Automotive High-precision Positioning Research Report, 2025
상품코드:1694622
리서치사:ResearchInChina
발행일:2025년 02월
페이지 정보:영문 450 Pages
라이선스 & 가격 (부가세 별도)
한글목차
2024년 중국의 국내 승용차의 첨단 자율주행(L2.5 고속도로 NOA, L2.9 도시+고속도로 NOA)의 보급률은 11.4%를 나타낼 것이며, 2030년까지 31.6%로 상승할 것으로 예측됩니다. 고속도로 NOA 시나리오에서는 차선 레벨/데시미터 레벨의 측위만으로도 충분합니다. 그러나 도시 NOA 시나리오에서는 좁은 차선과 복잡한 도로 상황으로 인해 센티미터 단위의 측위 정확도가 요구됩니다.
자율주행 인식의 핵심인 고정밀 측위는 큰 시장 잠재력을 가지고 있으며, 지속적인 기술 발전이 요구되고 있습니다.
고정밀 측위 개발의 향후 방향
방향성 1: 엔드투엔드 자율주행 솔루션의 도메인 제어 및 통합 소프트웨어/하드웨어/서비스에 IMU를 통합하는 방향성 1
엔드-투-엔드 자율주행 시스템에서는 IMU를 도메인 컨트롤러에 통합하는 것이 주류가 되고 있습니다. 자율주행의 진화에 따라 차량은 인식과 측위에서 더 높은 정확도와 안전성을 요구하고 있으며, 특히 초정밀 측위가 요구되는 L3+ 자율주행차에서 그 경향이 두드러집니다.
고정밀 측위 모듈을 SMD를 통해 자율주행 도메인 컨트롤러에 통합하여 데이터 전송을 줄이고, 정보 지연을 효과적으로 줄이고, 측위 정확도를 향상시킬 수 있습니다. 구체적으로, 여러 유형의 아키텍처 설계 패턴이 있습니다.
자동운전 도메인 컨트롤러에 통합된 IMU, T-BOX에 배치된 GNSS
GNSS 칩과 IMU 모듈을 모두 통합한 자율주행 도메인 컨트롤러를 제공합니다.
도메인 컨트롤러에 통합된 INS 모듈과 결합된 IMU 및 GNSS와 결합된 도메인 컨트롤러
자율주행 도메인 컨트롤러에 GNSS 칩을 내장한 DJI의 통합형 'LiDAR+Vision+IMU' 솔루션
또한 IMU 모듈을 자율주행 도메인 컨트롤러에 통합할 때 해결해야 할 일련의 엔지니어링 문제가 남아있습니다.
시간 동기화: 첨단 지능형 주행 차량은 위치 데이터의 실시간 성능과 정확도에 대한 엄격한 요구 사항이 있습니다. 동시에 실시간 위치 확인이 불충분하면 위치 확인 정확도가 떨어집니다.
기능 안전: 지능형 주행 도메인 컨트롤러는 많은 기능 모듈이 통합되어 있으므로 시스템이 비교적 복잡하고, 일반적으로 멀티 코어, 멀티 프로세스 작동 환경과 복잡한 용도 데이터 흐름을 가지고 있으므로 기능 안전을 달성하기가 어렵습니다. OEM은 도메인 컨트롤러에 배포된 완전한 RTK&INS 복합 알고리즘을 갖춘 기능 안전 솔루션을 필요로 합니다.
온도 보정: 온도 변화에 매우 민감한 IMU를 GNSS와 도메인 컨트롤러에 통합하는 경우, 작동 온도가 제품에 미치는 손상을 고려해야 합니다.
