¼¼°èÀÇ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå : »ê¾÷ ºÐ¼®, ±Ô¸ð, Á¡À¯À², ¼ºÀå, µ¿Çâ, ¿¹Ãø(2025-2032³â)
Digital Temperature and Humidity Sensor Market: Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2025 - 2032
»ùÇà ¿äû ¸ñ·Ï¿¡ Ãß°¡
Persistence Market Research»ç´Â ÃÖ±Ù ¼¼°èÀÇ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå¿¡ °üÇÑ Á¾ÇÕÀûÀÎ º¸°í¼¸¦ ¹ßÇ¥Çß½À´Ï´Ù.
ÁÖ¿ä ÀλçÀÌÆ®
µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå ±Ô¸ð(2025³â) : 32¾ï 4,130¸¸ ´Þ·¯
½ÃÀå ¿¹ÃøÄ¡(2032³â) : 53¾ï 7,750¸¸ ´Þ·¯
¼¼°èÀÇ ½ÃÀå ¼ºÀå·ü(CAGR 2025-2032³â) : 7.5%
µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå - Á¶»ç ¹üÀ§ :
µðÁöÅÐ ¿Â½Àµµ ¼¾¼´Â ȯ°æ Á¶°ÇÀ» Á¤È®Çϰí È®½ÇÇÏ°Ô ¸ð´ÏÅ͸µÇϱâ À§ÇØ ´Ù¾çÇÑ »ê¾÷¿¡¼ »ç¿ëµÇ´Â Áß¿äÇÑ ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ Á¦Ç°Àº ½º¸¶Æ® ±â±â, IoT ±â¹Ý ½Ã½ºÅÛ ¹× ½Ç½Ã°£ ¸ð´ÏÅ͸µ ±â´É¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ¼¾¼ÀÇ ¼ÒºñÀÚ¿ë ¹× »ê¾÷¿ë Á¦Ç°¿¡ ´ëÇÑ ÅëÇÕÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ :
¼¼°èÀÇ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀåÀº ÁÖÅðú »ó¾÷ ºôµù¿¡¼ ¿¡³ÊÁö È¿À²ÀûÀÎ °øÁ¶ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ½Ã½ºÅÛÀÇ ±¤¹üÀ§ÇÑ Ã¤¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÇ·á±â±â, ¿þ¾î·¯ºí ±â¼ú, ÀÚµ¿Â÷ ¾ÈÀü ½Ã½ºÅÛ¿¡¼ÀÇ ¼¾¼ »ç¿ë Áõ°¡°¡ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ :
¾çÈ£ÇÑ ½ÃÀå ȯ°æ¿¡µµ ºÒ±¸ÇÏ°í µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀåÀº ÀÏÁ¤ÇÑ ¾ïÁ¦¿äÀο¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ½ÅÈ£ °£¼·, Ç÷§Æû °£ÀÇ »óÈ£ ¿î¿ë¼ºÀÇ Á¦ÇÑ¿¡ °üÇÑ °úÁ¦´Â ¼¾¼ÀÇ Á¤¹Ðµµ¿Í ±â´É¼º¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.
½ÃÀå ±âȸ :
ÀÌ ½ÃÀåÀº ½º¸¶Æ® ½ÃƼ, ³ó¾÷ ÀÚµ¿È, ȯ°æ ¸ð´ÏÅ͸µÀÇ È®´ë·Î Å« ºñÁî´Ï½º ±âȸ¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. Energy(BLE), Zigbee, LoRaWAN°ú °°Àº ¹«¼± Åë½Å ±â¼ú°úÀÇ ÅëÇÕÀ¸·Î ¿ø°Ý ¸ð´ÏÅ͸µ ¹× IoT ¿ëµµ¿¡ »õ·Î¿î °¡´É¼ºÀÌ »ý±é´Ï´Ù.
