¼¼°èÀÇ ¿Ü°ñ°Ý ½ÃÀå - ´ë»ó ½Åü ºÎÀ§º°, µ¿ÀÛ ¸ðµåº°, ¿Ü°ñ°Ý Çüź°, °¡µ¿ ¼ºº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° : »ê¾÷ µ¿Çâ ¹× ¼¼°è ¿¹Ãø(2023-2035³â)
Global Exoskeleton Market by Body Part Covered, Mode of Operation, Form of Exoskeleton, Mobility, End Users and Geography : Industry Trends and Global Forecasts, 2023-2035
»óǰÄÚµå : 1398314
¸®¼­Ä¡»ç : Roots Analysis
¹ßÇàÀÏ : 2023³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 425 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,799 £Ü 6,606,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,999 £Ü 9,635,000
PDF (One-Location Site License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ Æ¯Á¤ »ç¾÷ ºÎ¹®¿¡ ¼ÓÇÑ ¸ðµç ºÐµéÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 10,599 £Ü 14,591,000
PDF (Department License) help
PDF º¸°í¼­¸¦ ºÎ¼­ ´ÜÀ§·Î 12¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,999 £Ü 24,779,000
PDF (Enterprise License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è ¿Ü°ñ°Ý ½ÃÀåÀº ¿¹Ãø ±â°£(2023-2035³â) µ¿¾È 23.1%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2035³â±îÁö 20¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Áö³­ ¸î ³âµ¿¾È ÀÇ·á ½Ã½ºÅÛÀº ´Ù¹ß¼º °æÈ­Áõ°ú ³úÁ¹Áß°ú °°Àº ½Å°æ ÁúȯÀ¸·Î ÀÎÇÑ ºÎ´ã Áõ°¡¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¼¼°èº¸°Ç±â±¸(WHO)¿¡ µû¸£¸é, ÇöÀç ¼¼°èÀûÀ¸·Î ¾à 180¸¸ ¸íÀÌ ´Ù¹ß¼º °æÈ­ÁõÀ» ¾Î°í ÀÖÀ¸¸ç, ¸Å³â 1,220¸¸ ¸í ÀÌ»óÀÌ ³úÁ¹ÁßÀ» ¾Î°í ÀÖ½À´Ï´Ù. °í·ÉÈ­·Î ÀÎÇØ ÀÌ ¼öÄ¡´Â ´õ¿í Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½Å°æÁúȯÀº Á¾Á¾ ±Ù·ÂÀúÇϸ¦ ÃÊ·¡Çϸç, ƯÁ¤ ±ÙÀ°±º(Æí¸¶ºñ, ´ë¸¶ºñ, »çÁö¸¶ºñ µî)À̵ç Àü½Å¿¡ °ÉÃļ­µç ¿îµ¿´É·Â¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¾ÈŸ±õ°Ôµµ ½Å°æ ¿îµ¿ Àå¾Ö¸¦ Ä¡·áÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀº ¾øÁö¸¸ ÈÙü¾î, ¸ñ¹ß, º¸Çà±â¿Í °°Àº À̵¿ º¸Á¶±â±¸¸¦ »ç¿ëÇÏ¿© ȯÀÚÀÇ µ¶¸³¼º°ú Æí¾ÈÇÔÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¸Á¶±â±¸´Â ³Î¸® »ç¿ëµÇ°í ÀÖÁö¸¸, ±Ùº»ÀûÀÎ ÇØ°áÃ¥À̶ó±âº¸´Ù´Â ´Ü±âÀûÀÎ ¿ÏÈ­¸¦ °¡Á®´Ù ÁÙ »ÓÀÔ´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ±â±¸¸¦ ºÎÀûÀýÇÏ°Ô Ãë±ÞÇϰųª Àå½Ã°£ »ç¿ëÇÏ¸é ½ÅüÀû ÇÇ·Î, ºÒÆíÇÔ, ºÎ»óÀ» ÃÊ·¡ÇÏ¿© ±Ã±ØÀûÀ¸·Î ȯÀÚÀÇ »îÀÇ ÁúÀ» ¶³¾î ¶ß¸± ¼ö ÀÖ½À´Ï´Ù. ½ÇÁ¦·Î ¼öµ¿ ÈÙü¾î »ç¿ëÀÚÀÇ ¾à 50%°¡ ÀλýÀÇ ¾î´À ½ÃÁ¡¿¡¼­ ¾î±ú ºÎ»óÀ» °æÇè ÇÑ °ÍÀ¸·Î º¸°íµÇ¾ú½À´Ï´Ù.

