세계의 항공기용 전기 기계 액추에이터 시장 예측(-2030년) : 플랫폼별, 기구 유형별, 용도별, 모터 토크별, 지역별
Electromechanical Actuators in Aircraft Market by Application, Mechanism Type, Motor Torque, Platform, Region - Global Forecast to 2030
상품코드:1755998
리서치사:MarketsandMarkets
발행일:2025년 06월
페이지 정보:영문 265 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
한글목차
항공기용 전기 기계 액추에이터 시장 규모는 2025년 5억 7,710만 달러에서 6.9%의 CAGR로 확대하며, 2030년에는 8억 430만 달러에 달할 것으로 예측됩니다.
이 시장은 전 세계에서 항공우주 시스템의 전동화 추세에 힘입어 2030년까지 견고한 성장세를 보일 것으로 예측됩니다. 항공기 제조업체들이 유압 라인과 유체 기반 시스템을 배제하는 것을 우선시하는 가운데, 가볍고 컴팩트하며 에너지 효율이 높은 특성을 가진 EMA의 채택이 증가하고 있습니다. 이러한 추세는 배출량 감소, 유지보수 간소화, 시스템 통합 개선에 초점을 맞춘 최신 민항기 및 방산 항공기 프로그램에서 특히 두드러지게 나타나고 있습니다.
조사 범위
조사 대상연도
2021-2030년
기준연도
2024년
예측 기간
2025-2030년
검토 단위
금액(100만 달러)
부문별
플랫폼별, 기구 유형별, 용도별, 모터 토크별, 지역별
대상 지역
북미, 유럽, 아시아태평양, 기타 지역
로터리 액추에이터는 모든 중요한 항공기 시스템에 널리 사용되며, 소형 모션 제어에서 뛰어난 성능 특성을 보여주기 때문에 로터리 액추에이터 분야는 항공기 전기기계식 액추에이터 시장을 독점할 가능성이 높습니다. 로터리 액추에이터는 스로틀 제어, 밸브 작동, 플랩 구동, 스러스트 리버서, 브레이크 시스템 등 정확한 각도 운동과 높은 토크 밀도가 요구되는 용도에서 매우 중요합니다. 소형으로 부드럽고 제어된 회전 운동을 제공할 수 있으므로 공간 제약이 있는 민항기 및 군용기 용도에 특히 적합합니다. 또한 회전식 EMA는 선형 EMA에 비해 신뢰성이 향상되고, 응답 속도가 빠르며, 전자식 비행 제어 시스템에 쉽게 통합할 수 있다는 장점이 있습니다. 차세대 항공기 플랫폼이 모듈식 전기 아키텍처로 전환함에 따라 유지보수가 용이하고 다용도한 회전식 액추에이터에 대한 요구가 증가하고 있습니다. 이러한 액추에이터는 eVTOL 및 UAV와 같이 제어 표면을 효율적으로 구동하기 위해 가볍고 고성능의 시스템이 필요한 새로운 플랫폼에 적합합니다. 또한 디지털 피드백 시스템, 임베디드 센서, 열 관리의 개선으로 진단 능력과 함께 내결함성이 크게 향상되었습니다.
협동체 항공기 부문은 특히 단거리 및 중거리 부문에서 전 세계 항공기 성장에 중요한 역할을 하고 있으며, 항공기용 전기기계식 액추에이터 시장을 독점할 준비가 되어 있습니다. 신흥 국가의 항공 수요 증가, 저가 항공사의 발전, 포인트 투 포인트 연결성 증가에 따라 전 세계에서 많은 납품이 이루어지고 있습니다. 항공사는 연비 효율성, 운항 성능, 수명주기 비용 절감에 중점을 둔 차세대 협동체 플랫폼에 대한 투자를 늘리고 있으며, 이러한 목표는 EMA의 장점과 정확히 일치합니다. 전기기계식 액추에이터는 경량화, 유지보수 용이성, 디지털 비행 제어 시스템과의 호환성 측면에서 기존 유압식 시스템에 비해 압도적인 우위를 점하고 있습니다. 이러한 조건은 좌석 마일당 비용이 중요한 성능 지표인 좁은 차체 함대에 가장 중요합니다. 또한 항공기 제조업체들은 규제 및 환경 요구 사항을 충족하고 EMA 기술의 성장을 가속화하기 위해 더 많은 전기 시스템을 새로운 협동체 항공기에 통합하려고 노력하고 있습니다.
