세계의 에너지 분야 인공지능(AI) 시장 : 제공 제품별, 에너지 유형별, 유형별, 용도별, 최종 용도별, 지역별 - 예측(-2030년)
Artificial Intelligence in Energy Market by Application (Energy Demand Forecasting, Grid optimization & management, Energy Storage Optimization), End Use (Generation, Transmission, Distribution, Consumption) - Global Forecast to 2030
상품코드:1659491
리서치사:MarketsandMarkets
발행일:2025년 02월
페이지 정보:영문 324 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
한글목차
에너지 분야 AI 시장 규모는 2024년 89억 1,000만 달러, 2030년에는 586억 6,000만 달러에 이르고, 연평균 성장률(CAGR) 36.9%를 나타낼 것으로 예상됩니다.
AI 기반 방식과 ML 기술은 빌딩의 효율적인 운영과 거주자의 쾌적성 향상에 도움이 될 것으로 기대되고 있습니다. 건물과 HVAC 시스템은 고정된 시스템으로서, 또한 정적인 환경을 가정하여 설계, 시공, 시운전되어 왔습니다. 이는 시간이 지남에 따라 건물 사용, 거주 및 환경 요인이 변화함에 따라 비효율로 이어질 수 있으며, AI는 빌딩 시스템에서 수집된 데이터를 분석하여 거주자의 편안함을 유지하거나 개선하면서 HVAC 성능을 최적화하기 위해 설정값을 지속적으로 조정하는 제어와 통합될 수 있습니다. AI 기반 방법은 다음과 같은 이점을 제공할 수 있습니다. 이를 통해 가상발전소(VPP) 참여를 위한 건물의 부하 유연성을 향상시킬 수 있습니다.
조사 범위
조사 대상 연도
2019-2030년
기준 연도
2024년
예측 기간
2024-2030년
검토 단위
미화(10억 달러)
부문별
제공 제품별, 에너지 유형별, 유형별, 용도별, 최종 용도별, 지역별
대상 지역
북미,유럽,아시아태평양,중동/아프리카, 라틴아메리카,기타 지역
인공지능은 석탄, 석유, 천연가스, 원자력 등 전통적인 에너지 부문에 통합되어 보다 효율적이고 안전하며 지속 가능한 에너지로 거듭나고 있습니다. 화석연료 기반 에너지 발전에서 AI는 자원 추출을 최적화하고, 플랜트 성능을 향상시키며, 다운타임과 운영 비용을 절감하는 예지보전을 가능하게 합니다. 석탄, 석유, 천연가스를 사용하는 경우, AI 시스템은 수요 변동을 예측하고, 공급 수준을 조정하고, 배출량을 모니터링하여 사업자가 환경 규제를 준수할 수 있도록 돕습니다. 원자력에서는 AI가 원자로의 상태를 모니터링하고 이상 징후를 예측하여 안전성을 확보하고, 대응 메커니즘을 자동화하여 플랜트 전체의 신뢰성을 높입니다. 또한, AI의 활용은 이탄, 오일 셰일, 타르 샌드와 같은 다른 기존 에너지 자원에서 더 나은 채굴 프로세스 개발과 운영 위험 감소를 지원하여 에너지 생산의 지속가능성을 목표로 합니다. 이를 통해 AI는 기존 에너지를 보다 효율적이고 안전하며 친환경적으로 재정의하고 있습니다.
AI 기반 에너지 분야에서는 교육, 컨설팅, 구축, 시스템 통합, 지원, 유지보수 등의 서비스가 전력 시스템 전반의 발전, 배전, 소비의 운영 최적화를 위해 필수적입니다. 전문 서비스는 그리드 최적화, 에너지 예측, 스마트 그리드 관리 분야의 잠재적 전문 지식을 통해 에너지 기업이 AI 솔루션을 사용하여 특정 요구사항을 파악할 수 있도록 지원합니다. 구축 및 통합 서비스는 기존 에너지 인프라와 AI 시스템의 원활한 통합을 보장합니다. 지원 및 유지보수 서비스는 신속한 문제 해결 및 업데이트를 통해 AI 기반 솔루션이 계속 가동될 수 있도록 지원하여 가동 시간을 최대화합니다. 매니지드 서비스를 통해 에너지 기업은 AI 솔루션에서 한 발짝 물러나 외부 공급업체가 AI 솔루션을 처리하여 효율성을 개선하고 운영 비용을 최소화할 수 있습니다. 이러한 서비스를 결합하여 에너지 기업은 AI 기술을 종합적으로 활용하여 밸류체인 전반에 걸쳐 운영의 우수성과 혁신을 촉진할 수 있습니다.
