중국의 충전/스와핑 시장(2024년)
China Charging/Swapping (Liquid Cooling Overcharging System, Small Power, Swapping, V2G, etc) Research Report, 2024
상품코드 : 1534978
리서치사 : ResearchInChina
발행일 : 2024년 07월
페이지 정보 : 영문 360 Pages
 라이선스 & 가격 (부가세 별도)
US $ 4,300 ₩ 6,212,000
Unprintable PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 인쇄 불가능하며, 텍스트의 Copy&Paste도 불가능합니다.
US $ 6,400 ₩ 9,246,000
Printable & Editable PDF (Enterprise-wide License) help
PDF 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.


한글목차

중국은 전기자동차의 기술 혁신에서 세계를 선도하고 있습니다. 고출력 수냉식 과충전, 지능형 스와핑, V2G(Vehicle-to-Grid), 태양광과 축전지 충전 통합, 가상 발전소 등 신기술은 다음 단계의 충전 인프라의 새로운 발전 추세가 되고 있습니다.

수냉식 과충전 건 하나의 출력은 480kW 이상이며, 4C-6C 급속 충전 배터리는 플래그십 모델의 표준 구성이 될 것입니다.

"과충전", 즉 초고속 충전은 고출력 DC 충전 모드를 사용하여 충전 시간을 크게 단축하고 10-20분 이내에 0%에서 80%까지 충전할 수 있습니다. 초고속 충전 기술에는 주로 고전류와 고전압의 두 가지 경로가 있습니다. 전자는 열 관리 기술이 필요하고 장착이 어렵지만 후자는 에너지 소비와 무게를 줄이고 주행 거리를 늘리고 공간을 절약 할 수 있습니다.

수냉식 기술은 충전 중 발생하는 열을 효과적으로 방출하고 케이블의 전송 전력을 증가시켜 궁극적으로 고출력 충전을 실현할 수 있습니다. 수냉식 충전 기술의 적용으로 자동차의 충전 효율이 크게 향상되어 높은 충전 효율, 낮은 발열, 높은 안전성, 낮은 소음이 특징입니다.

현재 중국에는 2,400개 이상의 360kW 이상의 수냉식 과충전소이 존재하지만, 시장 점유율은 1% 미만입니다. 여러 OEM, 사업자 및 솔루션 제공 업체가 대규모 과충전 네트워크 구축 계획을 발표했습니다.

OEM: NIO는 2만 대 이상의 수냉식 과충전 건을 배치하고, Li Auto는 600개의 과충전소을 설치했으며, Xpeng의 S4 과충전소은 100개 도시를 커버하고 있습니다.

사업자: TELD와 StarCharge와 같은 대형 충전 사업자는 과충전 제품을 출시하고 있습니다.

솔루션 프로바이더: 화웨이는 2024년 10만개 이상의 과충전소을 구축할 계획입니다.

주요 OEM 과충전소의 구성, 충전 효율 및 기타 매개 변수를 비교하면 현재 각 회사의 과충전소은 여전히 과충전 더미 급속 충전 더미 조합을 사용하고 있습니다. 단일 과충전 건의 충전 전력은 480kW를 초과하여 최대 800kW에 도달했습니다.

지방정부의 정책 방향에서 볼 때, 480kW 이상의 단일 과충전 건은 과충전 파일로 정의되며, 2024년 3월, Shenzhen City Development and Reform Commission of Shenzhen City와 Shenzhen Administration for Market Regulation은 과충전 설비 등급 평가 및 과충전소 설계에 대한 기준을 제정하고, 단일 과충전 건의 정격 출력이 480kW를 초과해서는 안 된다는 점을 명확히 했습니다.

배터리와 관련해서는 리튬 배터리 원재료의 가격 하락으로 인해 비용 중심에서 성능 중심으로 전환되고 있으며, NIO, Zeekr, Aion 등의 OEM이 800km 주행거리의 모델을 시장에 출시하고 있습니다. 주행거리 800km 이상의 EV는 플래그십 모델의 표준이 될 전망입니다.

OEM 업체들이 셀프 과충전소을 도입하는 것은 플래그십 모델의 가격 전략, 판매 및 사용자 경험에 큰 영향을 미칩니다.

배터리 구조의 혁신과 공정 최적화를 통해 시스템의 비에너지가 지속적으로 향상될 것입니다.

전지 구조 설계는 여전히 다양화될 가능성이 있습니다. 예를 들어(1) CALB의 "최고급" 원통형 셀(2) CALB의 One-Stop 각형 셀(3) EVE Energy의 원통형 Pi 배터리 시스템(4) ZENERGY의 Qiankun 배터리 시스템 등이 있습니다.