라틴아메리카는 항공 여행 수요 증가, 항공기 업그레이드 구상, 항공우주 인프라에 대한 투자 증가로 인해 예측 기간 중 항공기용 전기기계식 액추에이터 시장에서 가장 높은 성장률을 보일 것으로 예측됩니다. 브라질, 멕시코, 콜롬비아는 국내 및 지역내 항공 운송 붐이 일어나고 있으며, 현지 항공사는 첨단 액추에이션 시스템을 갖춘 새롭고 연비 효율적인 항공기를 조달하고 있습니다. 또한 지역 정부는 고정익 및 회전익 군용기 업그레이드와 같은 국방 현대화 계획에 투자하고 있으며, 유지보수 요구사항이 적고 신뢰성이 높은 전기기계식 시스템을 유압식 대체 시스템보다 선호하고 있습니다.
라틴아메리카, 특히 브라질에서 항공기 제조 및 MRO가 활발하게 이루어지고 있습니다. 이 때문에 EMA 기술의 현지 채택 및 통합이 촉진되고 있습니다. 하이브리드 및 전기 항공기에 대한 관심 등 지속가능한 항공으로의 전환도 EMA와 같은 경량 및 전동식 부품에 대한 수요를 증가시키고 있습니다. 이 지역이 세계 항공 시장에서 차지하는 절대적인 비중은 여전히 작지만, 빠른 변화 속도, 규제 변경 가능성과 항공우주 생태계 확장으로 인해 라틴아메리카는 민간 항공 및 방위 항공 시장에서 전기기계식 액추에이터의 고성장 지역이 되고 있습니다.
세계의 항공기용 전기 기계 액추에이터 시장에 대해 조사했으며, 플랫폼별, 기구 유형별, 용도별, 모터 토크별, 지역별 동향 및 시장에 참여하는 기업의 개요 등을 정리하여 전해드립니다.
목차
제1장 서론
제2장 조사 방법
제3장 개요
제4장 주요 인사이트
제5장 시장 개요
서론
시장 역학
고객 비즈니스에 영향을 미치는 동향/혼란
무역 분석
가격 분석
운영 데이터
볼륨 데이터(플랫폼에 배치된 전기 기계 액추에이터 수)
에코시스템 분석
밸류체인 분석
주요 이해관계자와 구입 기준
2024-2025년의 주요 컨퍼런스와 이벤트
관세와 규제 상황
투자와 자금조달 시나리오
기술 동향
전기 기계 액추에이터 기본 컴포넌트
기술 분석
사례 연구 분석
기술 로드맵
특허 분석
생성형 AI/AI의 영향
거시경제 전망
미국의 2025년 관세
제6장 항공기용 전기 기계 액추에이터 시장(플랫폼별)
서론
협동체기
광동체기
지역 운송 항공기
비즈니스 제트
민간 헬리콥터
경량·초경량 항공기
제7장 항공기용 전기 기계 액추에이터 시장(기구 유형별)
서론
선형 액추에이터
로터리 액추에이터
제8장 항공기용 전기 기계 액추에이터 시장(용도별)
서론
비행 제어면
연료 분배
캐빈 액추에이션
도어
착륙장치
기타
제9장 항공기용 전기 기계 액추에이터 시장(모터 토크별)
서론
25NM 미만
25-100NM
100-300NM
300NM 초과
제10장 항공기용 전기 기계 액추에이터 시장(지역별)
서론
북미
서론
PESTLE 분석
미국
캐나다
유럽
서론
PESTLE 분석
영국
프랑스
독일
이탈리아
기타
아시아태평양
서론
PESTLE 분석
중국
인도
일본
기타
중동 및 아프리카
서론
PESTLE 분석
사우디아라비아
아랍에미리트
남아프리카공화국
기타
라틴아메리카
서론
PESTLE 분석
브라질
멕시코
기타
제11장 경쟁 구도
서론
주요 참여 기업의 전략/강점
시장 점유율 분석
브랜드 비교
재무 지표라고 기업 평가
매출 분석
기업 평가 매트릭스 : 주요 참여 기업, 2024년
기업 평가 매트릭스 : 스타트업/중소기업, 2024년
경쟁 시나리오
제12장 기업 개요
서론
주요 참여 기업
HONEYWELL INTERNATIONAL INC.