ÀÌ º¸°í¼¿¡¼ ´Ù·ç´Â ÁÖ¿ä Áú¹®
¼¼°èÀÇ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº? ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ´Â ¼¾¼ÀÇ À¯Çü°ú ¿ëµµ´Â ¹«¾ùÀΰ¡? ±â¼ú Áøº¸´Â µðÁöÅÐ ¼¾¼ ¾÷°èÀÇ °æÀï¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡°í Àִ°¡? ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷Àº ´©±¸À̸ç, ¾î¶² Àü·«À¸·Î °æÀïÀ» À¯ÁöÇϰí Àִ°¡? µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀåÀ» Çü¼ºÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÇâÈÄÀÇ µ¿Çâ°ú ±â¼ú Çõ½ÅÀº? ¸ñÂ÷
Á¦1Àå ÁÖ¿ä ¿ä¾à
Á¦2Àå ½ÃÀå °³¿ä
½ÃÀåÀÇ ¹üÀ§¿Í Á¤ÀÇ
¹ë·ùüÀÎ ºÐ¼®
°Å½Ã°æÁ¦ ¿äÀÎ
¼¼°èÀÇ GDP Àü¸Á
¼¼°èÀÇ °Ç¼³ ¾÷°è °³¿ä
¼¼°èÀÇ ±¤¾÷ »ê¾÷ °³¿ä
¿¹Ãø ¿äÀÎ - °ü·Ã¼º°ú ¿µÇâ
COVID-19ÀÇ ¿µÇâ Æò°¡
PESTLE ºÐ¼®
Porter's Five Forces ºÐ¼®
ÁöÁ¤ÇÐÀû ±äÀå : ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâ
±ÔÁ¦¿Í ±â¼úÀÇ »óȲ
Á¦3Àå ½ÃÀå ¿ªÇÐ
¼ºÀå ÃËÁø¿äÀÎ
¼ºÀå ¾ïÁ¦¿äÀÎ
±âȸ
µ¿Çâ
Á¦4Àå °¡°Ý µ¿Ç⠺м®(2019-2032³â)
Áö¿ªº° °¡°Ý ºÐ¼®
ºÎ¹®º° °¡°Ý
°¡°Ý ¿µÇâ¿äÀÎ
Á¦5Àå ¼¼°è ½ÃÀå Àü¸Á : °ú°Å(2019-2024³â) ¹× ¿¹Ãø(2025-2032³â)
ÁÖ¿ä ÇÏÀ̶óÀÌÆ®
¼¼°èÀÇ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå Àü¸Á : ¼¾¼ À¯Çüº°
¼·Ð/ÁÖ¿ä Á¶»ç °á°ú
½ÃÀå ±Ô¸ð ÃßÀÌ ºÐ¼®(2019-2024³â), ¼¾¼ À¯Çüº°
ÇöÀç ½ÃÀå ±Ô¸ð ¿¹Ãø(2025-2032³â), ¼¾¼ À¯Çüº°
¿Âµµ ¼¾¼
ÀúÇ× ¿Âµµ ¼¾¼
Á¤Àü¿ë·®½Ä ¿Âµµ¼¾¼
½Àµµ ¼¾¼
ÀúÇ× ¿Âµµ ¼¾¼
Á¤Àü¿ë·®½Ä ¿Âµµ¼¾¼
Á¦6Àå 5.2.3.2.3.
½ÃÀå ¸Å·Â ºÐ¼® : ¼¾¼ À¯Çüº°
¼¼°èÀÇ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå Àü¸Á : ±â¼úº°
¼·Ð/ÁÖ¿ä Á¶»ç °á°ú
½ÃÀå ±Ô¸ð ÃßÀÌ ºÐ¼®(2019-2024³â), ±â¼úº°
ÇöÀç ½ÃÀå ±Ô¸ð ¿¹Ãø(2025-2032³â), ±â¼úº°
ÃʼÒÇü Àü±â ±â°è ½Ã½ºÅÛ(MEMS)
»óº¸Çü ±Ý¼Ó »êȹ° ¹ÝµµÃ¼(CMOS)
¹Ú¸· Æú¸®¸Ó ±â¼ú(TFPT)
½ÃÀå ¸Å·Â ºÐ¼® : ±â¼ú
¼¼°èÀÇ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå Àü¸Á : ÆÐŰÁö À¯Çüº°
¼·Ð/ÁÖ¿ä Á¶»ç °á°ú
½ÃÀå ±Ô¸ð ÃßÀÌ ºÐ¼®(2019-2024³â), ÆÐŰÁö À¯Çüº°
ÇöÀç ½ÃÀå ±Ô¸ð ¿¹Ãø(2025-2032³â), ÆÐŰÁö À¯Çüº°
Ç¥¸é½ÇÀå±â¼ú(SMT)
ÇÉÇü ÆÐŰÁö
½ÃÀå ¸Å·Â ºÐ¼® : ÆÐŰÁö À¯Çü
¼¼°èÀÇ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå Àü¸Á : ÀÀ¿ë
¼·Ð/ÁÖ¿ä Á¶»ç °á°ú
½ÃÀå ±Ô¸ð ÃßÀÌ ºÐ¼®(2019-2024³â), ¿ëµµº°
ÇöÀç ½ÃÀå ±Ô¸ð ¿¹Ãø(2025-2032³â), ¿ëµµº°
ÆÄ¿öÆ®·¹ÀÎ
Â÷ü ÀüÀÚ ÀåÄ¡
ÀÚµ¿Â÷¿ë HVAC Á¦¾î
ÀÚµ¿ ±è¼¸² ¹æÁö ½Ã½ºÅÛ
´ëü ¿¬·áÂ÷(AFV)
½ÃÀå ¸Å·Â ºÐ¼® : ¿ëµµ
Á¦7Àå ¼¼°èÀÇ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå Àü¸Á : Áö¿ª
ÁÖ¿ä ÇÏÀ̶óÀÌÆ®
½ÃÀå ±Ô¸ð ÃßÀÌ ºÐ¼®(2019-2024³â), Áö¿ªº°
ÇöÀç ½ÃÀå ±Ô¸ð ¿¹Ãø(2025-2032³â), Áö¿ªº°,
ºÏ¹Ì
À¯·´
µ¿¾Æ½Ã¾Æ
³²¾Æ½Ã¾Æ¿Í ¿À¼¼¾Æ´Ï¾Æ
¶óƾ¾Æ¸Þ¸®Ä«
Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
½ÃÀå ¸Å·Â ºÐ¼® : Áö¿ª
Á¦8Àå ºÏ¹Ì µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå Àü¸Á : °ú°Å(2019-2024³â) ¹× ¿¹Ãø(2025-2032³â)
Á¦9Àå 7.4.2.3.
