Àç»ý Ç×°ø ¿¬·á ½ÃÀå : ½ÃÀå Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ ¹× Åë°è, ¼ºÀå ¿¹Ãø(2025-2030³â)
Renewable Aviation Fuel - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)
»óǰÄÚµå
:
1651034
¸®¼Ä¡»ç
:
Mordor Intelligence Pvt Ltd
¹ßÇàÀÏ
:
2025³â 02¿ù
ÆäÀÌÁö Á¤º¸
:
¿µ¹®
¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
Àç»ý Ç×°ø ¿¬·á ½ÃÀå ±Ô¸ð´Â 2025³â¿¡ 96¾ï 8,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø±â°£(2025-2030³â)ÀÇ CAGRÀº 47.16%·Î Àü¸ÁµÇ¸ç, 2030³â¿¡´Â 668¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
½ÃÀåÀº 2020³â COVID-19¿¡ ÀÇÇØ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹Þ¾Ò½À´Ï´Ù. ÇöÀç ½ÃÀåÀº ÆÒµ¥¹Í ÀÌÀü ¼öÁØ¿¡ µµ´ÞÇß½À´Ï´Ù.
ÁÖ¿ä ÇÏÀ̶óÀÌÆ®
- Àå±âÀûÀ¸·Î´Â ¿Â½Ç°¡½º ¹èÃâ¿¡ °üÇÑ Á¤ºÎ±ÔÁ¦ÀÇ °È, Àç»ý Ç×°ø ¿¬·áÀÇ »ý»ê°ú ¼ÒºñÀÇ Àå·Á µîÀÇ ¿äÀÎÀÌ ¿¹Ãø±â°£ Áß Àç»ý Ç×°ø ¿¬·á ½ÃÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
- ÇÑÆí, Àç»ý Ç×°ø ¿¬·áÀÇ ºñ¿ëÀÌ ³ôÀº °ÍÀº Àç»ý Ç×°ø ¿¬·á ½ÃÀåÀÇ ¼ºÀåÀ» ¾ïÁ¦ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
- µ¿³²¾Æ½Ã¾Æ¿Í °°Àº ½ÅÈï Áö¿ª¿¡¼ÀÇ ¼ö¿ä Áõ°¡´Â ¿¹Ãø ±â°£ µ¿¾È Àç»ý Ç×°ø ¿¬·á ½ÃÀå¿¡ À¯¸®ÇÑ ±âȸ¸¦ âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
- ºÏ¹Ì´Â ¹Ì±¹°ú ij³ª´Ù¿Í °°Àº ±¹°¡ ¼ö¿ä°¡ ´ëºÎºÐÀ» Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ µ¿¾È Àç»ý Ç×°ø ¿¬·á ½ÃÀåÀ» µ¶Á¡ÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù.
Àç»ý Ç×°ø ¿¬·á ½ÃÀå µ¿Çâ
°¡¼öºÐÇØ ¿¡½ºÅ׸£ ¹× Áö¹æ»ê(HEFA) ±â¼úÀÌ ½ÃÀåÀ» µ¶Á¡ÇÕ´Ï´Ù.
- ¼ö¼ÒÈ Ã³¸® ¿¡½ºÅ׸£ ¹× Áö¹æ»ê(HEFA)Àº ÀϹÝÀûÀ¸·Î ¼ö¼ÒÈ ½Ä¹°¼º ¿ÀÀÏ(HVO) ¶Ç´Â ¼ö¼ÒÈ Ã³¸® Àç»ý Á¦Æ®(HRJ)·Î ¾Ë·ÁÁ® ÀÖÀ¸¸ç, µ¿¹°¼º ¿ÀÀÏ ¶Ç´Â ½Ä¹°¼º ¿ÀÀÏ(Æ®¸®±Û¸®¼¼¶óÀ̵å)À» ¼ö¼ÒÈ Ã³¸®ÇÔÀ¸·Î½á ¸¸µé¾îÁö´Â źȼö¼Ò Ç×°ø ¿¬·áÀÇ ÀÏÁ¾ÀÔ´Ï´Ù.