WOODARD INC.
AMETEK, INC.
CURTISS-WRIGHT CORPORATION
LIEBHERR GROUP
MOOG INC.
EATON
SAAB
PARKER HANNIFIN CORP
ITT INC.
HANWHA GROUP
FAULHABER GROUP
TRANSDIGM GROUP INC.
TAMAGAWA SEIKI CO.,LTD.
TEXTRON INC.
기타 기업
HFE INTERNATIONAL, LLC
HITEC GROUP USA, INC.
KYNTRONICS
PEGASUS ACTUATORS GMBH
ULTRA MOTION
UMBRAGROUP
VOLZ SERVOS GMBH & CO. KG
ZIMM GMBH
MECAER AVIATION GROUP
ISPSYSTEM
제13장 부록
KSA
영문 목차
영문목차
The electromechanical actuators in aircraft market is projected to reach USD 804.3 million by 2030, growing from USD 577.1 million in 2025 at a CAGR of 6.9%. The market is set to expand steadily by 2030, driven by the global shift toward electrification in aerospace systems. As aircraft manufacturers prioritize eliminating hydraulic lines and fluid-based systems, EMAs are increasingly adopted for their lightweight, compact, and energy-efficient characteristics. The trend is particularly strong in modern commercial and defense aircraft programs focused on reducing emissions, simplifying maintenance, and improving system integration.
Scope of the Report
Years Considered for the Study
2021-2030
Base Year
2024
Forecast Period
2025-2030
Units Considered
Value (USD Million)
Segments
By mechanism type, motor torque, application, platform, and region
Regions covered
North America, Europe, APAC, RoW
"By mechanism type, the rotary actuator segment is estimated to grow at a higher rate than the linear actuator segment in 2025."
The rotary actuator segment is likely to dominate the electromechanical actuators in aircraft market because rotary actuators are extensively used in all-critical aircraft systems and exhibit remarkable performance characteristics in small motion control. Rotary actuators are crucial in applications like throttle control, valve operation, flap driving, thrust reversers, and brake systems-all requiring accurate angular motion and high torque density. Their small size and capability of delivering smooth, controlled rotary motion make them especially well-suited to space-constrained commercial and military aircraft applications. Also, rotary EMAs benefit from improved reliability, faster response rates, and simpler integration into electronic flight control systems than linear EMAs. As new-generation aircraft platforms shift toward modular, electric architectures, there is a growing need for low-maintenance, versatile rotary actuators. These actuators are also preferable in newer platforms like eVTOLs and UAVs, where lightweight high-performance systems are needed to drive the control surfaces efficiently. Furthermore, improvements in digital feedback systems, embedded sensors, and thermal management have seen substantial improvements in fault tolerance along with diagnostic capability.
"By platform, the narrow-body aircraft segment is estimated to account for the largest share in 2025."