ºÏ¹Ì ½ÃÀå ±Ô¸ð ¿¹Ãø, ±â¼úº°(2025-2032³â)
ÃʼÒÇü Àü±â ±â°è ½Ã½ºÅÛ(MEMS)
»óº¸Çü ±Ý¼Ó »êȸ· ¹ÝµµÃ¼(CMOS)
¹Ú¸· Æú¸®¸Ó ±â¼ú(TFPT)
ºÏ¹Ì ½ÃÀå ±Ô¸ð ¿¹Ãø, ÆÐŰÁö À¯Çüº°(2025-2032³â)
Ç¥¸é½ÇÀå±â¼ú(SMT)
ÇÉÇü ÆÐŰÁö
ºÏ¹Ì ½ÃÀå ±Ô¸ð ¿¹Ãø, ¿ëµµº°(2025-2032³â)
ÆÄ¿öÆ®·¹ÀÎ
Â÷ü ÀüÀÚ ÀåÄ¡
ÀÚµ¿Â÷¿ë HVAC Á¦¾î
ÀÚµ¿ ±è¼¸² ¹æÁö ½Ã½ºÅÛ
´ëü ¿¬·áÂ÷(AFV)
Á¦10Àå À¯·´ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå Àü¸Á : °ú°Å(2019-2024³â) ¹× ¿¹Ãø(2025-2032³â)
Á¦11Àå 8.4.2.3.
À¯·´ ½ÃÀå ±Ô¸ð ¿¹Ãø, ±â¼úº°(2025-2032³â)
ÃʼÒÇü Àü±â ±â°è ½Ã½ºÅÛ(MEMS)
»óº¸Çü ±Ý¼Ó »êȸ· ¹ÝµµÃ¼(CMOS)
¹Ú¸· Æú¸®¸Ó ±â¼ú(TFPT)
À¯·´ ½ÃÀå ±Ô¸ð ¿¹Ãø, ÆÐŰÁö À¯Çüº°(2025-2032³â)
Ç¥¸é½ÇÀå±â¼ú(SMT)
ÇÉÇü ÆÐŰÁö
À¯·´ ½ÃÀå ±Ô¸ð ¿¹Ãø, ¿ëµµº°(2025-2032³â)
ÆÄ¿öÆ®·¹ÀÎ
Â÷ü ÀüÀÚ ÀåÄ¡
ÀÚµ¿Â÷¿ë HVAC Á¦¾î
ÀÚµ¿ ±è¼¸² ¹æÁö ½Ã½ºÅÛ
´ëü ¿¬·áÂ÷(AFV)
Á¦12Àå µ¿¾Æ½Ã¾ÆÀÇ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå Àü¸Á : °ú°Å(2019-2024³â) ¹× ¿¹Ãø(2025-2032³â)
Á¦13Àå 9.4.2.3.
µ¿¾Æ½Ã¾Æ ½ÃÀå ±Ô¸ð ¿¹Ãø, ±â¼úº°(2025-2032³â)
ÃʼÒÇü Àü±â ±â°è ½Ã½ºÅÛ(MEMS)
»óº¸Çü ±Ý¼Ó »êȸ· ¹ÝµµÃ¼(CMOS)
¹Ú¸· Æú¸®¸Ó ±â¼ú(TFPT)
µ¿¾Æ½Ã¾Æ ½ÃÀå ±Ô¸ð ¿¹Ãø, ÆÐŰÁö À¯Çüº°(2025-2032³â)
Ç¥¸é½ÇÀå±â¼ú(SMT)
ÇÉÇü ÆÐŰÁö
µ¿¾Æ½Ã¾Æ ½ÃÀå ±Ô¸ð ¿¹Ãø, ¿ëµµº°(2025-2032³â)
ÆÄ¿öÆ®·¹ÀÎ
Â÷ü ÀüÀÚ ÀåÄ¡
ÀÚµ¿Â÷¿ë HVAC Á¦¾î
ÀÚµ¿ ±è¼¸² ¹æÁö ½Ã½ºÅÛ
´ëü ¿¬·áÂ÷(AFV)
Á¦14Àå ³²¾Æ½Ã¾Æ ¿À¼¼¾Æ´Ï¾ÆÀÇ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå Àü¸Á : °ú°Å(2019-2024³â) ¹× ¿¹Ãø(2025-2032³â)
Á¦15Àå 10.4.2.3.
