Automotive Memory Chip and Storage Industry Report, 2024
상품코드:1441455
리서치사:ResearchInChina
발행일:2024년 02월
페이지 정보:영문 500 Pages
라이선스 & 가격 (부가세 별도)
한글목차
세계 자동차 메모리칩 시장 규모는 2023년 47억 6,000만 달러로 평가되었고, 2028년에는 고도화된 자율주행에 힘입어 102억 5,000만 달러에 달할 것으로 예상됩니다. 자동차용 스토리지 시장은 고성장 반도체 부문입니다.
자동차용 메모리칩은 2023년까지 자동차용 반도체의 약 8-9%를 차지할 것으로 예상되며, 2028년에는 그 비중이 10-11%까지 상승할 것으로 전망됩니다. 주요 원인은 자동차 메모리칩의 기술 혁신이 가속화되고 첨단 메모리칩이 자동차에 빠르게 채택될 것이기 때문입니다. 주요 촉진요인은 다음과 같습니다.
DRAM: DRAM은 가장 큰 시장 규모를 가진 메모리칩입니다. 소비자 가전(휴대폰, PC, 태블릿PC 등) 분야에서는 DDR5(LPDDR5)가 주류가 되고 있으며, 향후 2-3년 내에 기존 DDR4(LPDDR4)를 점차 대체할 것으로 예상됩니다. 자동차 분야에서는 기존 DDR이 DDR4, LPDDR3, LPDDR4로 진화하고 있으며, LPDDR5, GDDR6와 같은 고급 스토리지 제품으로 발전하고 있습니다.
HBM: HBM은 DRAM의 강화된 버전으로, 여러 개의 DRAM 칩을 적층하여 더 높은 대역폭과 용량을 제공합니다. 가격이 비싸기 때문에 장기적으로 자동차에 탑재될 가능성은 낮습니다. 그러나 Transformer의 AI 기반 모델 학습에 사용되는 클라우드 서버는 AI 서버 비용의 약 9%를 차지하는 여러 개의 HBM을 탑재해야 하며, 대당 ASP(평균 판매 가격)가 18,000달러에 달할 전망입니다.
NAND 플래시: 자동차 컴퓨팅 시스템에서 중요한 데이터와 훈련된 가중치 모델은 하드디스크(iMMC 또는 UFS)에 저장되며, NAND는 일반적으로 ADAS, IVI 시스템, 센터 콘솔 등의 연속적인 데이터를 저장합니다.의 추세에 따르면, 향후 3-5년 내에 차량 한 대당 2TB 이상의 NAND가 필요하며, 중앙 연산용 차량용 PCIe SSD가 중요한 성장 동력이 될 것입니다.
SRAM: SRAM은 NAND나 DRAM보다 훨씬 빠르지만 가격이 비쌉니다. 독립적인 SRAM은 거의 사라지고 주로 IP 커널 형태로 CPU, GPU, 각종 SoC에 직접 통합되어 있습니다. 고성능 자동차 SoC는 일반적으로 대용량 온칩 SRAM을 집적하고 있습니다.
MRAM: 삼성, TSMC와 같은 웨이퍼 대기업은 차세대 자동차 용도를 위해 MRAM을 개발하고 있으며, NXP는 차세대 S32존 ECU와 MCU에 MRAM을 도입할 예정입니다. 업계에서는 MRAM이 캐시 메모리로 SRAM을 대체할 것으로 예상하고 있습니다.
EEPROM: 스마트 자동차는 최대 30-40개의 EEPROM 칩이 필요하지만 일반 연료 자동차는 약 15개의 EEPROM 칩만 필요하며, EEPROM은 BMS, 지능형 조종석, 게이트웨이, '전기 구동, 배터리, 전기 제어' 시스템, 기타 응용 분야로 확대되고 있습니다.
FRAM: FRAM은 읽기/쓰기 내구성, 쓰기 속도, 소비전력에서 기존 플래시나 EEPROM을 능가하며, 에어백 데이터 저장, 이벤트 데이터 레코더(EDR), 신에너지 자동차 CAN-BOX, 신에너지 자동차 통신단말기(T-BOX) 등의 분야에 적용되고 있습니다. 적용되고 있습니다.
자동차용 NAND 플래시 메모리의 진화: UFS 4.0, 중앙컴퓨팅용 PCIe SSD, CXL 메모리 확장 기술
컴퓨터 시스템과 마찬가지로 현재 자동차 컴퓨팅 시스템에도 하드디스크가 있어 중요한 데이터와 학습된 가중치 모델을 저장하고 있습니다.
eMMC5.1과 UFS3.1은 차량용 NAND 플래시 메모리의 주류 표준이 되었으며, 2024년 2월, KIOXIA는 AEC-Q100 Grade2 요건에 부합하는 업계 최초의 범용 플래시 스토리지(UFS) Ver.4.0을 출시했습니다. UFS 4.0은 이론적으로 레인당 최대 23.2Gbps, 장치당 최대 46.4Gbps의 인터페이스 속도를 지원하며, 2025년까지 UFS 4.0은 자동차 스토리지 표준 중 하나가 될 것으로 예상됩니다. 다양한 자동차 EEA에 적용될 것으로 예상됩니다.