The narrow-body aircraft segment is poised to dominate the electromechanical actuators in aircraft market as they play a leading role in global fleet growth, especially in short-to-medium range segments. They are witnessing many deliveries globally, with the growing demand for air travel in emerging countries, the development of low-cost carriers, and rising point-to-point connectivity. Air carriers are investing increasingly in next-generation narrow-body platforms focusing on fuel efficiency, operation performance, and lower lifecycle cost-objectives that coincide precisely with the advantages of EMAs. Electromechanical actuators have a tremendous edge over legacy hydraulic systems in terms of weight reduction, easier maintenance, and compatibility with digital flight control systems. These conditions are paramount for narrow-body fleets where cost-per-seat-mile is the key performance indicator. In addition, aircraft makers are incorporating more electric systems in newer narrow-body aircraft to address regulatory and environmental demands and drive the growth of EMA technologies more quickly.
"Latin America is projected to grow at the highest CAGR during the forecast period."
Latin America is projected to experience the highest growth in the electromechanical actuators in aircraft market during the forecast period due to growing regional air travel needs, fleet upgrading initiatives, and rising investment in aerospace infrastructure. Brazil, Mexico, and Colombia are experiencing a domestic and intra-regional air traffic boom, with local carriers procuring newer, more fuel-efficient aircraft fitted with advanced actuation systems. Additionally, regional governments are investing in defense modernization initiatives, such as upgrading fixed-wing and rotary military fleets, which increasingly prefer electromechanical systems over hydraulic alternatives because of their reduced maintenance requirements and greater reliability.
Latin America witnesses major aircraft manufacturing and MRO activities-especially in Brazil. This facilitates local adoption and integration of EMA technologies. The transition to sustainable aviation, such as the interest in hybrid and electric aircraft, also increases the demand for lightweight, electrically-powered parts, such as EMAs. Although the region continues to represent a smaller percentage of the global aviation market in absolute terms, its rapid pace of change, enabling regulatory changes and expanding aerospace ecosystem make Latin America a high-growth region for electromechanical actuators in the commercial aviation and defense aviation markets.
The break-up of primary participants in the electromechanical actuators in aircraft market is given below:
By Company Type: Tier 1 - 35%, Tier 2 - 45%, and Tier 3 - 20%
By Designation: C Level - 35%, Director Level - 25%, and Others - 40%
By Region: North America - 25%, Europe - 15%, Asia Pacific - 45%, Middle East - 10%, and Rest of the World (RoW) - 5%
Major companies profiled in the report include Curtiss-Wright Corporation (US), Moog (US), Honeywell (US), Liebherr (Switzerland), and Ametek Inc. (US), among others.
Research Coverage:
This market study covers the electromechanical actuators in aircraft market across various segments and subsegments. It aims to estimate this market size and growth potential across different parts based on region. This study also includes an in-depth competitive analysis of the key players in the market, their company profiles, key observations related to their product and business offerings, recent developments, and key market strategies they adopted.
Reasons to buy this report:
The report will help the market leaders/new entrants with information on the closest approximations of the revenue numbers for the overall electromechanical actuators in aircraft market. It will help stakeholders understand the competitive landscape and gain more insights to position their businesses better and plan suitable go-to-market strategies. The report also helps stakeholders understand the market pulse and provides information on key market drivers, restraints, challenges, and opportunities. The electromechanical actuators in aircraft market experiences growth and evolution driven by various factors. Some of these factors are provided below:
Market Drivers (Growing demand for more electric aircraft (MEA), rising demand for electromechanical actuators in the drone industry, technological issues with traditional hydraulic systems and pneumatic actuators), restraints (Stringent government regulations), opportunities ( Development of electric actuation architecture for urban air mobility (UAM), and challenges (Technological complexities)
Market Penetration: Comprehensive information on electromechanical actuators in aircraft offered by the top players in the market
Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product launches in the electromechanical actuators in aircraft market
Market Development: Comprehensive information about lucrative markets. The report analyses the electromechanical actuators in aircraft market across varied regions.