³²¾Æ½Ã¾Æ ¹× ¿À¼¼¾Æ´Ï¾Æ ½ÃÀå ±Ô¸ð ¿¹Ãø, ±â¼úº°(2025-2032³â)
ÃʼÒÇü Àü±â ±â°è ½Ã½ºÅÛ(MEMS)
»óº¸Çü ±Ý¼Ó »êȸ· ¹ÝµµÃ¼(CMOS)
¹Ú¸· Æú¸®¸Ó ±â¼ú(TFPT)
³²¾Æ½Ã¾Æ ¹× ¿À¼¼¾Æ´Ï¾Æ ½ÃÀå ±Ô¸ð ¿¹Ãø, ÆÐŰÁö À¯Çüº°(2025-2032³â)
Ç¥¸é½ÇÀå±â¼ú(SMT)
ÇÉÇü ÆÐŰÁö
³²¾Æ½Ã¾Æ ¹× ¿À¼¼¾Æ´Ï¾Æ ½ÃÀå ±Ô¸ð ¿¹Ãø, ¿ëµµº°(2025-2032³â)
ÆÄ¿öÆ®·¹ÀÎ
Â÷ü ÀüÀÚ ÀåÄ¡
ÀÚµ¿Â÷¿ë HVAC Á¦¾î
ÀÚµ¿ ±è¼¸² ¹æÁö ½Ã½ºÅÛ
´ëü ¿¬·áÂ÷(AFV)
Á¦16Àå ¶óÆ¾¾Æ¸Þ¸®Ä«ÀÇ µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå Àü¸Á : °ú°Å(2019-2024³â) ¹× ¿¹Ãø(2025-2032³â)
Á¦17Àå 11.4.2.3.
¶óƾ¾Æ¸Þ¸®Ä« ½ÃÀå ±Ô¸ð ¿¹Ãø, ±â¼úº°(2025-2032³â)
ÃʼÒÇü Àü±â ±â°è ½Ã½ºÅÛ(MEMS)
»óº¸Çü ±Ý¼Ó »êȸ· ¹ÝµµÃ¼(CMOS)
¹Ú¸· Æú¸®¸Ó ±â¼ú(TFPT)
¶óƾ¾Æ¸Þ¸®Ä« ½ÃÀå ±Ô¸ð ¿¹Ãø, ÆÐŰÁö À¯Çüº°(2025-2032³â)
Ç¥¸é½ÇÀå±â¼ú(SMT)
ÇÉÇü ÆÐŰÁö
¶óƾ¾Æ¸Þ¸®Ä« ½ÃÀå ±Ô¸ð ¿¹Ãø, ¿ëµµº°(2025-2032³â)
ÆÄ¿öÆ®·¹ÀÎ
Â÷ü ÀüÀÚ ÀåÄ¡
ÀÚµ¿Â÷¿ë HVAC Á¦¾î
ÀÚµ¿ ±è¼¸² ¹æÁö ½Ã½ºÅÛ
´ëü ¿¬·áÂ÷(AFV)
Á¦18Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« µðÁöÅÐ ¿Â½Àµµ ¼¾¼ ½ÃÀå Àü¸Á : °ú°Å(2019-2024³â) ¹× ¿¹Ãø(2025-2032³â)
Á¦19Àå 12.4.2.3.
Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ½ÃÀå ±Ô¸ð ¿¹Ãø, ±â¼úº°(2025-2032³â)
ÃʼÒÇü Àü±â ±â°è ½Ã½ºÅÛ(MEMS)
»óº¸Çü ±Ý¼Ó »êȸ· ¹ÝµµÃ¼(CMOS)
¹Ú¸· Æú¸®¸Ó ±â¼ú(TFPT)
Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ½ÃÀå ±Ô¸ð ¿¹Ãø, ÆÐŰÁö À¯Çüº°(2025-2032³â)
Ç¥¸é½ÇÀå±â¼ú(SMT)
ÇÉÇü ÆÐŰÁö
Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ½ÃÀå ±Ô¸ð ¿¹Ãø, ¿ëµµº°(2025-2032³â)
ÆÄ¿öÆ®·¹ÀÎ
Â÷ü ÀüÀÚ ÀåÄ¡
ÀÚµ¿Â÷¿ë HVAC Á¦¾î
ÀÚµ¿ ±è¼¸² ¹æÁö ½Ã½ºÅÛ
´ëü ¿¬·áÂ÷(AFV)
Á¦20Àå °æÀï ±¸µµ
½ÃÀå Á¡À¯À² ºÐ¼®(2025³â)
½ÃÀå ±¸Á¶
°æÀï °µµ ¸ÅÇÎ
°æÀï ´ë½Ãº¸µå
±â¾÷ ÇÁ·ÎÆÄÀÏ
Analog Devices, Inc
Continental AG
BorgWarner Inc.
TDK Corporation
Honeywell International
TE Connectivity
Melexis NV
NXP Semiconductors
ON Semiconductor Corporation
Robert Bosch GMBH
Sensata Technologies, Inc.