OEM의 제품 활용을 지원하기 위해 Sixents Technology는 2024년 상반기에 'Smart Driving Software, Hardware and Service Integrated Positioning Terminal'을 발표하였습니다. 이 터미널은 여러 제품 라인과 유연하게 결합하는 유기체로서, 기존 P-BOX의 기능을 실현할 뿐만 아니라 고정밀 측위 도메인 컨트롤러의 통합 솔루션을 위한 선험적 플랫폼 역할을 합니다. 고정밀 측위 기능은 P-BOX에서 도메인 컨트롤러로 이동하고 있으며, 모든 제품 라인을 분해해야 합니다. 이 단말기는 통합형 솔루션의 추진을 크게 가속화할 수 있습니다. 앞으로 점점 더 많은 스마트 드라이빙 소프트웨어, 하드웨어, 서비스 통합형 포지셔닝 솔루션이 다양한 도메인 컨트롤러에 구현될 것으로 예상됩니다.
중국의 자동차 산업에 대해 조사분석했으며, 자동차용 고정도 측위의 주요 응용 시나리오, 시장 규모, 혁신적인 측위 기술, 각사 솔루션 등의 정보를 제공하고 있습니다.
목차
제1장 고정도 측위의 정의와 시장 개요
정의
고정도 측위의 주요 응용 시나리오
고정도 측위 시장 규모
고정도 측위 시장의 기업
제2장 고정도 측위 산업의 동향
혁신적인 측위 기술
측위 알고리즘
국내 공급망
자동차 등급 IMU
측위 서비스 운영 모델
제3장 고정도 측위 탑재 형식, OEM 데이터
OEM의 고정도 측위 탑재 데이터
OEM의 고정도 측위 탑재 형식의 요약
OEM의 고정도 측위 솔루션의 요약
Geely
Xpeng
Li Auto
NIO
GAC
Tesla
Huawei(Avatr, Seres, ARCFOX 등)
기타 OEM
제4장 국내 고정도 측위 공급업체
Sixents Technology
Asensing
DAISCH
CHCNAV
Qianxun SI
BYNAV Technology
ComNav Technology
Hi-Target
BDStar Navigation
Unicore Communications
Aceinna
Geespace
DAYOUPi
Haige Communications
Quectel
DJI
W-Ibeda
China Mobile
TruePoint
STARCART
Huaxin Semiconductor
Jingwei Hirain
CXROBOT CONNECT
Forsense
MT Microsystems
Anhui XDLK Microsystem
Lins Tech
KiSilicon Technology
기타
제5장 고정도 측위 모듈 공급업체
STMicroelectronics
Novatel
u-blox
Bosch
KSA
영문 목차
영문목차
High-precision positioning research: IMU develops towards "domain controller integration" and "software/hardware integrated service integration"
According to ResearchInChina, in 2024, the penetration rate of advanced autonomous driving (L2.5 highway NOA, L2.9 urban+highway NOA) in China's domestic passenger cars reached 11.4%, and this figure is projected to rise to 31.6% by 2030. In highway NOA scenarios, lane-level/decimeter-level positioning is sufficient to identify the vehicle's lane. However, in urban NOA scenarios, due to narrow lanes and complex road conditions, centimeter-level positioning accuracy is required.
As the cornerstone of autonomous driving perception, high-precision positioning holds vast market potential and demands continuous technological advancement.
Future Directions for High-Precision Positioning Development
Direction 1: IMU Integration into Domain Control and Integrated Software/Hardware/Service in End-to-end autonomous driving solution
In end-to-end autonomous driving systems, integrating IMU into domain controllers has become mainstream. With the evolution of autonomous driving, vehicles require higher accuracy and safety in perception and positioning, especially for L3+ autonomous vehicles that demand ultra-high-precision positioning.
Integrating the high-precision positioning module into the autonomous driving domain controller via SMD can reduce data transmission, effectively shorten information delay, and improve positioning accuracy. Specifically, there are several types of architectural design patterns:
IMU integrated into autonomous driving domain controller, with GNSS placed in T-BOX.
Autonomous driving domain controllers integrating both GNSS chips and IMU modules.
IMU and GNSS combined into an INS module integrated into domain controller.
