세계의 컨텐츠 추천 엔진 - 시장 점유율과 순위, 전체 판매량 및 수요 예측(2025-2031년)
Content Recommendation Engines - Global Market Share and Ranking, Overall Sales and Demand Forecast 2025-2031
상품코드:1862514
리서치사:QYResearch
발행일:2025년 10월
페이지 정보:영문
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.
한글목차
컨텐츠 추천 엔진 시장 규모는 2024년에 104억 700만 달러로 평가되었고, 2025-2031년의 예측 기간에 CAGR 31.2%로 성장하여 2031년까지 663억 4,000만 달러에 달할 것으로 예측됩니다.
컨텐츠 추천 엔진은 데이터 분석과 알고리즘 모델을 활용하여 사용자의 관심사, 취향, 행동에 따라 개인화된 컨텐츠를 자동으로 제안하는 지능형 시스템입니다. 검색 기록, 클릭, 검색, 좋아요, 구매, 컨텐츠 열람 시간 등의 데이터를 수집하고 분석하여 패턴과 사용자의 의도를 파악합니다. 이후 이 정보를 사용 가능한 컨텐츠 속성 및 문맥적 신호와 비교하여 가장 관련성이 높고 매력적인 추천을 제공합니다.
컨텐츠 추천 엔진 시장의 성장은 주로 개인화에 대한 수요 증가와 상업적 전환 효율성 개선에 대한 요구가 주도하고 있습니다. 디지털 컨텐츠의 양이 급증하는 가운데, 사용자들은 개인의 관심사에 맞는 관련 정보를 필터링하여 제공하는 플랫폼에 대한 의존도가 높아지고 있으며, 사용자 경험을 향상시키기 위한 추천 기술의 보급을 촉진하고 있습니다. 동시에 디지털 플랫폼은 추천 엔진을 사용자 참여도 향상, 세션 시간 연장, 클릭 및 구매 촉진을 위한 중요한 도구로 활용하고 있습니다. 이러한 시스템은 사용자와 컨텐츠의 매칭을 최적화하여 만족도를 높일 뿐만 아니라, 트래픽 수익화, 타겟팅 광고 게재, 데이터 기반의 정밀한 운영을 가능하게 하는 중요한 기반이 되며, 컨텐츠 경제와 지능형 디지털 서비스의 확장에 따른 꾸준한 성장을 뒷받침하고 있습니다. 컨텐츠 경제와 지능형 디지털 서비스의 맥락에서 꾸준한 성장을 뒷받침하고 있습니다.
현재 주요 세계 기업으로는 Taboola, Outbrain, Dynamic Yield(McDonald), Amazon Web Services, Adobe, Kibo Commerce, Optimizely, Salesforce(Evergage), Zeta Global, Emarsys(SAP), Algonomy, ThinkAnalytics, Alibaba Cloud, Tencent, Baidu, ByteDance(Volcano Engine) 등이 있습니다. 이 중 Taboola는 2024년 시장 점유율 30.76%를 차지할 것으로 예측됩니다.
이 보고서는 컨텐츠 추천 엔진 세계 시장에 대해 총 매출액, 주요 기업의 시장 점유율 및 순위에 초점을 맞추고, 지역/국가별, 도입 형태별, 용도별 분석을 종합적으로 제시하는 것을 목적으로 합니다.
컨텐츠 추천 엔진 시장 규모, 추정 및 예측은 2024년을 기준 연도로 하여 2020년에서 2031년까지의 기간의 과거 데이터와 예측 데이터를 포함하는 매출액으로 제시되었습니다. 정량적, 정성적 분석을 통해 독자들이 비즈니스/성장 전략 수립, 시장 경쟁 평가, 현재 시장에서의 포지셔닝 분석, 컨텐츠 추천 엔진에 대한 정보에 입각한 비즈니스 의사결정을 내릴 수 있도록 돕습니다.
시장 세분화
기업별
Taboola
Outbrain
Dynamic Yield
Amazon Web Services
Adobe
Kibo Commerce
Optimizely
Salesforce
Zeta Global
SAP Emarsys
Algonomy
ThinkAnalytics
Alibaba Cloud
Tencent.