Sensirion AG
STMicroelectronics
Texas Instruments
Á¦21Àå ºÎ·Ï
Á¶»ç ¹æ¹ý
Á¶»çÀÇ ÀüÁ¦
µÎÀÚ¾î ¹× ¾à¾î
KTH
Persistence Market Research has recently released a comprehensive report on the worldwide market for digital temperature and humidity sensors. The report offers a thorough assessment of crucial market dynamics, including drivers, trends, opportunities, and challenges, providing detailed insights into the market structure. This research publication presents exclusive data and statistics outlining the anticipated growth trajectory of the global digital temperature and humidity sensor market from 2025 to 2032.
Key Insights:
Digital Temperature and Humidity Sensor Market Size (2025E): USD 3,241.3 Million
Projected Market Value (2032F): USD 5,377.5 Million
Global Market Growth Rate (CAGR 2025 to 2032): 7.5%
Digital Temperature and Humidity Sensor Market - Report Scope:
Digital temperature and humidity sensors are essential components used across a range of industries to monitor environmental conditions accurately and reliably. These sensors convert real-world temperature and humidity levels into digital signals, which can be easily interpreted and analyzed. The market caters to applications in consumer electronics, automotive, industrial automation, HVAC systems, agriculture, and healthcare. The growing demand for smart devices, IoT-based systems, and real-time monitoring capabilities has accelerated the integration of these sensors into both consumer and industrial products.
Market Growth Drivers:
The global digital temperature and humidity sensor market is propelled by multiple factors, including the rising demand for energy-efficient climate control systems in residential and commercial buildings. The proliferation of smart home technologies and the expansion of Industry 4.0 practices are driving widespread adoption of sensor-based systems for real-time environmental monitoring and predictive maintenance. Additionally, the increasing use of sensors in medical devices, wearable technology, and automotive safety systems contributes to market growth. Technological advancements in micro-electromechanical systems (MEMS) and sensor miniaturization further enhance the performance and affordability of digital sensors.
Market Restraints:
Despite favorable market conditions, the digital temperature and humidity sensor market faces certain restraints. High initial investment costs for advanced sensor integration, especially in low-budget industrial or consumer applications, can hinder widespread adoption. Moreover, challenges related to sensor calibration, signal interference in harsh environments, and limited interoperability across platforms may affect sensor accuracy and functionality. Regulatory and compliance requirements in safety-critical industries like automotive and healthcare also impose additional costs and complexity for manufacturers.
Market Opportunities:
The market presents significant opportunities driven by the expansion of smart cities, agricultural automation, and environmental monitoring initiatives. Emerging economies with growing industrial bases are increasingly deploying sensor networks for air quality monitoring and infrastructure management. Integration with wireless communication technologies such as Bluetooth Low Energy (BLE), Zigbee, and LoRaWAN opens up new possibilities for remote monitoring and IoT applications. Furthermore, the development of ultra-low-power sensors supports their use in battery-powered and portable devices, broadening their market scope.
Key Questions Answered in the Report:
What are the primary factors driving the growth of the digital temperature and humidity sensor market globally?
Which sensor types and applications are fueling demand across various sectors?
How are technological advancements influencing competition in the digital sensor industry?
Who are the key players in the market, and what strategies are they using to stay competitive?
What future trends and innovations are expected to shape the digital temperature and humidity sensor market?
Competitive Intelligence and Business Strategy:
These companies invest heavily in R&D to develop high-precision, energy-efficient, and miniaturized sensor solutions suitable for diverse applications. Collaborations with electronics manufacturers, software developers, and IoT ecosystem providers facilitate faster go-to-market strategies. In addition, players are emphasizing robust supply chains and regional manufacturing to meet growing demand and regulatory standards globally.
Key Companies Profiled:
Analog Devices, Inc.
Continental AG
BorgWarner Inc.
TDK Corporation
Honeywell International
TE Connectivity
Melexis NV
NXP Semiconductors
ON Semiconductor Corporation
Robert Bosch GMBH
Sensata Technologies, Inc.
Sensirion AG
STMicroelectronics
Texas Instruments
Digital Temperature and Humidity Sensor Market Research Segmentation:
The digital temperature and humidity sensor market encompasses a wide range of sensor types, technologies, applications, and end-user industries, meeting the needs of various environmental monitoring use cases.