DJI's integrated "LiDAR + Vision + IMU" solution, with GNSS chips embedded in autonomous driving domain controller.
In addition, there are still a series of engineering problems that need to be solved when integrating the IMU module into autonomous driving domain controller:
Time synchronization: High-level intelligent driving vehicles have rigid requirements for the real-time performance and accuracy of positioning data. At the same time, poor real-time positioning will reduce positioning accuracy;
Functional safety: Because the intelligent driving domain controller integrates many functional modules, the system is relatively complex, and it usually has a multi-core and multi-process operating environment and complex application data flow, which makes it more difficult to achieve functional safety. OEMs need a functional safety solution with a complete RTK&INS combined algorithm deployed on the domain controller;
Temperature compensation: When integrating the IMU, which is very sensitive to temperature changes, with the GNSS and domain controller, it is necessary to consider the damage that the operating temperature may cause to the product.
In order to help the product application of OEMs, Sixents Technology launched a "Smart Driving Software, Hardware and Service Integrated Positioning Terminal" in 2024H1. As an organism that is flexibly combined with multiple product lines, the terminal can not only realize the functions of the original P-BOX, but also acts as a priori platform for high-precision positioning domain controller integrated solutions. The high-precision positioning capability has shifted from P-BOX to domain controllers, which requires all product lines to be broken down. This terminal can greatly accelerate the promotion of integrated solutions. In the future, more and more smart driving software, hardware and service integrated positioning solutions will be implemented in various domain controllers.
Sixents Technology's "Smart Driving Software, Hardware and Service Integrated Positioning Terminal" has a complete closed loop with high-precision positioning capabilities. Its four product baselines - GNSS (satellite navigation), IMU (inertial navigation), PE (terminal algorithm), and CS (differential correction service) have been owned and productized by Sixents Technology after years of R&D and verification. Among them, CS, as the first commercialized product line, has been mass-produced for passenger cars, commercial vehicles, industry applications and other fields. PE has been involved in multiple mass-production projects. Newer GNSS and IMU product lines have been included in mass-production projects.
Sixents Technology's "Smart Driving Software, Hardware and Service Integrated Positioning Terminal" is the first to integrate GNSS+IMU+PE+CS, reducing costs by 30% compared to traditional solutions.
In addition, based on Sixents Technology's globally integrated high-precision positioning services, positioning solutions at home and abroad can be unified, and OEMs do not need to replace software and hardware solutions when going overseas. Sixents Technology's "Smart Driving Software, Hardware and Service Integrated Positioning Terminal", based on global differentiated services and terminal algorithm groups, can fully cater to a unified architecture in the global market and system-wide localization, forming a stable, safe, and reliable system closed loop.
Sixents Technology has offered over 10 billion times of high-precision positioning services per day, with more than 3,000 sites, more than 15 million designated vehicles of over 40 models.
Direction 2: Multi-sensor fusion positioning achieves SLAM (simultaneous localization and mapping)
The IMU is built into the camera module and uses the visual-inertial navigation system (VINS) to use acceleration data to improve the accuracy and stability of binocular ranging. High-precision vehicle trajectory calculations can be maintained in some extreme environments, such as emergency traffic jams, heavy rain, nighttime, underground parking lots, etc.
Relying on the technological accumulation of UAV systems, DJI began to explore an inertial navigation stereoscopic binocular vision system in the field of intelligent driving as early as 2016. After years of precipitation, the system has matured. In 2025, an inertial navigation trinocular and LiDAR assembly system will be launched, with the cost much lower than the current "LiDAR + vision + P-Box" solution.
In addition to DJI, Sixents Technology has also developed a visual perception positioning terminal that integrates technologies such as binocular cameras, IMU, GNSS, RTK, and visual fusion positioning algorithms.
Direction 3: Integration of GNSS and INS, as well as integration of GNSS chip and IMU module
In order to adapt to intelligent driving system integration and cost reduction, Tier1 suppliers have launched GNSS-INS integrated solutions.