ÀÌÈÄ ¿Ü°ñ°Ý(exoskeleton)ÀÌ ºÎºÐÀûÀ¸·Î ´ëü ¶Ç´Â º¸¿ÏÀûÀÎ ÀçȰ Àåºñ·Î µîÀåÇÏ¿© ô¼ö ¼Õ»ó ¹× °ü·Ã ÁúȯÀ» ¾Î°í ÀÖ´Â »ç¶÷µéÀÌ º´¿øÀ̳ª Áý¿¡¼­ ±âÁ¸ÀÇ À̵¿¼ö´Ü¿¡ ºñÇØ ´õ ÀÚÀ¯·Ó°Ô °ÉÀ» ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÇ·á¿ë ¿Ü°ñ°ÝÀº ºÎºÐ ¸¶ºñ ¶Ç´Â ¿ÏÀü ¸¶ºñ ¿©ºÎ¿¡ °ü°è¾øÀÌ ¿îµ¿ ´É·Â¿¡ ¹®Á¦°¡ Àִ ȯÀÚ°¡ »óÁö ¶Ç´Â ÇÏÁöÀÇ ¿òÁ÷ÀÓÀ» µÇãÀ» ¼ö ÀÖµµ·Ï ¼³°èµÈ Âø¿ë °¡´ÉÇÑ Àü±â ±â°è ÀåÄ¡ÀÔ´Ï´Ù. ½Å°æ°¡¼Ò¼ºÀ» Ȱ¿ëÇÏ¿© ¼¾¼­, ¸ðÅÍ, ¾×Ãß¿¡ÀÌÅÍ, Àü¿ø °ø±Þ ÀåÄ¡ ¹× Á¦¾î Àü·«À» °®Ãá ÀÇ·á¿ë ¿Ü°ñ°ÝÀº ÈÄõ¼º ³ú¼Õ»ó(ABI) ¹× ô¼ö ¼Õ»ó(SCI)°ú °°Àº ¼Õ»óÀ¸·Î ÀÎÇÑ ±âº» µ¿ÀÛÀÇ È¸º¹À» ÃËÁøÇϰí ÀçȰÀ» °¡¼ÓÈ­ÇÏ´Â µ¥ µµ¿òÀ» ÁÝ´Ï´Ù. ȯÀÚ»Ó¸¸ ¾Æ´Ï¶ó °£È£»ç, ¿Ü°úÀÇ»ç µî ÀÇ·á ¼­ºñ½º Á¦°ø¾÷üµéµµ ÀÇ·á ºÐ¾ß¿¡¼­ À°Ã¼ÀûÀ¸·Î Èûµç ¿ªÇÒ·Î ÀÎÇØ ´Ù¾çÇÑ ±Ù°ñ°Ý°è Àå¾Ö¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á¿ë ¿Ü°ñ°ÝÀº ȯÀÚ¸¦ µé¾î ¿Ã¸®°Å³ª À̵¿, Àå¾Ö¹° À̵¿, Àå½Ã°£ ¼­ ÀÖ´Â µîÀÇ ÀÛ¾÷¿¡¼­ °£º´ÀÎÀ» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÇ·á »ê¾÷ ¿Ü¿¡µµ °Ç¼³, ¹°·ù, Â÷·® Á¦Á¶, Ç×°ø±â Á¦Á¶, Á¶¼±¼Ò, ÀÚµ¿Â÷ ¹× ±Ý¼Ó Á¤ºñ, ÁÖÁ¶, Ç×°ø, À¯Áöº¸¼ö, ±âŸ °øÀå ÀÛ¾÷ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¿Ü°ñ°Ý ±â¼úÀÌ ±Ù·ÎÀÚÀÇ ¾÷¹« ¼öÇà ´É·ÂÀ» Çâ»ó½ÃŰ°í »ê¾÷ÀçÇØ¸¦ ¿¹¹æÇϱâ À§ÇØ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ±¹Á¦³ëµ¿±â±¸(ILO)ÀÇ Ã߻꿡 µû¸£¸é, ¸Å³â 230¸¸ ¸í ÀÌ»óÀÇ ±Ù·ÎÀÚ°¡ ¾÷¹«»ó »ç°í³ª Áúº´À¸·Î »ç¸ÁÇϰí ÀÖ½À´Ï´Ù. ÀÌó·³ ¸Å³â ¸¹Àº »ç°í°¡ ¹ß»ýÇϰí ÀÖ´Â »óȲ¿¡¼­ ¹«°Å¿î ÁüÀ» µé°Å³ª ¸Ó¸® À§ ÀÛ¾÷À» ÇÏ´Â µî À°Ã¼ÀûÀ¸·Î Èûµç ÀÛ¾÷À» ÇÏ´Â ±Ù·ÎÀÚ¸¦ º¸Á¶ÇÏ´Â »ê¾÷¿ë ¿Ü°ñ°ÝÀÇ µµÀÔÀº ÀÛ¾÷Àå ¾ÈÀüÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó, Á÷¿øµéÀÇ Á¤Âø·üÀ» ³ôÀÌ°í »ý»ê¼ºÀ» Çâ»ó½ÃŰ¸ç ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù.

