID-19 on natural disaster detection IoT was primarily felt due to logistical challenges and resource constraints. Lockdowns and travel restrictions disrupted supply chains, delaying the production and deployment of IoT devices and sensors critical for disaster monitoring. Additionally, budget reallocations towards pandemic-related needs reduced funding for IoT projects, affecting their implementation. Social distancing measures hampered maintenance and on-site installations of equipment, further impeding progress. However, the pandemic also highlighted the importance of resilient disaster detection and response systems, leading to increased interest and innovation in IoT solutions.
The hardware segment is expected to have a lucrative growth. These physical components are strategically deployed in disaster-prone areas to collect real-time data on environmental conditions, geological activity, and other relevant parameters. Earthquake seismometers, flood sensors, weather stations, and satellite communication equipment are examples of critical hardware in this context. These components play a pivotal role in ensuring the accuracy and reliability of disaster detection and early warning systems. The quality and durability of hardware are essential to withstand harsh environmental conditions and deliver timely data, ultimately enabling proactive disaster mitigation and response efforts.
The flood detection segment is anticipated to witness the fastest CAGR growth during the forecast period. These sensors, often equipped with features like water level sensors and rain gauges, continuously gather data on rainfall intensity, water levels, and weather conditions. This real-time data is transmitted to central servers or cloud platforms via IoT connectivity, where it's analyzed using algorithms to detect abnormal patterns or thresholds indicative of flooding. When potential flooding is identified, early warnings are triggered, alerting authorities and communities and allowing them to take timely actions such as evacuations and flood control measures. This proactive approach significantly enhances flood preparedness and minimizes the impact of floods on lives and property.
During the forecast period, it is expected that the North American Natural Disaster Detection IoT market will continue to hold a majority of the market share. Its advanced technological infrastructure and robust disaster management strategies have driven significant adoption of IoT-based solutions for early warning and disaster response. North American governments, organizations, and communities leverage IoT sensors and monitoring systems to collect real-time data on environmental conditions and geological activity, enabling proactive measures to mitigate disaster impact. With a focus on resilience and innovation, North America continues to lead in the development and implementation of cutting-edge natural disaster detection IoT technologies.
Asia Pacific is projected to have the highest CAGR over the forecast period. The rapid urbanization and population growth in many Asian countries have increased their vulnerability to these events. Consequently, Asia Pacific has embraced IoT technology extensively to enhance early warning systems and disaster response efforts. IoT sensors and monitoring devices provide real-time data on seismic activities, weather patterns, and environmental changes, allowing for more effective disaster preparedness and the timely evacuation of at-risk communities. This proactive approach helps mitigate the devastating impact of natural disasters in the region.
Some of the key players in Natural Disaster Detection IoT Market include: SAP SE, Aplicaciones Technologicas Sa, BlackBerry Limited, Bulfro Monitech, Earth Networks, Green Stream Technologies, Grillo, Intel, Knowx Innovations Pvt. Ltd., Lumineye, Nec Corporation, Nokia, Skyalert, Ogoxe, Venti LLC, One Concern, Inc., Trinity Mobility, OnSolve LLC, Responscity Systems, Sony, Sadeem Technology, Simplisafe, Sensoterra and Semtech Corporation.
In February 2023, the completion of Semtech's acquisition of Sierra Wireless in an all-cash deal with a total enterprise value of roughly US$1.2 billion was announced by Semtech Corporation and Sierra Wireless, Inc. With this deal, Semtech's yearly revenue nearly doubles and an additional US$100 million in high-margin IoT Cloud services recurring sales are added.
In September 2022, Semtech and Sierra Wireless entered into an agreement to create a comprehensive IoT platform and enable the transformation to a smarter, more sustainable planet.
In July 2022, NEC signed an agreement with the City of Kawasaki, Kanagawa Prefecture, regarding their cooperation and partnership in disaster-proof urban development based on digital technology. It was an unprecedented initiative involving a municipality in Japan.