BYNAV Technology's SMD-type automotive-grade GNSS/INS high-precision integrated navigation module can be integrated into the domain control and smart driving solutions of Tier1 and other vendors to improve the overall integration of smart driving systems
Aceinna's SMD-type high-precision positioning module design solution supports the integration of INS modules composed of IMUs and GNSS into domain controllers
Sixents Technology's GNSS and INS Positioning Terminal: GNSS and IMU products will be rapidly iterated to enable a closed-loop positioning system solution ecosystem.
Direction 4: MEMS IMU chips realize integrated calculation and integrate AI algorithms
STMicroelectronics launched the ASM330LHBG1 automotive-grade AI inertial module to improve vehicle navigation and positioning accuracy and reliability
STMicroelectronics has launched the ASM330LHBG1 automotive-grade inertial module, which integrates a three-axis MEMS accelerometer, a three-axis MEMS gyroscope module and a safety software library. Equipped with ST's machine-learning core (MLC) and programmable finite state machine (FSM), the ASM330LHBG1 can run artificial-intelligence (AI) algorithms in the sensor to provide smart functionality at low power.
Asensing Technology's GST80 programmable MEMS IMU chip with built-in MCU
At the Beijing International Automotive Exhibition in April 2024, Asensing Technology unveiled its new MEMS IMU chip - GST80. This chip is the industry's first programmable automotive sensor with a built-in MCU, featuring high integration, high performance and cost-effectiveness. GST80 is completely independently designed, developed, packaged, tested and produced by Asensing Technology, and the entire production process is conducted domestically, effectively ensuring the security of the supply chain and filling the domestic gap in high-performance automotive-grade MEMS IMU chips.
High-precision positioning from the perspective of OEMs: lower hardware costs and higher algorithm performance
OEMs always seek to reduce costs and increase efficiency. On the one hand, IMU integration is achieved through powerful domain controllers to reduce hardware costs, and SD pro MAP is introduced to replace expensive HD MAP to cut down map costs. On the other hand, the complexity of map algorithms has been greatly improved, such as model-based IMU noise reduction, online calibration and temperature compensation, and the combination of vision, LiDAR and IMU for high-precision map positioning.
As autonomous driving technology continues to mature, more and more vehicles will use laser SLAM and visual SLAM technology to achieve SLAM. The tight coupling of LiDAR, vision and IMU can improve the accuracy, reliability and robustness of positioning and attitude estimation, and is particularly suitable for scenarios with high-speed dynamics, complex environments, many occlusions or unreliable GPS.
For example, XPILOT 4.0 has improved the positioning accuracy from the previous decimeter level to the centimeter level, and transferred the "GPS-based positioning" to "vision and IMU-based positioning".
In order to handle urban positioning, Xpeng has chosen a solution of signal-independent vision + IMU positioning, which is not bound by GPS signals but is extremely difficult to achieve visual positioning.
Leapmotor has upgraded the fusion positioning architecture, using the original IMU and GNSS, visual semantics and radar to perceive the environment, and then combining HD/SD maps to achieve an overall fusion positioning framework.
Table of Contents
1 Definition and Market Overview of High-precision Positioning
1.1 Definition
Definition
IMU
GNSS (the Most Mature Absolute Positioning Solution)
GNSS+IMU Combined Positioning Terminal
1.2 Main Application Scenarios of High-precision Positioning
Classification
Passenger Car Application Scenario 1: NOA's Requirements for High-precision Positioning
Passenger Car Application Scenario 1: Urban NOA's Requirements for High-precision Positioning
Passenger Car Application Scenario 2 (Low-speed Parking): Types of High-Precision Positioning Technologies for Major Low-speed Parking Functions of Passenger Cars
Passenger Car Application Scenario 3 (Robataxis): Major Players - Autonomous Driving Technology Companies
Passenger Car Application Scenario 3 (Robotaxis): Major Players - OEMs