Market Diversification: Exhaustive information about new products, untapped geographies, recent developments, and investments in the electromechanical actuators in aircraft market
Competitive Assessment: In-depth assessment of market shares, growth strategies, products, and manufacturing capabilities of leading players in the electromechanical actuators in aircraft market
TABLE OF CONTENTS
1 INTRODUCTION
1.1 STUDY OBJECTIVES
1.2 MARKET DEFINITION
1.3 STUDY SCOPE
1.3.1 MARKET SEGMENTATION
1.3.2 INCLUSIONS & EXCLUSIONS
1.4 YEARS CONSIDERED
1.5 CURRENCY CONSIDERED
1.6 STAKEHOLDERS
2 RESEARCH METHODOLOGY
2.1 RESEARCH DATA
2.1.1 SECONDARY DATA
2.1.1.1 Key data from secondary sources
2.1.2 PRIMARY DATA
2.1.2.1 Key primary insights
2.1.2.2 Key data from primary sources
2.1.2.3 Breakdown of primaries
2.2 FACTOR ANALYSIS
2.2.1 INTRODUCTION
2.2.2 DEMAND-SIDE INDICATORS
2.2.3 SUPPLY-SIDE INDICATORS
2.3 MARKET SIZE ESTIMATION
2.3.1 BOTTOM-UP APPROACH
2.3.1.1 Market size estimation and methodology
2.3.2 TOP-DOWN APPROACH
2.4 DATA TRIANGULATION
2.5 RESEARCH ASSUMPTIONS
2.6 LIMITATIONS OF RESEARCH
2.7 RISK ASSESSMENT
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN ELECTROMECHANICAL ACTUATORS IN AIRCRAFT MARKET
4.2 ELECTROMECHANICAL ACTUATORS IN AIRCRAFT MARKET, BY MECHANISM TYPE
4.3 ELECTROMECHANICAL ACTUATORS IN AIRCRAFT MARKET, BY LIGHT AND ULTRALIGHT AIRCRAFT
4.4 ELECTROMECHANICAL ACTUATORS IN AIRCRAFT MARKET, BY APPLICATION
4.5 ELECTROMECHANICAL ACTUATORS IN AIRCRAFT MARKET, BY COUNTRY
5 MARKET OVERVIEW
5.1 INTRODUCTION
5.2 MARKET DYNAMICS
5.2.1 DRIVERS
5.2.1.1 Growing electrification of aircraft and R&D in more electric aircraft (MEA)
5.2.1.2 Rising demand for electromechanical actuators in drone industry
5.2.1.3 Technological issues with traditional hydraulic and pneumatic actuators
5.2.2 RESTRAINTS
5.2.2.1 Stringent government regulations
5.2.2.2 Design integration challenges with legacy airframe architecture
5.2.2.3 High certification costs and lengthy qualification timelines
5.2.3 OPPORTUNITIES
5.2.3.1 Development of electric actuation architecture for urban air mobility (UAM)
5.2.3.2 Electrification of future aircraft platforms
5.2.4 CHALLENGES
5.2.4.1 Technological complexities
5.2.4.2 Thermal management and power density constraints in compact airframe spaces
5.3 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS
5.3.1 REVENUE SHIFT AND NEW REVENUE POCKETS FOR ELECTROMECHANICAL ACTUATOR MANUFACTURERS
5.4 TRADE ANALYSIS
5.4.1 IMPORT SCENARIO
5.4.2 EXPORT SCENARIO
5.5 PRICING ANALYSIS