By Sensor Type:
Temperature Sensor
Resistive Temperature Sensor
Capacitive Temperature Sensor
Humidity Sensor
Resistive Temperature Sensor
Capacitive Temperature Sensor
By Technology:
Micro Electro Mechanical Systems (MEMS)
Complementary Metal Oxide Semiconductors (CMOS)
Thin-film Polymer Technology (TFPT)
By Packaging Type:
Surface Mount Technology (SMT)
Pin Type Packaging
By Application:
Power Train
Body Electronics
Automotive HVAC Control
Auto Defogger System
Alternative Fuel Vehicle (AFV)
By Region:
North America
Latin America
Europe
Asia Pacific
Middle East and Africa
Table of Contents
1. Executive Summary
1.1. Global Digital Temperature and Humidity Sensor Market Snapshot 2025 and 2032
1.2. Market Opportunity Assessment, 2025-2032, US$ Mn
1.3. Key Market Trends
1.4. Industry Developments and Key Market Events
1.5. Demand Side and Supply Side Analysis
1.6. PMR Analysis and Recommendations
2. Market Overview
2.1. Market Scope and Definitions
2.2. Value Chain Analysis
2.3. Macro-Economic Factors
2.3.1. Global GDP Outlook
2.3.2. Global Construction Industry Overview
2.3.3. Global Mining Industry Overview
2.4. Forecast Factors - Relevance and Impact
2.5. COVID-19 Impact Assessment
2.6. PESTLE Analysis
2.7. Porter's Five Forces Analysis
2.8. Geopolitical Tensions: Market Impact
2.9. Regulatory and Technology Landscape
3. Market Dynamics
3.1. Drivers
3.2. Restraints
3.3. Opportunities
3.4. Trends
4. Price Trend Analysis, 2019-2032
4.1. Region-wise Price Analysis
4.2. Price by Segments
4.3. Price Impact Factors
5. Global Digital Temperature and Humidity Sensor Market Outlook: Historical (2019-2024) and Forecast (2025-2032)
5.1. Key Highlights
5.2. Global Digital Temperature and Humidity Sensor Market Outlook: By Sensor Type
5.2.1. Introduction/Key Findings
5.2.2. Historical Market Size (US$ Mn) Analysis by By Sensor Type, 2019-2024
5.2.3. Current Market Size (US$ Mn) Forecast, by By Sensor Type, 2025-2032
5.2.3.1. Temperature Sensor
5.2.3.1.1. Resistive Temperature Sensor
5.2.3.1.2. Capacitive Temperature Sensor
5.2.3.2. Humidity Sensor
5.2.3.2.1. Resistive Temperature Sensor
5.2.3.2.2. Capacitive Temperature Sensor
6. 5.2.3.2.3.
6.1.
6.1.1. Market Attractiveness Analysis: By Sensor Type
6.2. Global Digital Temperature and Humidity Sensor Market Outlook: By Technology
6.2.1. Introduction/Key Findings
6.2.2. Historical Market Size (US$ Mn) Analysis by By Technology, 2019-2024
6.2.3. Current Market Size (US$ Mn) Forecast, by By Technology, 2025-2032
6.2.3.1. Micro Electro Mechanical Systems (MEMS)
6.2.3.2. Complementary Metal Oxide Semiconductors (CMOS)
6.2.3.3. Thin-film Polymer Technology (TFPT)
6.2.4. Market Attractiveness Analysis: By Technology
6.3. Global Digital Temperature and Humidity Sensor Market Outlook: Packaging Type
6.3.1. Introduction/Key Findings
6.3.2. Historical Market Size (US$ Mn) Analysis by Packaging Type, 2019-2024
6.3.3. Current Market Size (US$ Mn) Forecast, by Packaging Type, 2025-2032
6.3.3.1. Surface Mount Technology (SMT)
6.3.3.2. Pin Type Packaging
6.3.4. Market Attractiveness Analysis: Packaging Type
6.4. Global Digital Temperature and Humidity Sensor Market Outlook: Application
6.4.1. Introduction/Key Findings
6.4.2. Historical Market Size (US$ Mn) Analysis by Application, 2019-2024
6.4.3. Current Market Size (US$ Mn) Forecast, by Application, 2025-2032
6.4.3.1. Power Train
6.4.3.2. Body Electronics
6.4.3.3. Automotive HVAC Control
6.4.3.4. Auto Defogger System
6.4.3.5. Alternative Fuel Vehicle (AFV)
6.4.4. Market Attractiveness Analysis: Application
7. Global Digital Temperature and Humidity Sensor Market Outlook: Region
7.1. Key Highlights
7.2. Historical Market Size (US$ Mn) Analysis by Region, 2019-2024
7.3. Current Market Size (US$ Mn) Forecast, by Region, 2025-2032
7.3.1. North America
7.3.2. Europe
7.3.3. East Asia
7.3.4. South Asia & Oceania
7.3.5. Latin America
7.3.6. Middle East & Africa
7.4. Market Attractiveness Analysis: Region
8. North America Digital Temperature and Humidity Sensor Market Outlook: Historical (2019-2024) and Forecast (2025-2032)
8.1. Key Highlights
8.2. Pricing Analysis
8.3. North America Market Size (US$ Mn) Forecast, by Country, 2025-2032
8.3.1. U.S.
8.3.2. Canada
8.4. North America Market Size (US$ Mn) Forecast, by By Sensor Type, 2025-2032
8.4.1. Temperature Sensor
8.4.1.1. Resistive Temperature Sensor
8.4.1.2. Capacitive Temperature Sensor
8.4.2. Humidity Sensor
8.4.2.1. Resistive Temperature Sensor
8.4.2.2. Capacitive Temperature Sensor
9. 7.4.2.3.