¿Ü°ñ°Ý ÀåÄ¡´Â ¸¹Àº ÀÌÁ¡À» Á¦°øÇÔ¿¡µµ ºÒ±¸Çϰí, ºñ¿ë À庮°ú ÀáÀçÀû »ç¿ëÀÚÀÇ ÀÎ½Ä ºÎÁ· µî ¿©·¯ °¡Áö ¿äÀÎÀ¸·Î ÀÎÇØ äÅÃÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù. ¿Ü°ñ°Ý Á¦Á¶¾÷üµéÀº ¿Ü°ñ°ÝÀÌ º¸´Ù Æø³Ð°Ô ¼ö¿ëµÉ ¼ö ÀÖµµ·Ï ¿Ü°ñ°Ý ºñ¿ë Àý°¨¿¡ ¿¬±¸°³¹ß ³ë·ÂÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ÄÄÇ»ÆÃ, µö·¯´×, ½º¸¶Æ® ¼¾¼­, ÀΰøÁö´É µî ÷´Ü ±â¼úÀ» ¿Ü°ñ°Ý Á¦Ç°¿¡ Àû¿ëÇϰí ÀÖ½À´Ï´Ù. ¿Ü°ñ°Ý ±â¼úÀÌ °è¼Ó ¹ßÀüÇϰí ÀÌ·¯ÇÑ ÀåÄ¡ÀÇ ºñ¿ëÀÌ ³·¾ÆÁö°í ÀÌÇØ°ü°èÀÚµéÀÌ ¿Ü°ñ°Ý Á¦Ç°°ú °ü·ÃµÈ ±àÁ¤ÀûÀÎ ÅõÀÚ¼öÀÍ·ü(ROI)À» ÀνÄÇÔ¿¡ µû¶ó ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÀÌ ½Å±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ¿¹Ãø ±â°£ µ¿¾È ¼¼°è ¿Ü°ñ°Ý ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀÔ´Ï´Ù.

¼¼°è ¿Ü°ñ°Ý(Exoskeleton) ½ÃÀå¿¡ ´ëÇØ ºÐ¼®ÇßÀ¸¸ç, ½ÃÀåÀÇ ±âº» ±¸Á¶¿Í ÃֽŠ»óȲ, ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎ ¹× ¾ïÁ¦¿äÀÎ, Á¦Ç° °æÀï·Â, ÃÖ±Ù ÀÚº» °Å·¡ ¹× »ç¾÷ Á¦ÈÞ µ¿Çâ, Àüü ½ÃÀå ±Ô¸ð µ¿Çâ Àü¸Á, ºÎ¹®º°/Áö¿ªº° »ó¼¼ µ¿Çâ, Á¾¾ç À§¾÷ÇÁ·ÎÆÄÀÏ, ÇâÈÄ ½ÃÀå ¹ßÀü Àü·« µîÀ» Á¶»çÇÏ¿´½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå ±â¾÷

  • Bionic Yantra
  • CYBERDYNE
  • Ekso Bionics
  • ExoAtlet
  • Fourier Intelligence
  • Gloreha
  • Guangzhou Yikang Medical Equipment
  • Hexar Humancare
  • Hocoma
  • MediTouch
  • Milebot Robotics
  • Myomo
  • Neofect
  • NextStep Robotics
  • Panasonic
  • ReWalk Robotics
  • Rex Bionics
  • Roam Robotics
  • Trexo Robotics
  • Tyromotion
  • U&O Technologies