5.5.1 INDICATIVE PRICING ANALYSIS
5.5.2 INDICATIVE PRICING ANALYSIS, BY REGION, 2024
5.5.3 FACTORS AFFECTING PRICING OF ELECTROMECHANICAL ACTUATORS
5.5.4 INDICATIVE PRICING ANALYSIS: CONVENTIONAL VS. SMART ELECTROMECHANICAL ACTUATORS
5.6 OPERATIONAL DATA
5.6.1 GLOBAL OPERATIONAL DATA, BY PLATFORM
5.6.2 NORTH AMERICA: OPERATIONAL DATA, BY PLATFORM
5.6.3 EUROPE: OPERATIONAL DATA, BY PLATFORM
5.6.4 ASIA PACIFIC: OPERATIONAL DATA, BY PLATFORM
5.6.5 MIDDLE EAST & AFRICA: OPERATIONAL DATA, BY PLATFORM
5.6.6 LATIN AMERICA: OPERATIONAL DATA, BY PLATFORM
5.7 VOLUME DATA (NUMBER OF ELECTROMECHANICAL ACTUATORS DEPLOYED IN PLATFORMS)
5.8 ECOSYSTEM ANALYSIS
5.8.1 MANUFACTURERS
5.8.2 SERVICE PROVIDERS
5.8.3 END USERS
5.9 VALUE CHAIN ANALYSIS
5.10 KEY STAKEHOLDERS AND BUYING CRITERIA
5.10.1 KEY STAKEHOLDERS IN BUYING PROCESS
5.10.2 BUYING CRITERIA
5.11 KEY CONFERENCES AND EVENTS, 2024-2025
5.12 TARIFF AND REGULATORY LANDSCAPE
5.12.1 TARIFFS
5.12.2 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
5.13 INVESTMENT & FUNDING SCENARIO
5.14 TECHNOLOGY TRENDS
5.14.1 BRUSHLESS DC MOTORS
5.14.2 SIMPLEX ELECTROMECHANICAL ACTUATORS
5.14.3 NO-BLEED SYSTEM AIRCRAFT ARCHITECTURE
5.14.4 FAULT DIAGNOSIS AND CONDITION MONITORING SYSTEM
5.14.5 RARE EARTH MAGNETS
5.15 BASIC COMPONENTS OF ELECTROMECHANICAL ACTUATORS
5.15.1 ELECTRIC MOTORS
5.15.2 POWER AND CONTROL ELECTRONICS
5.15.3 MECHANICAL TRANSMISSION
5.16 TECHNOLOGY ANALYSIS
5.16.1 KEY TECHNOLOGIES
5.16.1.1 Brushless DC (BLDC) and Permanent Magnet Synchronous Motors (PMSMs)
5.16.1.2 Harmonic Drive and Cycloidal Gear Systems
5.16.1.3 Fail-safe Devices
5.16.1.4 3D Printing
5.16.2 ADJACENT TECHNOLOGIES
5.16.2.1 Embedded Sensor Architecture (Resolvers, Encoders, Hall Sensors)
5.16.2.2 Electrical Power Distribution System (EPDS)
5.16.3 COMPLEMENTARY TECHNOLOGIES
5.16.3.1 Structural Health Monitoring (SHM) Technologies
5.16.3.2 Robotics
5.16.3.3 AI-/ML-based predictive control algorithms
5.17 CASE STUDY ANALYSIS
5.17.1 ELECTROMECHANICAL ACTUATORS IN SUSTAINABLE AVIATION
5.17.2 WHIPPANY ACTUATION SYSTEMS' INTEGRATION OF COLLABORATIVE ROBOTICS FOR INCREASED PRODUCTIVITY
5.17.3 INTEGRATION OF LIEBHERR'S ACTUATORS IN AW189 HELICOPTER
5.17.4 MOOG INC. (US) DEVELOPED MULTIPLE ELECTROMECHANICAL ACTUATORS WITH ENHANCED RELIABILITY FOR BOEING 787 DREAMLINER
5.18 TECHNOLOGY ROADMAP
5.19 PATENT ANALYSIS
5.20 IMPACT OF GEN AI/AI
5.21 MACROECONOMIC OUTLOOK
5.21.1 INTRODUCTION
5.21.2 NORTH AMERICA
5.21.3 EUROPE
5.21.4 ASIA PACIFIC
5.21.5 MIDDLE EAST
5.21.6 LATIN AMERICA
5.21.7 AFRICA
5.22 US 2025 TARIFF