- 2011³â °¡¼öºÐÇØ ¿¡½ºÅ׸£ ¹× Áö¹æ»ê(HEFA) ±â¼úÀº ¹Ì±¹ Àç·á °Ë»ç Çùȸ(ASTM)·ÎºÎÅÍ ¹ÙÀÌ¿ÀÁ¬ ¿¬·á Á¦Á¶ ÀÎÁõÀ» ¹Þ¾Ò½À´Ï´Ù. HEFA´Â Àç»ý°¡´ÉÇÑ ¿¬·á Á¦Á¶¸¦ À§ÇØ À¯Áö¿Í °°Àº À¯Áö ÈÇÐ ¿ø·á¸¦ »ç¿ëÇÕ´Ï´Ù.
- ½ÃÆÇµÇ°í ÀÖ´Â ¹ÙÀÌ¿ÀÁ¬ ¿¬·áÀÇ ´ëºÎºÐÀº HEFA ¹ÙÀÌ¿ÀÁ¦Æ®¿¡ ÀÇÇÑ °ÍÀ¸·Î, ¼¼°è °¢Áö¿¡ »ó¾÷ ±Ô¸ðÀÇ ¹ÙÀÌ¿ÀÁ¬ ¿¬·á Á¦Á¶ ½Ã¼³ÀÌ ÀÖ½À´Ï´Ù. ±×·¯³ª Àç»ý°¡´ÉÇÑ µðÁ©(HEFA-diesel)Àº ¶ÇÇÑ ´õ Å« ½ÃÀå ¹üÀ§¿Í ´õ ³ôÀº ÆÇ¸Å °¡°ÝÀ» °¡Áø °øÁ¤¿¡¼ Á¦Á¶µË´Ï´Ù. µû¶ó¼ »ý»êÀÚ´Â HEFA Á¦Æ®°¡ ¾Æ´Ñ HEFA µðÁ©¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù.
- ¶ÇÇÑ, µ¿¹°¼º ±â¸§°ú ½Ä¹°¼º ±â¸§À¸·Î ¸¸µé¾îÁø źȼö¼Ò Ç×°ø ¿¬·á´Â ¹ÙÀÌ¿À¿¡³ÊÁö¿¡ Æ÷ÇԵ˴ϴÙ. ±¹Á¦Àç»ý°¡´É¿¡³ÊÁö±â±¸(International Renewable Energy Agency)¿¡ µû¸£¸é, 2022³â ¼¼°èÀÇ ¹ÙÀÌ¿À¿¡³ÊÁö ¿ë·®Àº 148GW·Î ±× ȯ°æÄ£ÈÀûÀÎ ¼ºÁú·ÎºÎÅÍ ¼ºÀåÀÌ Àü¸ÁµÇ°í ÀÖ½À´Ï´Ù.
- 2022³â 1¿ù, Á¸½¼ ¸Å¼¼À̴ ȸ¼öÇÑ ÀÌ»êÈź¼Ò(CO2)¿Í ±×¸° ¼ö¼Ò¸¦ FT ±â¼úÀ» »ç¿ëÇÏ¿© Áö¼Ó °¡´ÉÇÑ Ç×°ø ¿¬·á(SAF)·Î º¯È¯ÇÏ´Â Çõ½ÅÀûÀÎ ±â¼ú HyCOgenTMÀ» ¹ßÇ¥Çß½À´Ï´Ù. Àç»ý Ç×°ø ¿¬·á ºÎ¹®¿¡¼ÀÇ ÀÌ·¯ÇÑ °³¹ßÀº ¿¹Ãø ±â°£ µ¿¾È FT ±â¼ú ¼ö¿ä¸¦ Áõ°¡½Ãų °¡´É¼ºÀÌ ³ô½À´Ï´Ù.