대형 모듈과 CTP는 계속 반복되고 있으며, 1만 톤 이상의 일체형 다이캐스팅이 배터리 트레이에 장착되어 CTB 기술이 배터리용량 활용을 최적화하고 대형 원통형 배터리의 대량 생산을 가속화하고 있습니다.

중국의 충전/스와핑 시장에 대해 조사분석했으며, 각 충전 기술의 시장 및 주요 OEM 충전 시설 레이아웃 등의 정보를 제공하고 있습니다.

목차

제1장 충전/스와핑 인프라의 분류/정책/소유

제2장 초고출력 DC 충전 기술과 시장

제3장 저출력 DC 기술과 시장

제4장 V2G/차량 그리드 인터랙션/가상발전소 기술과 시장

제5장 스와핑 기술과 시장

제6장 충전 인프라 운영 시장

제7장 주요 OEM의 충전 시설 레이아웃

KSA
영문 목차

영문목차

Research on charging and swapping: OEMs quicken their pace of entering liquid cooling overcharging, V2G, and virtual power plants.

China leads the world in technological innovation breakthroughs in electric vehicles. New technologies such as high-power liquid cooling overcharging, intelligent swapping, vehicle-to-grid (V2G), PV-storage-charging integration, and virtual power plants have become the new development trends of charging infrastructure in the next stage.

A single liquid cooling overcharging gun features power of >480kW, and 4C-6C fast charging batteries will become standard configuration of flagship models.

"Overcharging", namely, ultra-fast charging, uses high-power DC charging mode, reducing a lot of charging time, and can charge from 0% to 80% in 10-20 minutes or less. There are two main ultra-fast charging technology routes: high current and high voltage. The former requires thermal management technology and is difficult to implement, while the latter can reduce energy consumption and weight, increase cruising range, and save space.

Liquid cooling technology can effectively dissipate the heat generated during charging, increase the cable transmission power, and ultimately achieve high-power charging. The application of liquid cooling charging technology has significantly improved the charging efficiency of vehicles, featuring high charging efficiency, low heat generation, high safety, and low noise.

As of now, there have been more than 2,400 >360kW stations with liquid cooling overcharging in China, but with less than 1% market share. Multiple OEMs, operators and solution providers have announced a plan to build a large-scale overcharging network:

OEMs: NIO has deployed over 20,000 liquid cooling overcharging guns; Li Auto has put into use 600 overcharging stations; Xpeng's S4 overcharging stations have covered 100 cities;

Operators: leading charging operators like TELD and StarCharge have released overcharging products;

Solution providers: Huawei plans to implement more than 100,000 overcharging stations in 2024.

Comparing the configuration, charging efficiency and other parameters of overcharging stations of major OEMs, currently their overcharging stations still use the overcharging pile + fast charging pile combination. The charging power of a single overcharging gun has been higher than 480kW, even up to 800kW.

Seen from the policy orientation of local governments, a single >480kW gun is defined as an overcharging pile; in March 2024, the Development and Reform Commission of Shenzhen City and the Shenzhen Administration for Market Regulation formulated standards for the grading evaluation of overcharging equipment and the design of overcharging stations, clarifying that the rated power of a single overcharging gun should not be lower than 480kW.

In terms of battery, the decline in cost of lithium battery raw materials has brought about the shift from cost orientation to performance orientation. OEMs such as NIO, Zeekr and Aion have launched models with a range of 800km on market. EV range of over 800km will become the standard for flagship models.

OEMs' deployment of self-operated overcharging stations has a significant impact on the pricing strategy, sales and user experience of flagship models.

Battery structure innovation and process optimization continue to improve system specific energy:

There is still potential for diversity in cell structure designs, for example: (1) CALB's "top-class" cylindrical cell; (2) CALB's One-Stop square cell; (3) EVE Energy's cylindrical Pi battery system; (4) ZENERGY's Qiankun battery system.

Large modules and CTP continue to iterate, over 10,000-ton integrated die-casting is introduced into battery trays, CTB technology optimizes battery volume utilization, and mass production of large cylindrical batteries speeds up.

At present, the fully liquid cooling charging piles put into operation on the market deliver the maximum single-gun power of 600-800kW, still far from the limit of ultra-fast charging. According to GB/T20234.1-2023 Connection Set of Conductive Charging for Electric Vehicles - Part 1: General Requirements, a new national standard for new energy vehicle charging guns, which was issued and took effect in September 2023, this document applies to DC charging connection sets with rated voltage not higher than DC1500V and rated current (continuous maximum operating current) not higher than 1000A. This means that when the technology is mature, overcharging piles can achieve the maximum charging power of 1500kW.