Baidu
Byte Dance
도입 형태별 부문
로컬 도입
클라우드 도입
용도별 부문
뉴스 및 미디어
엔터테인먼트 및 게임
전자상거래
금융
기타
지역별
북미
미국
캐나다
아시아태평양
중국
일본
한국
동남아시아
인도
호주
기타 아시아태평양
유럽
독일
프랑스
영국
이탈리아
네덜란드
북유럽 국가
기타 유럽
라틴아메리카
멕시코
브라질
기타 라틴아메리카
중동 및 아프리카
튀르키예
사우디아라비아
아랍에미리트(UAE)
기타 중동 및 아프리카
LSH
영문 목차
영문목차
The global market for Content Recommendation Engines was estimated to be worth US$ 10407 million in 2024 and is forecast to a readjusted size of US$ 66340 million by 2031 with a CAGR of 31.2% during the forecast period 2025-2031.
A Content Recommendation Engine is an intelligent system that leverages data analysis and algorithmic models to automatically suggest personalized content to users based on their interests, preferences, and behavior. By collecting and analyzing data such as browsing history, clicks, searches, likes, purchases, and time spent on content, the engine identifies patterns and user intent. It then matches this information with available content attributes and contextual signals to deliver the most relevant and engaging recommendations.
The growth of the content recommendation engine market is primarily driven by the rising demand for personalization and the need to improve commercial conversion efficiency. As the volume of digital content continues to surge, users increasingly rely on platforms to filter and deliver relevant information tailored to their individual interests, prompting widespread adoption of recommendation technologies to enhance user experience. At the same time, digital platforms are leveraging recommendation engines as essential tools to boost user engagement, increase session duration, and drive clicks and purchases. By optimizing the match between users and content, these systems not only enhance satisfaction but also serve as critical infrastructure for monetizing traffic, delivering targeted ads, and enabling data-driven, precision operations-fueling steady growth in the context of an expanding content economy and intelligent digital services.
Currently, major global companies include Taboola, Outbrain, Dynamic Yield (McDonald), Amazon Web Services, Adobe, Kibo Commerce, Optimizely, Salesforce (Evergage), Zeta Global, Emarsys (SAP), Algonomy, ThinkAnalytics, Alibaba Cloud, Tencent, Baidu, ByteDance (Volcano Engine), etc. Among them, Taboola accounting for 30.76% of the market share in 2024.
This report aims to provide a comprehensive presentation of the global market for Content Recommendation Engines, focusing on the total sales revenue, key companies market share and ranking, together with an analysis of Content Recommendation Engines by region & country, by Deployment Mode, and by Application.
The Content Recommendation Engines market size, estimations, and forecasts are provided in terms of sales revenue ($ millions), considering 2024 as the base year, with history and forecast data for the period from 2020 to 2031. With both quantitative and qualitative analysis, to help readers develop business/growth strategies, assess the market competitive situation, analyze their position in the current marketplace, and make informed business decisions regarding Content Recommendation Engines.
Market Segmentation
By Company
Taboola
Outbrain
Dynamic Yield
Amazon Web Services
Adobe
Kibo Commerce
Optimizely
Salesforce
Zeta Global
SAP Emarsys
Algonomy
ThinkAnalytics
Alibaba Cloud
Tencent.
Baidu
Byte Dance
Segment by Deployment Mode
Local Deployment
Cloud Deployment
Segment by Application
News and Media
Entertainment and Games
E-commerce
Finance
others
By Region
North America
United States
Canada
Asia-Pacific
China
Japan
South Korea
Southeast Asia
India
Australia
Rest of Asia-Pacific
Europe
Germany
France
U.K.
Italy
Netherlands
Nordic Countries
Rest of Europe
Latin America
Mexico
Brazil
Rest of Latin America
Middle East & Africa
Turkey
Saudi Arabia
UAE
Rest of MEA
Chapter Outline
Chapter 1: Introduces the report scope of the report, global total market size. This chapter also provides the market dynamics, latest developments of the market, the driving factors and restrictive factors of the market, the challenges and risks faced by manufacturers in the industry, and the analysis of relevant policies in the industry.
Chapter 2: Detailed analysis of Content Recommendation Engines company competitive landscape, revenue market share, latest development plan, merger, and acquisition information, etc.
Chapter 3: Provides the analysis of various market segments by Deployment Mode, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different market segments.
Chapter 4: Provides the analysis of various market segments by Application, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different downstream markets.
Chapter 5: Revenue of Content Recommendation Engines in regional level. It provides a quantitative analysis of the market size and development potential of each region and introduces the market development, future development prospects, market space, and market size of each country in the world.
Chapter 6: Revenue of Content Recommendation Engines in country level. It provides sigmate data by Deployment Mode, and by Application for each country/region.
Chapter 7: Provides profiles of key players, introducing the basic situation of the main companies in the market in detail, including product revenue, gross margin, product introduction, recent development, etc.
Chapter 8: Analysis of industrial chain, including the upstream and downstream of the industry.