- ¶ÇÇÑ 2021³â 12¿ù ¿µ±¹ ±³ÅëºÎ´Â ü¼Å ÁÖ¿¡ ½Å¼³µÈ ½Ã¼³ÀÇ »ó¼¼ ¿£Áö´Ï¾î¸µ ¼³°è¿¡ Á¾»çÇÒ °ÍÀ¸·Î º¸ÀÌ´Â Advanced Biofuel Solutions(ABSL)¿¡ 1,500¸¸ ÆÄ¿îµåÀÇ Áö¿øÀ» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ °øÀå¿¡¼´Â °¡½ºÈ ¹× ÇǼŠƮ·Ó½¬(FT) ±â¼úÀ» ÅëÇØ ¿¬°£ 13¸¸ 3,000ÅæÀ¸·Î ÃßÁ¤µÇ´Â Æó±â¹°À» Ç×°ø ¿¬·á·Î ¾÷±×·¹ÀÌµå °¡´ÉÇÑ ¹ÙÀÌ¿À ¿øÀ¯·Î ÀüȯÇÕ´Ï´Ù. µû¶ó¼ ¹Ì·¡ÀÇ Áö¼Ó °¡´ÉÇÑ Ç×°ø ¿¬·á ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÀÌ·¯ÇÑ ÅõÀÚ´Â ¿¹Ãø ±â°£ µ¿¾È FT ±â¼ú ¼ö¿ä¸¦ Áõ°¡½Ãų °¡´É¼ºÀÌ ³ô½À´Ï´Ù.
- ±×·¯³ª HEFA ¹ÙÀÌ¿À Á¦Æ® ¿¬·á´Â ȼ® À¯·¡ÀÇ Á¦Æ® ¿¬·áº¸´Ù ºñ¿ëÀÌ ³ô°í HEFAÀÇ ÀáÀçÀû ¿ø·áµµ ºñ¿ëÀÌ ³ô½À´Ï´Ù. Ç×°ø ºÎ¹®À» Żź¼ÒÈÇϱâ À§ÇØ Boeing°ú °°Àº ±â¾÷Àº Ç×°ø±â¿¡¼ °íÀÀ°íÁ¡ HEFA(HEFA) Ç×°ø ¿¬·áÀÇ ±â¼úÀû ÀûÇÕ¼ºÀ» °Ë»çÇϰí ÀÖ½À´Ï´Ù. HEFA´Â ½Ä¹°¼º ±â¸§°ú ÆóÁö¹æ°ú °°Àº ¹ÙÀÌ¿À ¿ø·á·ÎºÎÅÍ ÇÕ¼ºµÇ´Â źȼö¼ÒÀÔ´Ï´Ù.