이 보고서는 중국 및 해외의 자동차 메모리칩 및 스토리지 산업에 대한 조사 및 분석을 통해 산업 현황과 전망, 경쟁 구도, 공급업체 프로파일 등의 정보를 제공합니다.
목차
제1장 자동차용 메모리칩 산업 개요
메모리칩 분류
메모리칩 산업 현황
자동차용 메모리칩 산업 현황
자동차용 메모리칩 수요와 용도 전망
자동차용 메모리칩 시장 경쟁 구도
자동차용 스토리지 자동차 등급 표준과 인증
자동차용 메모리칩 로컬라이즈
제2장 자동차용 메모리칩 개발 방향
자동차용 스토리지 동향(I)
자동차용 스토리지 동향(2)
자동차용 스토리지 동향(3)
자동차용 스토리지 동향(4)
제3장 각종 메모리칩 자동차에의 응용
DRAM 기술과 자동차에의 응용
낸드플래시 기술과 자동차에의 응용
SRAM 기술과 자동차에의 응용
NOR 플래시 기술과 자동차에의 응용
EEPROM 기술과 자동차에의 응용
FRAM 기술과 자동차에의 응용
제4장 자동차용 메모리칩 응용 시나리오 : 부문별
중국 승용차 판매와 인텔리전트 드라이빙/인텔리전트 콕핏 보급 예측
메모리칩 응용 시나리오 : 자율주행
메모리칩 응용 시나리오 : 콕핏
메모리칩 응용 시나리오 : 중앙 연산 유닛+존 컨트롤러
메모리칩 응용 시나리오 : 운전 데이터 기록
메모리칩 응용 시나리오 : 클라우드 컴퓨팅, 스토리지
제5장 국외 자동차용 메모리칩 벤더
Samsung
SK Hynix
Micron
Kioxia(Toshiba)
Western Digital
Silicon Motion
Fujitsu
Neo Semiconductor
제6장 중국의 자동차용 메모리칩 벤더
Yangtze Memory
CXMT
XMC
GigaDevice
Ingenic
Giantec Semiconductor
Puya Semiconductor
Fudan Microelectronics
Longsys
Macronix
BIWIN Storage Technology
Etron Technology
YEESTOR
Dosilicon
Konsemi
Mason Semiconductor
Rayson
Xi'an Unigroup Guoxin Microelectronics
Phison Electronics
Shanghai Belling
LSH
영문 목차
영문목차
The global automotive memory chip market was worth USD4.76 billion in 2023, and it is expected to reach USD10.25 billion in 2028 boosted by high-level autonomous driving. The automotive storage market is a high-growth semiconductor segment.
Automotive memory chips accounted for about 8-9% of the value of automotive semiconductors in 2023, and the proportion is expected to rise to 10-11% in 2028, mainly because the faster innovation in automotive memory chips promotes the rapid adoption of advanced memory chips into cars. Main driving forces are:
DRAM: DRAM is the memory chip with the largest market size. In the field of consumer electronics (mobile phones, PCs, tablet PCs, etc.), DDR5 (LPDDR5) has become mainstream and will gradually replace the conventional DDR4 (LPDDR4) in the next 2-3 years. In the automotive field, the conventional DDR is evolving to DDR4, LPDDR3 and LPDDR4, and then to advanced storage products such as LPDDR5 and GDDR6.
HBM: as the enhanced version of DRAM, HBM provides higher bandwidth and capacity by stacking multiple DRAM chips. Because of high price, it is unlikely to appear in vehicles for a long time, but the cloud server used for training the Transformer AI foundation model must be equipped with multiple HBMs which account for about 9% of the AI server cost, with the ASP (average selling price) per unit as high as USD18,000.
NAND Flash: In the automotive computing system, important data and trained weight models are stored in the hard disk (i.e., eMMC or UFS). NAND generally stores continuous data in ADAS, IVI systems, center consoles, etc. In the trend towards five-domain fusion, a single vehicle will need 2TB+ NAND in the next 3-5 years, and automotive PCIe SSD for central computing will become an important growth engine.
SRAM: SRAM is much faster than NAND and DRAM but more expensive. Independent SRAM has almost disappeared, and it is mainly integrated directly into CPU, GPU and various SoCs in the form of an IP kernel. High-performance automotive SoCs generally integrate high-capacity on-chip SRAM.
