¼¼°èÀÇ ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå : Á¦°øº°, µî±Þº°, ¿ëµµº°, Áö¿ªº° - ¿¹Ãø(-2030³â)
Atomic Force Microscopy Market by Offering (AFMs, Probes, Software), Grade (Industrial, Research), Application (Semiconductors & Electronics, Material Science & Nanotechnology, Life Sciences & Biomedical) and Region - Global Forecast to 2030
»óǰÄÚµå : 1772636
¸®¼­Ä¡»ç : MarketsandMarkets
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 210 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 6,864,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,650 £Ü 9,222,000
PDF (5-user License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 8,150 £Ü 11,302,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÀÌ¿ë Àοø¿¡ Á¦ÇÑÀº ¾øÀ¸³ª, ±¹³»¿¡ ÀÖ´Â »ç¾÷À常 ÇØ´çµÇ¸ç, ÇØ¿Ü ÁöÁ¡ µîÀº Æ÷ÇÔµÇÁö ¾Ê½À´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 10,000 £Ü 13,868,000
PDF (Global License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. (100% ÀÚȸ»ç´Â µ¿ÀÏ ±â¾÷À¸·Î °£Áֵ˴ϴÙ.) Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¼¼°èÀÇ ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå ±Ô¸ð´Â 2025³â 5¾ï 4,180¸¸ ´Þ·¯¿¡¼­ 2030³â¿¡´Â 7¾ï 6,220¸¸ ´Þ·¯·Î ¼ºÀåÇÏ¿© ¿¹Ãø ±â°£ µ¿¾È CAGR 7.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

±â¼ú Çõ½Å°ú ³ª³ë±â¼ú ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ¿øÀÚ°£ Èû Çö¹Ì°æ ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ¿äÀÎÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Àåºñ´Â ³ª³ë½ºÄÉÀÏ À̹Ì¡°ú Á¤¹ÐÇÑ Ç¥¸é Ư¼ºÈ­¸¦ Á¦°øÇϸç, ¹ÝµµÃ¼, Àç·á °úÇÐ, »ý¸í°úÇÐ µîÀÇ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿È­, ÀΰøÁö´É, °í±Þ ¼ÒÇÁÆ®¿þ¾î ºÐ¼®ÀÇ ÅëÇÕÀ¸·Î »ç¿ëÀÚ ÆíÀǼº°ú ÃøÁ¤ Á¤È®µµ°¡ Çâ»óµÇ¸é¼­ AFMÀº ¿¬±¸ ±â°ü»Ó¸¸ ¾Æ´Ï¶ó »ê¾÷°èÀÇ Ç°Áú °ü¸® ȯ°æÀ¸·Î È®´ëµÇ°í ÀÖÀ¸¸ç, ¼ÒÇü ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ¸Â¹°·Á AFMÀº Â÷¼¼´ë Á¦Á¶¿Í °ü·ÃÇÏ¿© Çаè¿Í »ê¾÷°è¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. Çаè¿Í »ê¾÷°è ¸ðµÎ¿¡¼­ äÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó ¿¬µµ 2021-2030³â
±âÁØ ¿¬µµ 2024³â
¿¹Ãø ±â°£ 2025-2030³â
°ËÅä ´ÜÀ§ ±Ý¾×(10¾ï ´Þ·¯)
ºÎ¹®º° Á¦°øº°, µî±Þº°, ¿ëµµº°, Áö¿ªº°
´ë»ó Áö¿ª ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ±âŸ Áö¿ª

¹ÝµµÃ¼, ÀüÀÚ, ÀÚµ¿Â÷, ¿¡³ÊÁö ¹× ±âŸ ¿©·¯ »ê¾÷¿¡¼­ ǰÁú °ü¸®, °íÀå ºÐ¼® ¹× Àç·á Á¶»ç¿¡¼­ AFM ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó »ê¾÷ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¦Á¶ °øÁ¤ÀÇ ¼ÒÇüÈ­¿Í ³ª³ë ´ÜÀ§ÀÇ Á¤¹Ðµµ°¡ Áß¿äÇØÁü¿¡ µû¶ó AFM°ú °°Àº Ç¥¸é Ư¼ºÈ­ ¹× ÃøÁ¤ µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ ºü¸£°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. »ê¾÷¿ë AFMÀº °í¼Ó ½ºÄ³´×, ÀÚµ¿ Á¶ÀÛ, »ý»ê ¶óÀÎ ÅëÇÕ µî ÷´Ü ±â´ÉÀ» °®Ãß°í ÀÖ¾î ÀζóÀÎ °Ë»ç ¹× °øÁ¤ ¸ð´ÏÅ͸µ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, »ê¾÷°è´Â ³ª³ë Àç·á °³¹ß ¹× ±â´É¼º ÄÚÆÃ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, AFMÀº Ç¥¸é °ÅÄ¥±â, Á¢Âø Ư¼º ¹× ¹Ú¸·ÀÇ ±ÕÀϼºÀ» ºÐ¼®ÇÏ´Â µ¥ ÇʼöÀûÀÎ µµ±¸°¡ µÇ¾ú½À´Ï´Ù.