- µû¶ó¼ À§ÀÇ Á¡¿¡¼ HEFA ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È Àç»ý Ç×°ø ¿¬·á ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½ÃÀåÀ» µ¶Á¡ÇÏ´Â ºÏ¹Ì
- ºÏ¹Ì´Â Ç×°ø »ê¾÷°ú Àç»ý Ç×°ø ¿¬·áÀÇ ÃÖ´ë ½ÃÀå Áß ÇϳªÀÔ´Ï´Ù. 1978³âºÎÅÍ 2022³â±îÁö ¹Ì±¹ Ç×°ø»ç´Â ¿¬·á È¿À²À» 130% ÀÌ»ó °³¼±ÇÏ¿© 50¾ï Åæ¿¡ °¡±î¿î ÀÌ»êÈź¼Ò¸¦ ÁÙ¿´½À´Ï´Ù. Airlines for America(A4A)¿¡ µû¸£¸é, ÀÌ ³ª¶ó Ç×°ø»ç´Â ÆÒµ¥¹Í Àü ´Ü°è¿¡¼ ¸ÅÀÏ ¾à 2¸¸ 8,000ÆíÀ» ¿îÇ×ÇÕ´Ï´Ù. ºÏ¹ÌÀÇ ´ëºÎºÐÀÇ Ç×°ø»çµéÀº 2020³â°ú 2021³â¿¡ Å« À繫 ¼Õ½ÇÀ» ±â·ÏÇß½À´Ï´Ù. ±×·¯³ª Ç×°ø ¿î¼Û·®Àº ¿¹Ãø ±â°£ µ¿¾È ȸº¹µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °Ô´Ù°¡ ¿øÀ¯°¡°ÝÀÌ ±Þ¼ÓÈ÷ »ó½ÂÇϰí Àֱ⠶§¹®¿¡ Àç»ý Ç×°ø ¿¬·á ¼ö¿ä´Â ¿¹Ãø±â°£ µ¿¾È Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
- ¹Ì±¹ÀÇ ¹ÙÀÌ¿À¿¡³ÊÁö±â¼ú±¹(BETO)°ú ¿¡³ÊÁöºÎ(DOE)´Â ¿¡³ÊÁöÈ¿À² ¹× Àç»ý ¿¡³ÊÁö(EERE)ÀÇ Áö¿øÀ» ¹Þ¾Æ Àç»ý ¿¬·á »ê¾÷ÀÇ ¼ºÀåÀ» ÀÚ±ØÇϱâ À§ÇØ ¿î¼Û ¹× Ç×°ø¿ë Áö¼Ó°¡´ÉÇÑ ±¹»ê ´ëü¿¬·áÀÇ Ã¤¿ëÀ» È®´ëÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.
- ºÏ¹Ì¿¡¼´Â Àç»ý Ç×°ø ¿¬·á »ý»ê¿¡ ´ëÇÑ ÁÖ¿ä ½ÃÃ¥Àû Àμ¾Æ¼ºê´Â ¹Ì±¹ÀÇ Àç»ý ¿¬·á ±âÁØ(RFS)À̸ç, ÀÌ´Â Àç»ý ¿¬·á¸¦ ¿î¼Û¿¬·á¿¡ È¥ÇÕÇÏ¿© Àç»ý°¡´É·® Àǹ«±âÁØÀ» ÃæÁ·ÇÏ´Â Á¤Á¦¾÷ÀÚ¿Í ¿¬·á¼öÀÔ¾÷ü¿¡°Ô ½Å¿ëÇÏ´Â °ÍÀÔ´Ï´Ù.
- 2022³â 1¿ù, ȯ°æº¸È£Ã»(EPA)Àº RFS ÇÁ·Î±×·¥ ÇÏ¿¡ ¼¿·ê·Î¿À½º°è ¹ÙÀÌ¿À¿¬·á, ¼±Áø ¹ÙÀÌ¿À¿¬·á, ÀüÀç»ý¿¬·áÀÇ ¼ö·® ¿ä°Ç¾ÈÀ» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ Á¦¾È¿¡¼ 2022³â Àç»ý ¿¬·á ±âÁØ·®Àº 360¾ï °¶·±À¸·Î Àü³âº¸´Ù 30¾ï °¶·± ÀÌ»ó Áõ°¡Çß½À´Ï´Ù.