From another perspective, OEMs still need to face the status quo that at present the existing charging piles with <250A charging current sweep as high as 98% and the >400A overcharging piles account for less than 1%. To solve the problem of limited charging speed caused by the current limit of public DC charging piles, BYD has explored another more cost-effective overcharging technology route.

New BYD Hiace 07 EV is equipped with an 800V vehicle voltage platform and the e-platform 3.0Evo, the world's first intelligent current-boosting fast charging technology. Hiace 07 EV packs voltage-boosting (pile-to-vehicle) and current-boosting (vehicle-to-blade battery) technologies. Based on voltage-boosting charging, the current-boosting charging technology gets upgraded, breaking the 250A current limit at the pile end and achieving maximum current of 400A at the vehicle end. Under any voltage platform, the maximum capacity of GB15 standard-compliant public DC charging piles in the existing charging networks will be brought into full play.

1. Voltage boosting: As the basic technical point of BYD's traditional high-voltage platform solutions, the rated voltage of 550V is boosted to over 700V, meeting the charging requirements of 180-240KW;

2. Current boosting: The new technology uses a high-voltage electronic control system to boost the pile-to-vehicle charging current from 250A to 400A at the blade battery end, meeting the charging requirements of 180-240KW.

For vehicle-to-grid (V2G), OEMs set foot in the electricity sales side reform and virtual power plants, and explore business models.

On January 4, 2024, the National Energy Administration issued a programmatic document on vehicle-to-grid (V2G), the "Implementation Opinions of the National Development and Reform Commission and Other Ministries and Commissions on Strengthening the Integration and Interaction between New Energy Vehicles and Power Grids". This document is a programmatic document for launching V2G at the national level, suggesting that V2G is officially launched as a national project, and the corresponding implementation rules and pilot plan documents will be issued subsequently.

The document is aimed at governments at all levels and power grid systems, and indicates China's intention of promoting V2G through power grids first. The document proposes a technology roadmap for implementation of V2G.

According to the document, V2G can be divided into two stages: orderly charging, and bidirectional charging and discharging.

Orderly charging is to reduce the load pressure on power grids caused by large-scale fast charging of vehicles, by way of dynamically adjusting the charging time and power according to the actual power demand of users, and shaving peaks and filling valleys.

Bidirectional charging and discharging is to give full play to the energy storage capacity of electric vehicle batteries, provide flexible adjustment capabilities for power grids through reverse power transmission to the power grids, and ensure the balance between social power supply and demand.

According to the policy document, before 2025, large-scale orderly charging should be achieved, and bidirectional charging and discharging should be initially verified through pilot projects; by 2030, large-scale application of bidirectional charging and discharging should be achieved and the adjustment capabilities of V2G should be fully utilized.

OEMs are also stepping up deployment of V2G technology and exploration of business models.

NIO: Virtual peak-shaving unit + virtual frequency regulation unit provides flexible adjustment capabilities.

As energy storage equipment, a battery swap station can naturally become a "virtual power plant". Since the construction of the second-generation station in 2022, NIO has been working to achieve the energy storage attribute of battery swap stations.

In February 2024, NIO Power and China Southern Power Grid Energy Storage signed a framework cooperation agreement. Their cooperation involves virtual power plants, battery swapping services, and battery cascade utilization and recycling, providing peak shaving, frequency regulation and demand-side response services to the society and making them distributed energy equipment.

On January 9, 2024, NIO rolled out the first 10 V2G pilot charging piles in total, with 36 piles distributed in Shanghai. Users can use these V2G pilot charging piles for reverse discharge to power grids.

Volkswagen: with CAMS, piloted a sequential charging (V1G) project in the Beijing-Tianjin-Hebei region.

Volkswagen Group China and CAMS jointly initiated a sequential charging (V1G) project in the Beijing-Tianjin-Hebei region. The self-built sequential charging control and management platform is used to connect to State Grid's electric vehicle supervision platform; CAMS charging equipment with V1G sequential charging technology is used to respond to and manage the sequential charging of electric vehicle owners recruited in the pilot project, in accordance with the grid control instructions.

Table of Contents

1 Classification/Policy/Ownership of Charging and Swapping Infrastructure

2 Ultra-high Power DC Charging Technology and Market

3 Low Power DC Technology and Market

4 V2G/Vehicle Grid Interaction/Virtual Power Plant Technology and Market

5 Swapping Technology and Market

6 Charging Infrastructure Operation Market

7 Charging Facilities Layout of Major OEMs

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기