5.22.1 INTRODUCTION
5.22.2 KEY TARIFF RATES
5.22.3 PRICE IMPACT ANALYSIS
5.22.4 IMPACT ON END-USE INDUSTRIES
6 ELECTROMECHANICAL ACTUATORS IN AIRCRAFT MARKET, BY PLATFORM
6.1 INTRODUCTION
6.2 NARROW-BODY AIRCRAFT
6.2.1 FLEET MODERNIZATION AND EFFICIENCY TARGETS TO DRIVE INTEGRATION OF ELECTROMECHANICAL ACTUATORS WITH AIRCRAFT
6.3 WIDE-BODY AIRCRAFT
6.3.1 TRANSITION TO ELECTRIC ARCHITECTURE IN LONG-HAUL FLEETS TO STIMULATE DEMAND
6.4 REGIONAL TRANSPORT AIRCRAFT
6.4.1 FOCUS OF OPERATORS ON ENHANCING SYSTEM RELIABILITY AND REDUCING LIFECYCLE COST TO ACCELERATE GROWTH
6.5 BUSINESS JET
6.5.1 USE OF ELECTROMECHANICAL ACTUATORS IN CABIN SYSTEMS TO DRIVE MARKET
6.6 COMMERCIAL HELICOPTER
6.6.1 USE OF ACTUATORS IN CONTROLLING ROTOR BLADES TO DRIVE MARKET
6.7 LIGHT AND ULTRALIGHT AIRCRAFT
6.7.1 MORE USE OF SINGLE-ENGINE AIRCRAFT THAN LARGE COMMERCIAL AIRCRAFT TO DRIVE MARKET
6.7.2 GENERAL AVIATION
6.7.3 UNMANNED AERIAL VEHICLE
6.7.4 EVTOL
7 ELECTROMECHANICAL ACTUATORS IN AIRCRAFT MARKET, BY MECHANISM TYPE
7.1 INTRODUCTION
7.2 LINEAR ACTUATOR
7.2.1 NEED FOR HIGH PRECISION AND FAST RESPONSE TIME TO DRIVE MARKET
7.2.1.1 Use case 1: Deployment of Moog LA3000 Linear Actuator in flight control systems of fixed-wing aircraft
7.2.1.2 Use case 2: Deployment of Collins Aerospace's RFLA-5000 Linear Actuator in commercial aircraft flap system
7.3 ROTARY ACTUATOR
7.3.1 NEED FOR SMOOTH OPERATIONS AND REDUCED BACKLASH TO DRIVE MARKET
7.3.1.1 Use case 1: Deployment of Moog RHD Series Rotary Actuator in jet engine thrust vectoring systems
7.3.1.2 Use case 2: Use of Curtiss-Wright EMA-R Actuator in aircraft spoiler drive systems
8 ELECTROMECHANICAL ACTUATORS IN AIRCRAFT MARKET, BY APPLICATION
8.1 INTRODUCTION
8.2 FLIGHT CONTROL SURFACE
8.2.1 ADVANCEMENTS IN MODERN ACTUATORS TO DRIVE MARKET
8.3 FUEL DISTRIBUTION
8.3.1 ADOPTION OF MORE ELECTRIC AIRCRAFT (MEA) TECHNOLOGY TO DRIVE MARKET
8.4 CABIN ACTUATION
8.4.1 FOCUS ON REDUCING DOWNTIME AND OPERATIONAL COSTS TO DRIVE MARKET
8.5 DOOR
8.5.1 NEED FOR ENHANCEMENTS IN AIRCRAFT DOOR OPERATIONS TO DRIVE MARKET
8.6 LANDING GEAR
8.6.1 DEMAND FOR ENHANCED SAFETY TO DRIVE ADOPTION OF ELECTROMECHANICAL ACTUATORS
8.7 OTHER APPLICATIONS
9 ELECTROMECHANICAL ACTUATORS IN AIRCRAFT MARKET, BY MOTOR TORQUE
9.1 INTRODUCTION
9.2 < 25 NM
9.2.1 SHIFT TOWARD COMPACT ACTUATION TO SUPPORT LIGHTWEIGHT CONTROL SYSTEMS TO DRIVE MARKET
9.3 25-100 NM
9.3.1 INCREASED ADOPTION OF ELECTROMECHANICAL ACTUATORS IN UNMANNED AND REGIONAL PLATFORMS TO BOOST DEMAND
9.4 100-300 NM
9.4.1 ELECTRIFICATION OF HIGH-DUTY FLIGHT SURFACES TO ACCELERATE ACTUATOR INTEGRATION