9.1. North America Market Size (US$ Mn) Forecast, by By Technology, 2025-2032
9.1.1. Micro Electro Mechanical Systems (MEMS)
9.1.2. Complementary Metal Oxide Semiconductors (CMOS)
9.1.3. Thin-film Polymer Technology (TFPT)
9.2. North America Market Size (US$ Mn) Forecast, by Packaging Type, 2025-2032
9.2.1. Surface Mount Technology (SMT)
9.2.2. Pin Type Packaging
9.3. North America Market Size (US$ Mn) Forecast, by Application, 2025-2032
9.3.1. Power Train
9.3.2. Body Electronics
9.3.3. Automotive HVAC Control
9.3.4. Auto Defogger System
9.3.5. Alternative Fuel Vehicle (AFV)
10. Europe Digital Temperature and Humidity Sensor Market Outlook: Historical (2019-2024) and Forecast (2025-2032)
10.1. Key Highlights
10.2. Pricing Analysis
10.3. Europe Market Size (US$ Mn) Forecast, by Country, 2025-2032
10.3.1. Germany
10.3.2. Italy
10.3.3. France
10.3.4. U.K.
10.3.5. Spain
10.3.6. Russia
10.3.7. Rest of Europe
10.4. Europe Market Size (US$ Mn) Forecast, by By Sensor Type, 2025-2032
10.4.1. Temperature Sensor
10.4.1.1. Resistive Temperature Sensor
10.4.1.2. Capacitive Temperature Sensor
10.4.2. Humidity Sensor
10.4.2.1. Resistive Temperature Sensor
10.4.2.2. Capacitive Temperature Sensor
11. 8.4.2.3.
11.1. Europe Market Size (US$ Mn) Forecast, by By Technology, 2025-2032
11.1.1. Micro Electro Mechanical Systems (MEMS)
11.1.2. Complementary Metal Oxide Semiconductors (CMOS)
11.1.3. Thin-film Polymer Technology (TFPT)
11.2. Europe Market Size (US$ Mn) Forecast, by Packaging Type, 2025-2032
11.2.1. Surface Mount Technology (SMT)
11.2.2. Pin Type Packaging
11.3. Europe Market Size (US$ Mn) Forecast, by Application, 2025-2032
11.3.1. Power Train
11.3.2. Body Electronics
11.3.3. Automotive HVAC Control
11.3.4. Auto Defogger System
11.3.5. Alternative Fuel Vehicle (AFV)
12. East Asia Digital Temperature and Humidity Sensor Market Outlook: Historical (2019-2024) and Forecast (2025-2032)
12.1. Key Highlights
12.2. Pricing Analysis
12.3. East Asia Market Size (US$ Mn) Forecast, by Country, 2025-2032
12.3.1. China
12.3.2. Japan
12.3.3. South Korea
12.4. East Asia Market Size (US$ Mn) Forecast, by By Sensor Type, 2025-2032
12.4.1. Temperature Sensor
12.4.1.1. Resistive Temperature Sensor
12.4.1.2. Capacitive Temperature Sensor
12.4.2. Humidity Sensor
12.4.2.1. Resistive Temperature Sensor
12.4.2.2. Capacitive Temperature Sensor
13. 9.4.2.3.
13.1. East Asia Market Size (US$ Mn) Forecast, by By Technology, 2025-2032
13.1.1. Micro Electro Mechanical Systems (MEMS)
13.1.2. Complementary Metal Oxide Semiconductors (CMOS)
13.1.3. Thin-film Polymer Technology (TFPT)
13.2. East Asia Market Size (US$ Mn) Forecast, by Packaging Type, 2025-2032
13.2.1. Surface Mount Technology (SMT)
13.2.2. Pin Type Packaging
13.3. East Asia Market Size (US$ Mn) Forecast, by Application, 2025-2032
13.3.1. Power Train
13.3.2. Body Electronics
13.3.3. Automotive HVAC Control
13.3.4. Auto Defogger System
13.3.5. Alternative Fuel Vehicle (AFV)
14. South Asia & Oceania Digital Temperature and Humidity Sensor Market Outlook: Historical (2019-2024) and Forecast (2025-2032)
14.1. Key Highlights
14.2. Pricing Analysis
14.3. South Asia & Oceania Market Size (US$ Mn) Forecast, by Country, 2025-2032
14.3.1. India
14.3.2. Southeast Asia
14.3.3. ANZ
14.3.4. Rest of SAO
14.4. South Asia & Oceania Market Size (US$ Mn) Forecast, by By Sensor Type, 2025-2032
14.4.1. Temperature Sensor
14.4.1.1. Resistive Temperature Sensor
14.4.1.2. Capacitive Temperature Sensor
14.4.2. Humidity Sensor
14.4.2.1. Resistive Temperature Sensor
14.4.2.2. Capacitive Temperature Sensor
15. 10.4.2.3.