- ¶ÇÇÑ, ±³ÅëºÎ, ¿¡³ÊÁöºÎ, ³ó¹«ºÎ´Â ÀÌ ¿¬·á °ø±ÞÀ» ÃËÁøÇϱâ À§ÇÑ ·Îµå¸ÊÀ» ¸¸µé¾ú½À´Ï´Ù. ¹é¾Ç°üÀº Ç×°ø±âÀÇ ¿Â½Ç°¡½º ¹èÃâ·®À» ÁÙÀ̱â À§ÇØ 2030³â±îÁö Áö¼Ó °¡´ÉÇÑ Á¦Æ® ¿¬·á »ý»êÀ» ¿¬°£ 30¾ï °¶·±À¸·Î È®´ëÇÏ´Â '±×·£µå 縰Áö'¸¦ ¹ßÇ¥Çß½À´Ï´Ù. 2050³â±îÁö ¾÷¹«¿ë Á¦Æ®¿¬·áÀÇ ¼Òºñ·®À» 100% ä¿ì´Â ¿¬·á¸¦ »ý»êÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. 2023³â 3¿ù ¹Ì±¹ Á¤ºÎ´Â Æó±â¹°À» ¹ÙÀÌ¿À¿¬·á·Î ÀüȯÇÏ´Â °úÇаú ÀÎÇÁ¶ó¸¦ °³¼±Çϰí 2050³â ¸ñÇ¥¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â ±âȸ·Î 3,450¸¸ ´Þ·¯¸¦ ±â±ÝÇϰí, ½º¸± ¸ñÇ¥¸¦ ¼öÁ¤Çß½À´Ï´Ù.
- ºÏ¹ÌÀÇ ±âÁ¸ ¿¬·á ½ÃÃ¥ÀÇ Æ²Àº ÇâÈÄ °¡¼öºÐÇØ ¿¡½ºÅ׸£ ¹× Áö¹æ»ê(HEFA) ¿¬·áÀÇ »ý»êÀ» Áö¿øÇÒ °ÍÀ¸·Î ¿¹»óµÇ¾î, ÀÌ Áö¿ªÀÇ HEFA ¿¬·á »ý»êÀÚÀÇ ±âȸ°¡ Áõ°¡ÇÒ °ÍÀÔ´Ï´Ù.
- µû¶ó¼ ÀÌ·¯ÇÑ ¿äÀÎÀÌ ¿¹Ãø±â°£ µ¿¾È ½ÃÀå¿¡¼ ºÏ¹ÌÀÇ ¿ìÀ§¼ºÀ» ³ôÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àç»ý Ç×°ø ¿¬·á »ê¾÷ °³¿ä
Àç»ý Ç×°ø ¿¬·á ½ÃÀåÀº Àû´çÇÏ°Ô ºÐÇҵ˴ϴÙ. ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷(¼øºÎµ¿)¿¡´Â TotalEnergies SE, Neste Oyj, Swedish Biofuels AB, Gevo Inc., SG Preston Company µîÀÌ ÀÖ½À´Ï´Ù.
±âŸ ÇýÅÃ
- ¿¢¼¿ Çü½Ä ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
- 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® ¼Æ÷Æ®
¸ñÂ÷
Á¦1Àå ¼·Ð
- Á¶»ç ¹üÀ§
- ½ÃÀåÀÇ Á¤ÀÇ
- Á¶»çÀÇ ÀüÁ¦
Á¦2Àå Á¶»ç ¹æ¹ý
Á¦3Àå ÁÖ¿ä ¿ä¾à
Á¦4Àå ½ÃÀå °³¿ä
- ¼¹®
- ½ÃÀå ±Ô¸ð ¹× ¼ö¿ä ¿¹Ãø(´ÜÀ§ : 100¸¸ ´Þ·¯)(-2028³â)
- Á¤ºÎÀÇ ±ÔÁ¦ ¹× ½ÃÃ¥
- ÃÖ±Ù µ¿Çâ ¹× °³¹ß
- ½ÃÀå ¿ªÇÐ
- ¼ºÀå ÃËÁø¿äÀÎ
- ¿Â½Ç°¡½º ¹èÃâ¿¡ °üÇÑ Á¤ºÎ±ÔÁ¦ °È
- Àç»ý Ç×°ø ¿¬·áÀÇ »ý»ê°ú ¼ÒºñÀÇ Àå·Á
- ¾ïÁ¦¿äÀÎ
- Àç»ý Ç×°ø ¿¬·áÀÇ ³ôÀº ºñ¿ë
- °ø±Þ¸Á ºÐ¼®
- Porter's Five Forces ºÐ¼®
- °ø±Þ±â¾÷ÀÇ Çù»ó·Â
- ¼ÒºñÀÚÀÇ Çù»ó·Â
- ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
- ´ëüǰÀÇ À§Çù
- °æÀï ±â¾÷°£ °æÀï °ü°è
Á¦5Àå ½ÃÀå ¼¼ºÐÈ
- ±â¼úº°
- ÇǼŠ¹× Æ®·Ó½¬(FT)
- °¡¼öºÐÇØ ¿¡½ºÅ׸£ ¹× Áö¹æ»ê(HEFA)
- ÇÕ¼º ÀÌ¼ÒÆÄ¶óÇÉ(SIP) ¹× ¾ËÄÚ¿Ã-Á¦Æ®(AJT)
- ¿ëµµº°
- Áö¿ªº°
- ºÏ¹Ì
- ¾Æ½Ã¾ÆÅÂÆò¾ç
- Áß±¹
- Àεµ
- ÀϺ»
- ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
- À¯·´
- ¿µ±¹
- ÇÁ¶û½º
- µ¶ÀÏ
- ±âŸ À¯·´
- ³²¹Ì
- ºê¶óÁú
- ¾Æ¸£ÇîÆ¼³ª
- ±âŸ ³²¹Ì
- Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
- ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