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå ºÐ¼® ¹æ¹ý

Á¦3Àå °æÁ¦ ¹× ±âŸ ÇÁ·ÎÁ§Æ® ƯÀ¯ÀÇ °í·Á»çÇ×

Á¦4Àå ÁÖ¿ä ¿ä¾à

Á¦5Àå ¼­·Ð

Á¦6Àå ÀÇ·á¿ë ¿Ü°ñ°Ý : ½ÃÀå ±¸µµ

Á¦7Àå ºñÀÇ·á¿ë ¿Ü°ñ°Ý : ½ÃÀå ±¸µµ

Á¦8Àå ÀÇ·á¿ë ¿Ü°ñ°Ý : Á¦Ç° °æÀï·Â ºÐ¼®

Á¦9Àå ¿Ü°ñ°Ý °³¹ßÀÚ : »ó¼¼ÇÑ ±â¾÷ °³¿ä

Á¦10Àå ¿Ü°ñ°Ý °³¹ßÀÚ : ±â¾÷ °³¿ä(Ç¥ Çü½Ä)

Á¦11Àå ÀÇ·á¿ë ¿Ü°ñ°Ý : »ç¾÷ Á¦ÈÞ ¹× Çù¾÷

Á¦12Àå Æ¯Ç㠺м®

Á¦13Àå ºí·ç ¿À¼Ç Àü·«

Á¦14Àå ½ÃÀå¿¡ ´ëÇÑ ¿µÇ⠺м® : ÃËÁø¿äÀÎ, ¾ïÁ¦¿äÀÎ, ±âȸ, °úÁ¦

Á¦15Àå ¼¼°èÀÇ ¿Ü°ñ°Ý ½ÃÀå

Á¦16Àå ¿Ü°ñ°Ý ½ÃÀå : ´ë»ó ½Åü ºÎÀ§º°

Á¦17Àå ¿Ü°ñ°Ý ½ÃÀå : µ¿ÀÛ ¸ðµåº°

Á¦18Àå ¿Ü°ñ°Ý ½ÃÀå : ¿Ü°ñ°Ý Çüź°

Á¦19Àå ¿Ü°ñ°Ý ½ÃÀå : °¡µ¿¼ºº°

Á¦20Àå ¿Ü°ñ°Ý ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦21Àå ¿Ü°ñ°Ý ½ÃÀå : Áö¿ªº°

Á¦22Àå °á·Ð

Á¦23Àå °æ¿µÁø ÀλçÀÌÆ®

Á¦24Àå ºÎ·Ï 1 : ºí·ç ¿À¼Ç Àü·«°ú ½ÃÇÁÆ® Åø

Á¦25Àå ºÎ·Ï 2 : Ç¥ Çü½Ä µ¥ÀÌÅÍ

Á¦26Àå ºÎ·Ï 3 : ±â¾÷ ¹× Á¶Á÷ ¸®½ºÆ®

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The global exoskeleton market is projected to reach USD 20,000 million by 2035 growing at a CAGR of 23.1% during the forecast period 2023-2035.

From the past years, the healthcare system has faced an increasing burden from neurological disorders like multiple sclerosis and strokes, which have become more prevalent. According to the World Health Organization (WHO), approximately 1.8 million people worldwide are currently living with multiple sclerosis, and over 12.2 million individuals suffer from strokes each year. These numbers are expected to rise further due to the aging population.

Neurological disorders often result in muscle weakness, impacting mobility, whether it's in specific muscle groups (like hemiplegia, paraplegia, or quadriplegia) or throughout the entire body. Unfortunately, there is no cure for neuromotor impairment, but the use of assistive mobility devices such as wheelchairs, crutches, and walkers can enhance independence and comfort for patients. While these devices are widely used, they offer short-term relief rather than a transformative solution. Additionally, improper handling or prolonged use of these devices can lead to physical fatigue, discomfort, and injuries, ultimately reducing the patients' quality of life. In fact, it's reported that approximately 50% of manual wheelchair users experience shoulder injuries at some point in their lives.