15.1. South Asia & Oceania Market Size (US$ Mn) Forecast, by By Technology, 2025-2032
15.1.1. Micro Electro Mechanical Systems (MEMS)
15.1.2. Complementary Metal Oxide Semiconductors (CMOS)
15.1.3. Thin-film Polymer Technology (TFPT)
15.2. South Asia & Oceania Market Size (US$ Mn) Forecast, by Packaging Type, 2025-2032
15.2.1. Surface Mount Technology (SMT)
15.2.2. Pin Type Packaging
15.3. South Asia & Oceania Market Size (US$ Mn) Forecast, by Application, 2025-2032
15.3.1. Power Train
15.3.2. Body Electronics
15.3.3. Automotive HVAC Control
15.3.4. Auto Defogger System
15.3.5. Alternative Fuel Vehicle (AFV)
16. Latin America Digital Temperature and Humidity Sensor Market Outlook: Historical (2019-2024) and Forecast (2025-2032)
16.1. Key Highlights
16.2. Pricing Analysis
16.3. Latin America Market Size (US$ Mn) Forecast, by Country, 2025-2032
16.3.1. Brazil
16.3.2. Mexico
16.3.3. Rest of LATAM
16.4. Latin America Market Size (US$ Mn) Forecast, by By Sensor Type, 2025-2032
16.4.1. Temperature Sensor
16.4.1.1. Resistive Temperature Sensor
16.4.1.2. Capacitive Temperature Sensor
16.4.2. Humidity Sensor
16.4.2.1. Resistive Temperature Sensor
16.4.2.2. Capacitive Temperature Sensor
17. 11.4.2.3.
17.1. Latin America Market Size (US$ Mn) Forecast, by By Technology, 2025-2032
17.1.1. Micro Electro Mechanical Systems (MEMS)
17.1.2. Complementary Metal Oxide Semiconductors (CMOS)
17.1.3. Thin-film Polymer Technology (TFPT)
17.2. Latin America Market Size (US$ Mn) Forecast, by Packaging Type, 2025-2032
17.2.1. Surface Mount Technology (SMT)
17.2.2. Pin Type Packaging
17.3. Latin America Market Size (US$ Mn) Forecast, by Application, 2025-2032
17.3.1. Power Train
17.3.2. Body Electronics
17.3.3. Automotive HVAC Control
17.3.4. Auto Defogger System
17.3.5. Alternative Fuel Vehicle (AFV)
18. Middle East & Africa Digital Temperature and Humidity Sensor Market Outlook: Historical (2019-2024) and Forecast (2025-2032)
18.1. Key Highlights
18.2. Pricing Analysis
18.3. Middle East & Africa Market Size (US$ Mn) Forecast, by Country, 2025-2032
18.3.1. GCC Countries
18.3.2. South Africa
18.3.3. Northern Africa
18.3.4. Rest of MEA
18.4. Middle East & Africa Market Size (US$ Mn) Forecast, by By Sensor Type, 2025-2032
18.4.1. Temperature Sensor
18.4.1.1. Resistive Temperature Sensor
18.4.1.2. Capacitive Temperature Sensor
18.4.2. Humidity Sensor
18.4.2.1. Resistive Temperature Sensor
18.4.2.2. Capacitive Temperature Sensor
19. 12.4.2.3.
19.1. Middle East & Africa Market Size (US$ Mn) Forecast, by By Technology, 2025-2032
19.1.1. Micro Electro Mechanical Systems (MEMS)
19.1.2. Complementary Metal Oxide Semiconductors (CMOS)
19.1.3. Thin-film Polymer Technology (TFPT)
19.2. Middle East & Africa Market Size (US$ Mn) Forecast, by Packaging Type, 2025-2032
19.2.1. Surface Mount Technology (SMT)
19.2.2. Pin Type Packaging
19.3. Middle East & Africa Market Size (US$ Mn) Forecast, by Application, 2025-2032
19.3.1. Power Train
19.3.2. Body Electronics
19.3.3. Automotive HVAC Control
19.3.4. Auto Defogger System
19.3.5. Alternative Fuel Vehicle (AFV)
20. Competition Landscape
20.1. Market Share Analysis, 2025
20.2. Market Structure
20.2.1. Competition Intensity Mapping
20.2.2. Competition Dashboard
20.3. Company Profiles
20.3.1. Analog Devices, Inc
20.3.1.1. Company Overview
20.3.1.2. Product Portfolio/Offerings
20.3.1.3. Key Financials
20.3.1.4. SWOT Analysis
20.3.1.5. Company Strategy and Key Developments
20.3.2. Continental AG
20.3.3. BorgWarner Inc.
20.3.4. TDK Corporation
20.3.5. Honeywell International
20.3.6. TE Connectivity
20.3.7. Melexis NV
20.3.8. NXP Semiconductors
20.3.9. ON Semiconductor Corporation
20.3.10. Robert Bosch GMBH
20.3.11. Sensata Technologies, Inc.
20.3.12. Sensirion AG
20.3.13. STMicroelectronics
20.3.14. Texas Instruments
21. Appendix
21.1. Research Methodology
21.2. Research Assumptions
21.3. Acronyms and Abbreviations