Àç·á°úÇÐ ¹× ³ª³ë±â¼ú ºÐ¾ß´Â ¿øÀÚ°£ Èû Çö¹Ì°æ ½ÃÀå¿¡¼­ µÎ ¹øÂ° Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿øÀÚ°£ Èû Çö¹Ì°æÀº Ç¥¸é ÇüÅÂ, °ÅÄ¥±â, ±â°èÀû Ư¼º, ºÐÀÚ°£ »óÈ£ÀÛ¿ëÀ» ¿øÀÚ ¼öÁØ¿¡¼­ ¿¬±¸ÇÏ´Â µ¥ ³Î¸® Ȱ¿ëµÇ°í ÀÖÀ¸¸ç, Â÷¼¼´ë Àç·á °³¹ß¿¡ ÇʼöÀûÀÔ´Ï´Ù. ³ª³ë ±¸Á¶ Àç·á, º¹ÇÕÀç·á, ±×·¡ÇÉ ¹× ÀüÀÌ ±Ý¼Ó µðÄ®ÄÚ°Ô³ªÀ̵å¿Í °°Àº 2Â÷¿ø Àç·á¿¡ ´ëÇÑ °ü½ÉÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÇÐ°è ¹× »ê¾÷ ¿¬±¸ ȯ°æ¿¡¼­ AFMÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¤ºÎ ±â°ü°ú ¹Î°£ ±â¾÷ÀÇ ³ª³ë±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í ¿¬±¸ ±â°ü°ú ¿µ¸® ±â¾÷ °£ÀÇ Çù·Â °­È­°¡ ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °í¼Ó ½ºÄ³´×, ´ÙÁß ÆÄ¶ó¹ÌÅÍ ÃøÁ¤ ¸ðµå, ºÐ±¤ ±â¼ú°úÀÇ ÅëÇÕ µî AFM ±â¼úÀÇ ¹ßÀüÀº Àç·á Ư¼º Æò°¡¿¡¼­ AFMÀÇ À¯¿ë¼º°ú Á¤È®¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

³ª³ë±â¼ú ¿¬±¸, ¹ÝµµÃ¼ Çõ½Å, Àç·á °úÇÐ °³¹ß¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿øÀÚ°£ Èû Çö¹Ì°æ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹, ´ë¸¸ µîÀÇ ±¹°¡µéÀº ÷´Ü Á¦Á¶ ¹× ÀüÀÚ »ê¾÷¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­Çϱâ À§ÇØ ¿¬±¸°³¹ß ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. À¯¸®ÇÑ Á¤ºÎ Á¤Ã¥°ú ¹Î°ü Çù·Â¿¡ ÈûÀÔ¾î ¹ÝµµÃ¼ »ê¾÷ÀÇ ±Þ¼ÓÇÑ È®ÀåÀº AFM°ú °°Àº °íÇØ»óµµ Ç¥¸é Ư¼ºÈ­ µµ±¸¿¡ ´ëÇÑ Å« ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. Çаè¿Í ¿¬±¸±â°üµéµµ ³ª³ë°úÇаú »ý¸í°øÇÐ ºÐ¾ßÀÇ Çõ½ÅÀ» Áö¿øÇϱâ À§ÇØ AFMÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, Á¦Ç°º°, µî±Þº°, ¿ëµµº°, Áö¿ªº° µ¿Çâ, ½ÃÀå ÁøÀÔ ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀÇ Á¤º¸¸¦ Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼Ò°³

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ÁÖ¿ä ÀλçÀÌÆ®

Á¦5Àå ½ÃÀå °³¿ä

Á¦6Àå ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå(Á¦°øº°)

Á¦7Àå ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå(µî±Þº°)

Á¦8Àå ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå(¿ëµµº°)

Á¦9Àå ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå(Áö¿ªº°)