- »ç¿ìµð¾Æ¶óºñ¾Æ
- īŸ¸£
- ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
Á¦6Àå °æÀï ±¸µµ
- M&A, ÇÕÀÛ»ç¾÷, Á¦ÈÞ ¹× ÇùÁ¤
- ÁÖ¿ä ±â¾÷ÀÇ Àü·«
- ±â¾÷ ÇÁ·ÎÆÄÀÏ
- TotalEnergies SE
- Neste Oyj
- Swedish Biofuels AB
- Red Rock Biofuels LLC
- Gevo Inc.
- Honeywell International Inc.
- Fulcrum BioEnergy Inc.
- SG Preston Company
- LanzaTech Inc.
Á¦7Àå ½ÃÀå ±âȸ ¹× ÇâÈÄ µ¿Çâ
- µ¿³²¾Æ½Ã¾Æ µî ½ÅÈïÁö¿ª¿¡¼ÀÇ ¼ö¿ä Áõ°¡
AJY
¿µ¹® ¸ñÂ÷
The Renewable Aviation Fuel Market size is estimated at USD 9.68 billion in 2025, and is expected to reach USD 66.83 billion by 2030, at a CAGR of 47.16% during the forecast period (2025-2030).
The market was negatively impacted by COVID-19 in 2020. Presently the market has reached pre-pandemic levels.
Key Highlights
- Over the long term, factors such as increased government regulations for greenhouse gas emissions, and encouraging production and consumption of renewable aviation fuel are likely to drive the renewable aviation fuel market during the forecast period.
- On the other hand, high costs of renewable aviation fuel are expected to restrain the growth of renewable aviation fuel market.
- Nevertheless, increasing demand from emerging regions like southeast asia are exoected to create lucrative opportunities for the renewable aviation fuel market in the forecat period.
- North America is likely to dominate the renewable aviation fuel market during the forecast period, with a majority of the demand coming from countries like the United States and Canada.
Renewable Aviation Fuel Market Trends
Hydroprocessed Esters and Fatty Acids (HEFA) Technology to Dominate the Market
- Hydroprocessed Esters and Fatty Acids (HEFA), commonly known as Hydrogenated Vegetable Oil (HVO) or Hydroprocessed Renewable Jet (HRJ), is a type of hydrocarbon aviation fuel made from animal or vegetable oils (triglycerides) by hydroprocessing.
- In 2011, hydro-processed esters and fatty acids (HEFA) technology received certification from the American Society for Testing and Materials (ASTM) for bio-jet fuel production. HEFA uses oleo-chemical feedstock, such as oil and fats, for renewable fuel production.