MRAM: Wafer giants such as Samsung and TSMC are developing MRAM for the next-generation automotive applications. NXP plans to introduce MRAM to its next-generation S32 zonal ECUs and MCUs. The industry believes that MRAM is expected to replace SRAM as cache memory.
EEPROM: a smart car requires up to 30-40 EEPROM chips, while an ordinary fuel-powered vehicle only needs about 15 EEPROM chips. EEPROM is extending to BMS, intelligent cockpits, gateways, "electric drive, battery, electric control" systems and other applications.
FRAM: FRAM outperforms conventional Flash and EEPROM in reading and writing durability, writing speed and power consumption, and has been applied to airbag data storage, event data recorder (EDR), new energy vehicle CAN-BOX, new energy vehicle communication terminal (T-BOX) and other fields.
Evolution of automotive NAND Flash memory: UFS 4.0, PCIe SSD for central computing, CXL memory expansion technology
As with a computer system, a current automotive computing system also has a hard disk where important data and trained weight models are stored.
eMMC5.1 and UFS3.1 have become the mainstream standards for automotive NAND Flash memory. In February 2024, KIOXIA announced sampling of the industry's first Universal Flash Storage (UFS) Ver. 4.0 embedded flash memory devices designed for automotive applications in line with AEC-Q100 Grade2 requirements. UFS 4.0 supports theoretical interface speeds of up to 23.2Gbps per lane or 46.4Gbps per device. It is conceivable that by 2025, UFS 4.0 will become one of automotive storage standards, and will be applicable to different automotive EEAs.
In the future, the automotive NVMe SSD based on PCIe interfaces will offer data throughput of more than 10GB/s, and the massive storage capacity will provide strong support for the next-generation intelligent automotive systems. Automotive SSD refers to the solid-state drive with PCIe as the physical layer and NVMe as the communication protocol.
NVMe supports ultra-long queues so as to greatly ease the storage bottleneck problem during parallel computing. In the era of central computing, storage should be integrated into the central computer, and PCIe is the best choice. SSD is connected to the central computing unit SoC via a PCIe switch.
JEDEC, a standard setter in the storage industry, approved the JESD312 standard in November 2022, and officially released it on December 14. JESD312 defines the specifications of interface parameters, signaling protocols, environmental requirements, packaging, and other features for a solid state drive (SSD) targeted primarily at automotive applications. Automotive SSD is directly mounted on PCB in the form of BGA, with the size not larger than 28x28 mm. It uses four PCIe 4.0 interfaces to provide a peak transmission rate of up to 8 Gb/s.
JESD312 takes into a full account the changes of automotive electronic architectures, targets software-defined vehicles and central computing architecture, and allows the storage array to be partitioned.
CXL (Compute Express Link), a storage technology based on PCIe, will be one of the important development directions of automotive storage in the future. CXL is a new open interconnect standard, and its essence is to change the original hard disk access model into the existing memory access model and exchange data in the form of memory access. CXL enables high-speed and efficient interconnect between CPU and GPU, FPGA or other accelerators, thus meeting the requirements of high-performance heterogeneous computing.
Evolution of automotive DRAM: In the era of Transformer model, GDDR6 and HBM develop rapidly, and storage cost shoots up.
The key to AI operation lies in storage instead of AI processor. 90% of the power consumption and delay of AI operation come from storage or data transfer. In 90% working conditions, the AI processor is waiting for the storage system to transfer data, and the time required by the computing system is almost negligible, so the performance of the storage system actually determines the real computing power. Wherein, the storage bandwidth can basically be equated to the performance of the storage system and the real computing power.
In the Transformer era, there are at least more than 1 billion model parameters, a model is at least 1GB, and the storage bandwidth determines whether Transformer can be run. In addition, storage dominates power consumption. According to Intel's research, when the semiconductor process reaches 7nm, an AI chip (accelerator) takes as high as 35pJ/bit to transfer data, making up 63.7% of the total power consumption.
Intelligent vehicles pose ever higher requirements for image floating-point operation. To run Transformer smoothly, the weight model should be read up to 200 times per second, so the storage bandwidth should be at least 400GB/s, 600 GB/s better. On this basis, Samsung and Micron plan to launch their own automotive GDDR6 solutions.
In Tesla HW3.0, the storage bandwidth of the first-generation FSD is only 34GB/s, which is difficult to support the next-generation foundation models. Tesla's latest self-driving brain HW4.0 therefore uses GDDR6 at all costs, 16 pieces (2GB per piece) used, with 8 each on the front and back side, plus the 4 GDDR6 chips (also 2GB) in the cockpit controller, totaling 20 pieces (40GB), and the cost is more than USD160. HW3.0 uses 8 LPDDR4 chips, and a total of 8 LPDDR4 RAMs, each with capacity of 1GB, totaling 8GB, and the cost is about USD28.