Á¦10Àå °æÀï ±¸µµ

Á¦11Àå ±â¾÷ °³¿ä

Á¦12Àå ºÎ·Ï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The global atomic force microscopy market is projected to grow from USD 541.8 million in 2025 to USD 762.2 million in 2030, at a CAGR of 7.1% during the forecast period. Technological innovations and rising investments in nanotechnology research are key growth drivers for the atomic force microscopy market. These instruments offer nanoscale imaging and precise surface characterization, making them indispensable in fields such as semiconductors, materials science, and life sciences. The integration of automation, artificial intelligence, and advanced software analytics enhances user accessibility and measurement accuracy, expanding AFM use beyond research institutions into industrial quality control environments. Their alignment with increasing demand for miniaturized electronics makes AFMs highly relevant for next-generation manufacturing, accelerating their adoption in both academic and industrial domains.

Scope of the Report
Years Considered for the Study2021-2030
Base Year2024
Forecast Period2025-2030
Units ConsideredValue (USD Billion)
SegmentsBy offering, grade, application, and region
Regions coveredNorth America, Europe, APAC, RoW

"Industrial segment to witness highest CAGR in atomic force microscopy market during forecasted period"

The industrial segment is expected to register the highest CAGR due to the increasing adoption of AFM technology in quality control, failure analysis, and materials research across semiconductors, electronics, automotive, energy, and several other industries. As manufacturing processes continue to miniaturize and emphasize nanoscale precision, the demand for surface characterization and metrology tools such as AFMs is growing rapidly. Industrial AFMs offer advanced features such as high-speed scanning, automated operation, and integration with production lines, making them suitable for inline inspection and process monitoring. Moreover, as industries increasingly invest in nanomaterial development and functional coatings, AFMs are becoming indispensable for analyzing surface roughness, adhesion properties, and thin film uniformity.

"Material science & nanotechnology segment to hold second-largest share of atomic force microscopy market"

The material science & nanotechnology segment is projected to account for the second-largest share of the atomic force microscopy market. Atomic force microscopes are extensively utilized to study surface morphology, roughness, mechanical properties, and molecular interactions at the atomic level, which is critical in developing next-generation materials. The growing interest in nanostructured materials, composite materials, and two-dimensional materials such as graphene and transition metal dichalcogenides has increased the adoption of AFM in academic and industrial research settings. Additionally, rising investments in nanotechnology initiatives by government agencies and private organizations, coupled with increased collaboration between research institutes and commercial enterprises, are propelling the segment's growth. Advancements in AFM technology, such as the integration of high-speed scanning, multiparametric measurement modes, and integration with spectroscopy techniques, are enhancing its utility and precision in material characterization.

"Asia Pacific to witness highest CAGR in atomic force microscopy market during forecast period"

The increasing focus on nanotechnology research, semiconductor innovation, and materials science development primarily drives the atomic force microscopy market in the Asia Pacific region. Countries such as China, Japan, South Korea, and Taiwan are investing heavily in research and development infrastructure to strengthen their position in advanced manufacturing and electronics. The rapid expansion of the semiconductor industry, supported by favorable government policies and public-private partnerships, is creating substantial demand for high-resolution surface characterization tools such as AFMs. Academic institutions and research organizations are also adopting AFMs to support breakthroughs in nanoscience and biotechnology.

Breakdown of Primaries

The study contains insights from various industry experts, ranging from component suppliers to Tier 1 companies and OEMs. The break-up of the primaries is as follows:

The atomic force microscopy market is dominated by a few globally established players, such as Park Systems (South Korea), Bruker (US), Hitachi High-Tech Corporation (Japan), Oxford Instruments (UK), and Semilab Inc. (Hungary). The study includes an in-depth competitive analysis of these key players, with their company profiles, recent developments, and key market strategies.

Research Coverage:

The report segments the atomic force microscopy market and forecasts its size by offering, grade, application, and region. It also discusses the market's drivers, restraints, opportunities, and challenges and gives a detailed view of the market across four main regions: North America, Europe, Asia Pacific, and RoW.

Key Benefits of Buying the Report:

TABLE OF CONTENTS

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

5 MARKET OVERVIEW

6 ATOMIC FORCE MICROSCOPY MARKET, BY OFFERING

7 ATOMIC FORCE MICROSCOPY MARKET, BY GRADE

8 ATOMIC FORCE MICROSCOPY MARKET, BY APPLICATION

9 ATOMIC FORCE MICROSCOPY MARKET, BY REGION

10 COMPETITIVE LANDSCAPE

11 COMPANY PROFILES

12 APPENDIX

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â