- A significant share of available commercial volumes of bio-jet fuels comes from HEFA biojet, with several commercial-scale facilities worldwide producing the same. However, renewable diesel (HEFA-diesel) is also made during the process, with a larger market scope and a higher sales price. Thus, producers are focusing on HEFA-diesel instead of HEFA-jet.
- Moreover, hydrocarbon aviation fuel made from animal or vegetable oils comes under bioenergy. According to International Renewable Energy Agency, in 2022, the total global bioenergy capacity accounted for 148 GW, expected to grow due to its environment-friendly nature.
- In January 2022, Johnson Matthey launched an innovative technology, HyCOgenTM, by converting captured carbon dioxide (CO2) and green hydrogen into sustainable aviation fuel (SAF) using FT technology. Such developments in the renewable aviation fuel sector will likely increase demand for FT technology during the forecast period.
- Furthermore, in December 2021, the UK Department for Transport announced support of GBP 15 million to Advanced Biofuel Solutions (ABSL), which was likely to work on a detailed engineering design for a new facility in Cheshire. The plant will be used for gasification and Fischer-Tropsch (FT) technology to convert an estimated 133,000 metric tons of waste a year into a biocrude that can be upgraded to aviation fuel. Thus, such investments in upcoming sustainable aviation fuel projects will likely increase the demand for FT technology during the forecast period.
- However, HEFA biojet fuel costs more than fossil-derived jet fuels, and the potential feedstock for the HEFA is also costly. To decarbonize the aviation sector, companies such as Boeing are testing the technical suitability of high freezing point HEFA (HEFA+) aviation fuel in aircraft. HEFA+ is a synthetic hydrocarbon from bio feedstock, such as vegetable oil or waste fats.
- Therefore, owing to the above points, the HEFA segment is expected to dominate the renewable aviation fuel market during the forecast period.
North America to Dominate the Market
- North America is one of the largest markets for the aviation industry and renewable aviation fuel. Between 1978 and 2022, US airlines improved fuel efficiency by over 130%, which resulted in nearly 5 billion metric tons of carbon dioxide savings. According to the Airlines for America (A4A), the country's airlines operate approximately 28,000 flights daily in the pre-pandemic stage. Most airline companies in North America posted heavy financial losses in 2020 and 2021. However, airline traffic is expected to recover during the forecast period. Further, as crude oil prices are increasing rapidly, the demand for renewable aviation fuel is expected to grow during the forecast period.
- The Bio-Energy Technologies Office (BETO) of the United States and the Department of Energy (DOE), supported by Energy Efficiency and Renewable Energy (EERE), are making efforts to expand the adoption of sustainable, domestically produced alternative fuels for transportation and aviation to stimulate the growth of the renewable fuel industry.
- In North America, the primary policy incentive for renewable aviation fuel production is the US Renewable Fuel Standard (RFS), which credits refiners and fuel importers who blend renewable fuel into transportation fuel to meet Renewable Volume Obligation standards.
- In January 2022, the Environmental Protection Agency (EPA) issued proposed volume requirements, under the RFS program, for cellulosic biofuel, advanced biofuel, and total renewable fuel. Under this proposal, the renewable fuel standard 2022 was set at 36 billion gallons, an increment of over 3 billion gallons over the previous year.
- Moreover, The Departments of Transportation, Energy, and Agriculture developed a road map to guide their efforts to boost this fuel supply. The White House issued a "Grand Challenge" to expand sustainable jet fuel production to 3 billion gallons per year by 2030 to reduce aviation greenhouse gas emissions. It aims to create enough fuel by 2050 to meet 100% commercial jet fuel consumption. In March 2023, the U.S. government revised thr goals by funding USD 34.5 million as an opportunity to improve the science and infrastructure for converting waste into biofuels and help support the 2050 goal.