Over time, exoskeletons have emerged as a partial alternative or complementary rehabilitation device, enabling individuals with spinal cord injuries and related conditions to walk more freely in hospitals and at home compared to traditional mobility options. A medical exoskeleton is a wearable electromechanical device designed to assist patients with mobility issues, whether they are partially or completely paralyzed, in regaining movement in their upper or lower extremities. By harnessing neuroplasticity, medical exoskeletons equipped with sensors, motors, actuators, power sources, and control strategies facilitate the recovery of fundamental movements and accelerate rehabilitation from injuries, such as acquired brain injury (ABI) or spinal cord injury (SCI). Beyond patients, healthcare providers such as nurses and surgeons also face various musculoskeletal disorders due to the physically demanding nature of their roles in the healthcare sector. Medical exoskeletons can assist caregivers in tasks such as lifting and moving patients, navigating obstacles, and standing for extended periods.

Outside the healthcare industry, exoskeleton technology is being used to enhance the performance of workers and prevent work-related accidents in a wide range of industries, including construction, logistics, vehicle manufacturing, aircraft production, shipyards, automotive and metal mechanics, foundries, aeronautics, maintenance, and other factory work. According to estimates from the International Labor Organization (ILO), over 2.3 million workers die each year due to work-related accidents or diseases. With such a significant number of accidents occurring annually, the adoption of industrial exoskeletons to assist workers in physically demanding tasks such as lifting heavy loads or performing overhead work has the potential to not only improve workplace safety but also increase employee retention, enhance productivity, and reduce costs.

Owing to the numerous advantages they offer, the adoption of exoskeleton devices is hindered by various factors, including cost barriers and a lack of awareness among potential users. To encourage broader acceptance, exoskeleton companies are directing their research and development efforts towards reducing the cost of exoskeletons. They are also incorporating advanced technologies such as cloud computing, deep learning, smart sensors, and artificial intelligence into their exoskeleton product offerings. As exoskeleton technology continues to advance and the cost of these devices decreases, and as stakeholders recognize the positive return on investment (ROI) associated with exoskeleton products due to their higher benefit-cost ratio, the adoption of this emerging technology is expected to increase across various industries. This, in turn, will drive the growth of the global exoskeleton market during the forecast period.

Key Market Segments:

Body Part Covered

Mode of Operation

Form

Mobility

End Users

Geography

Research Coverage:

Key Benefits of Buying this Report:

Key Market Companies:

  • Bionic Yantra
  • CYBERDYNE
  • Ekso Bionics
  • ExoAtlet
  • Fourier Intelligence
  • Gloreha
  • Guangzhou Yikang Medical Equipment
  • Hexar Humancare
  • Hocoma
  • MediTouch
  • Milebot Robotics
  • Myomo
  • Neofect
  • NextStep Robotics
  • Panasonic
  • ReWalk Robotics
  • Rex Bionics
  • Roam Robotics
  • Trexo Robotics
  • Tyromotion
  • U&O Technologies

TABLE OF CONTENTS

1. PREFACE

2. RESEARCH METHODOLOGY

3. ECONOMIC AND OTHER PROJECT SPECIFIC CONSIDERATIONS

4. EXECUTIVE SUMMARY

5. INTRODUCTION

6. MEDICAL EXOSKELETON: MARKET LANDSCAPE

7. NON-MEDICAL EXOSKELETON: MARKET LANDSCAPE

8. MEDICAL EXOSKELETON: PRODUCT COMPETITVENESS ANALYSIS

9. EXOSKELETON DEVELOPERS: DETAILED COMPANY PROFILES

10. EXOSKELETON DEVELOPERS: TABULATED COMPANY PROFILES

11. MEDICAL EXOSKELETON: PARTNERSHIPS AND COLLABORATIONS

12. PATENT ANALYSIS

13. BLUE OCEAN STRATEGY

14. MARKET IMPACT ANALYSIS: DRIVERS, RESTRAINTS, OPPORTUNITIES AND CHALLENGES

15. GLOBAL EXOSKELETON MARKET

16. EXOSKELETON MARKET, BY BODY PART COVERED

17. EXOSKELETON MARKET, BY MODE OF OPERATION

18. EXOSKELETON MARKET, BY THEIR FORM

19. EXOSKELETON MARKET, BY THEIR MOBILITY

20. EXOSKELETON MARKET, BY END USERS

21. EXOSKELETON MARKET, BY GEOGRAPHY

22. CONCLUSION

23. EXECUTIVE INSIGHTS

24. APPENDIX 1: BLUE OCEAN STRATEGY AND SHIFT TOOLS

25. APPENDIX 2: TABULATED DATA

26. APPENDIX 3: LIST OF COMPANIES AND ORGANIZATION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â