9.5 > 300 NM
9.5.1 RISING REPLACEMENT OF HYDRAULIC SYSTEMS IN HEAVY-LOAD APPLICATIONS TO FUEL GROWTH
10 ELECTROMECHANICAL ACTUATORS IN AIRCRAFT MARKET, BY REGION
10.1 INTRODUCTION
10.2 NORTH AMERICA
10.2.1 INTRODUCTION
10.2.2 PESTLE ANALYSIS
10.2.3 US
10.2.3.1 Increasing investments in electric-powered aircraft to drive market
10.2.4 CANADA
10.2.4.1 Continuous R&D activities in aviation industry to drive market
10.3 EUROPE
10.3.1 INTRODUCTION
10.3.2 PESTLE ANALYSIS
10.3.3 UK
10.3.3.1 Increasing adoption of UAVs to drive market
10.3.4 FRANCE
10.3.4.1 Focus of key players on sustainable aviation to drive market
10.3.5 GERMANY
10.3.5.1 International partnership for development and supply of actuation systems to drive market
10.3.6 ITALY
10.3.6.1 Increasing competition among homegrown and global companies to affect market growth
10.3.7 REST OF EUROPE
10.4 ASIA PACIFIC
10.4.1 INTRODUCTION
10.4.2 PESTLE ANALYSIS
10.4.3 CHINA
10.4.3.1 Investment in R&D for high-quality actuators to drive market
10.4.4 INDIA
10.4.4.1 Growing demand for indigenous helicopters to drive market
10.4.5 JAPAN
10.4.5.1 International exports by domestic players to drive market
10.4.6 REST OF ASIA PACIFIC
10.5 MIDDLE EAST & AFRICA
10.5.1 INTRODUCTION
10.5.2 PESTLE ANALYSIS
10.5.3 SAUDI ARABIA
10.5.3.1 Aviation industry's modernization program, 'Vision 2030' to drive market
10.5.4 UAE
10.5.4.1 Demand for drone-powered logistics and delivery services to drive market
10.5.5 SOUTH AFRICA
10.5.5.1 Rising demand for commercial aircraft to drive market
10.5.6 REST OF MIDDLE EAST & AFRICA
10.6 LATIN AMERICA
10.6.1 INTRODUCTION
10.6.2 PESTLE ANALYSIS
10.6.3 BRAZIL
10.6.3.1 Development of advanced actuation systems to drive market
10.6.4 MEXICO
10.6.4.1 Popularity of Safran Landing Systems to set trend for market growth
10.6.5 REST OF LATIN AMERICA
11 COMPETITIVE LANDSCAPE
11.1 INTRODUCTION
11.2 KEY PLAYER STRATEGIES/RIGHT TO WIN
11.3 MARKET SHARE ANALYSIS
11.4 BRAND COMPARISON
11.5 FINANCIAL METRICS AND COMPANY VALUATION
11.6 REVENUE ANALYSIS
11.7 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024
11.7.1 STARS
11.7.2 EMERGING LEADERS
11.7.3 PERVASIVE PLAYERS
11.7.4 PARTICIPANTS
11.7.5 COMPANY FOOTPRINT: KEY PLAYERS, 2024
11.8 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024
11.8.1 PROGRESSIVE COMPANIES
11.8.2 RESPONSIVE COMPANIES
11.8.3 DYNAMIC COMPANIES
11.8.4 STARTING BLOCKS
11.8.5 COMPETITIVE BENCHMARKING
11.8.5.1 Details list of startups/SMES
11.8.5.2 Competitive benchmarking of key startups/SMEs