- The existing framework of fuel policies in North America is expected to support hydro-processed esters and fatty acids (HEFA) fuel production in the future, thereby increasing the opportunities for HEFA fuel producers in the region.
- Therefore, such factors are expected to boost the dominance of North America in the market during the forecast period.
Renewable Aviation Fuel Industry Overview
The renewable aviation fuel market is moderately fragmented. Some of the major players in the market (in no particular order) include TotaEnergies SE, Neste Oyj, Swedish Biofuels AB, Gevo Inc., and SG Preston Company.
Additional Benefits:
- The market estimate (ME) sheet in Excel format
- 3 months of analyst support
TABLE OF CONTENTS
1 INTRODUCTION
- 1.1 Scope of the Study
- 1.2 Market Definition
- 1.3 Study Assumptions
2 RESEARCH METHODOLOGY
3 EXECUTIVE SUMMARY
4 MARKET OVERVIEW
- 4.1 Introduction
- 4.2 Market Size and Demand Forecast in USD million, till 2028
- 4.3 Government Policies and Regulations
- 4.4 Recent Trends and Developments
- 4.5 Market Dynamics
- 4.5.1 Drivers
- 4.5.1.1 Increased Government Regulations for Greenhouse Gas Emissions
- 4.5.1.2 Encouraging Production and Consumption of Renewable Aviation Fuel
- 4.5.2 Restraints
- 4.5.2.1 The High Costs of Renewable Aviation Fuel
- 4.6 Supply Chain Analysis
- 4.7 Porter's Five Forces Analysis
- 4.7.1 Bargaining Power of Suppliers
- 4.7.2 Bargaining Power of Consumers
- 4.7.3 Threat of New Entrants
- 4.7.4 Threat of Substitutes Products and Services
- 4.7.5 Intensity of Competitive Rivalry
5 MARKET SEGMENTATION
- 5.1 Technology
- 5.1.1 Fischer-Tropsch (FT)
- 5.1.2 Hydroprocessed Esters and Fatty Acids (HEFA)
- 5.1.3 Synthesisized Iso-Paraffinic (SIP) and Alcohol-to-Jet (AJT)
- 5.2 Application
- 5.2.1 Commercial
- 5.2.2 Defense
- 5.3 Geography
- 5.3.1 North America
- 5.3.1.1 United States of America
- 5.3.1.2 Canada
- 5.3.1.3 Rest of the North America
- 5.3.2 Asia-Pacific
- 5.3.2.1 China
- 5.3.2.2 India
- 5.3.2.3 Japan
- 5.3.2.4 Rest of the Asia-Pacific
- 5.3.3 Europe
- 5.3.3.1 United Kingdom
- 5.3.3.2 France
- 5.3.3.3 Germany
- 5.3.3.4 Rest of the Europe
- 5.3.4 South America
- 5.3.4.1 Brazil
- 5.3.4.2 Argentina
- 5.3.4.3 Rest of the South America
- 5.3.5 Middle-East and Africa
- 5.3.5.1 United Arab Emirates
- 5.3.5.2 Saudi Arabia
- 5.3.5.3 Qatar
- 5.3.5.4 Rest of the Middle-East and Africa
6 COMPETITIVE LANDSCAPE
- 6.1 Mergers and Acquisitions, Joint Ventures, Collaborations, and Agreements
- 6.2 Strategies Adopted by Leading Players
- 6.3 Company Profiles
- 6.3.1 TotalEnergies SE
- 6.3.2 Neste Oyj
- 6.3.3 Swedish Biofuels AB
- 6.3.4 Red Rock Biofuels LLC
- 6.3.5 Gevo Inc.
- 6.3.6 Honeywell International Inc.
- 6.3.7 Fulcrum BioEnergy Inc.
- 6.3.8 SG Preston Company
- 6.3.9 LanzaTech Inc.
7 MARKET OPPORTUNITIES AND FUTURE TRENDS
- 7.1 Increasing Demand from Emerging Regions like Southeast Asia