In Tesla HW4.0, GDDR6 is non-automotive-grade D9PZR provided by Micron, and the GDDR6 physical layer of is from Cadence. Rambus also provides the GDDR6 physical layer and earns approximately USD140 million in annual revenue from its storage physical layer IPs. In September 2023, Cadence acquired the SerDes and memory interface PHY IP business from Rambus Inc.
Currently, among Tesla's automotive memory chips, the 2nd-generation FSD has the highest bandwidth ranging from 448Gb/s to 1008GB/s. SK Hynix's HBM2E (H5WG6HMN6QX038R) supports minimum bandwidth of 460GB/s, with the density of 16GB. The dual-channel design allows for 920GB/s, even up to 1840GB/s, but it is still far less cost-effective than GDDR6.
GDDR6 is expected to prevail, and HBM may follow. Tesla HW 5.0 or the third-generation FSD chip may use HBM, but this is a distant future.
Table of Contents
1 Overview of Automotive Memory Chip Industry
1.1 Classification of Memory Chips
1.1.1 Three Categories of Storage Devices
1.1.2 Classification of Memory Chips (Semiconductor Memory)
1.1.3 Positions of Different Memory Units in the Computing Unit
1.1.4 Type 1: Volatile Memory (RAM)
1.1.5 Type 2: Non-Volatile Memory (ROM)
1.1.6 Type 2: Non-Volatile Memory (ROM): Classification of Flash Memory
1.2 Status Quo of Memory Chip Industry
1.2.1 Memory Chips Are the Main Driving Force for the Development of the Global Semiconductor Industry in 2024
1.2.2 WSTS Predicts That Global Semiconductor Sales Will Increase by 13.1% in 2024
1.2.3 Global Market Breakdown by Semiconductor Type, 2023
1.2.4 Storage Will Continue to Extend to More Application Scenarios in 2024
1.2.5 Memory Chip Growth Forecast in 2024
1.2.6 Production Reduction of Major Storage Giants in 2023
1.2.7 Major Players in Memory Chip Market by Segment
1.2.8 Global Memory Chip Value Chain (1)
1.2.9 Global Memory Chip Value Chain (2)
1.2.10 Global Memory Chip Value Chain (3)
1.2.11 Composition of NAND SSD Industry Chain
1.2.12 Composition of Embedded NAND(eMMC, UFS) Industry Chain
1.2.13 Composition of DRAM (DDR memory) Industry Chain
1.2.14 Global Major Flash OEMs (with Fab Capabilities) (1)
1.2.15 Global Major Flash OEMs (with Fab Capabilities) (2)
1.3 Status Quo of Automotive Memory Chip Industry
1.3.1 Classification of Automotive Chips
1.3.2 Global Automotive-grade Chip Market Prospect (1)
1.3.3 Global Automotive-grade Chip Market Prospect (2)
1.3.4 Classification and Application of Automotive Memory Chips
1.3.5 Features of Automotive Memory Chip Demand
1.3.6 Application of Memory Chips in Automobiles by Type (1)
1.3.7 Application of Memory Chips in Automobiles by Type (2)
1.3.8 Application of Memory Chips in Automobiles by Type (3)
1.3.9 Global Automotive Memory Chip Market Size in 2023
1.3.10 Application and Forecast of automotive memory chips in ADAS, cockpits and other scenarios
1.3.11 overall technical evolution of automotive memory chips
1.4 Demand for and Application Prospect of Automotive Memory Chips
1.4.1 Storage Requirements of Intelligent Vehicles by Sub-module
4.3.2 Types of Memory for Intelligent Cockpit Systems
4.3.3 Intelligent Cockpit Storage Requirements: the reading speed should be faster, and the memory chip interface of the Intelligent cockpit should be gradually upgraded to UFS (1)
4.3.4 Intelligent Cockpit Storage Requirements: the reading speed should be faster, and the memory chip interface of the Intelligent cockpit should be gradually upgraded to UFS (2)
4.3.5 Intelligent Cockpit Storage Requirements: Comparison between eMMC and UFS (1)
4.3.6 Intelligent Cockpit Storage Requirements: Comparison between eMMC and UFS (2)
4.3.7 Intelligent Cockpit Storage Requirements: Comparison between eMMC and UFS (3)
4.3.8 Intelligent Cockpit Storage Requirements: Comparison between eMMC and UFS (4)
4.3.9 Intelligent Cockpit Storage Requirements: Comparison between eMMC and UFS (5)