2023년 10월, BluWave-ai는 AI를 활용한 에너지 최적화 기술로 일본 시장에서 사업을 확장하여 태양광 발전과 축전지를 갖춘 산업용 계통 연계 플랜트의 에너지 최적화를 통해 일본의 에너지 전환을 가능하게 하기 위해 세계 AI BluWave-ai는 일본의 엔지니어링 회사와 협력하여 산업연구개발센터에서 프로젝트를 완료하였습니다. 이 프로젝트에서는 옥상 태양광 발전, 축전지, 바이오매스 발전 시스템의 최적화가 이루어졌습니다. 스마트 그리드 옵티마이저는 피크 수요 20% 감소, 역류 없는 재생에너지 100% 활용, 에너지 비용 대폭 절감 등 놀라운 성과를 거두었으며, 2024년 11월까지 ZTE Corporation과 China Mobile은 통신 네트워크의 에너지 활용을 최적화하기 위해 통신 네트워크의 에너지 사용을 최적화하기 위해 부하 기반 네트워크 조정을 사용하여 컴퓨팅 리소스를 동적으로 조정하는 AI 기반 그린 텔레콤 클라우드를 개발했습니다. 중국에서는 2024년 11월, ZTE와 차이나모바일(China Mobile)이 부하 기반 네트워크 조정을 통해 컴퓨팅 리소스를 동적으로 조정하여 통신 네트워크의 에너지 사용을 최적화하는 AI 기반 그린 텔레콤 클라우드를 개발했습니다. 통신 네트워크의 에너지 사용을 최적화하는 AI 기반 그린 텔레콤 클라우드를 개발했습니다.
세계의 에너지 분야 인공지능(AI) 시장에 대해 조사했으며, 제공 제품별/에너지 유형별/유형별/용도별/최종 용도별/지역별 동향, 시장 진출기업 프로파일 등의 정보를 정리하여 전해드립니다.
목차
제1장 서론
제2장 조사 방법
제3장 주요 요약
제4장 프리미엄 인사이트
제5장 시장 개요와 업계 동향
서론
시장 역학
에너지 분야 AI 시장의 간략한 역사
생태계 분석
사례 연구 분석
공급망 분석
관세 및 규제 상황
가격 분석
기술 분석
특허 분석
Porter의 Five Forces 분석
고객의 비즈니스에 영향을 미치는 동향/혼란
주요 이해관계자와 구입 기준
2024-2025년 주요 컨퍼런스 및 이벤트
에너지 분야 AI 시장 기술 로드맵
에너지 분야 AI 시장 베스트 프랙티스
현재 비즈니스 모델과 새로운 비즈니스 모델
에너지 분야 AI 시장 : 툴, 프레임워크, 테크닉
트레이드 분석
투자와 자금조달 시나리오
AI/생성형 AI가 에너지 분야 AI 시장에 미치는 영향
제6장 에너지 분야 AI 시장, 제공 제품별
서론
솔루션
서비스
제7장 에너지 분야 AI 시장, 에너지 유형별
서론
기존 에너지
재생에너지
제8장 에너지 분야 AI 시장, 유형별
서론
생성형 AI
기타
제9장 에너지 분야 AI 시장, 용도별
서론
에너지 수요 예측
그리드 최적화 및 관리
에너지 저장 최적화
재생에너지 통합
에너지 거래 및 시장 예측
에너지 지속가능성 관리
재해 복구력과 부흥
기타
제10장 에너지 분야 AI 시장, 최종 용도별
서론
발전
송전
배전
소비
제11장 에너지 분야 AI 시장, 지역별
서론
북미
북미 : 거시경제 전망
미국
캐나다
유럽
유럽 : 거시경제 전망
독일
영국
프랑스
이탈리아
스페인
북유럽
기타
아시아태평양
아시아태평양 : 거시경제 전망
중국
일본
인도
호주 및 뉴질랜드
한국
ASEAN
기타
중동 및 아프리카
중동 및 아프리카 : 거시경제 전망
라틴아메리카
라틴아메리카 : 거시경제 전망
브라질
아르헨티나
멕시코
기타
제12장 경쟁 구도
서론
주요 시장 진출기업의 전략/강점, 2021년-2024년
시장 점유율 분석, 2024년
매출 분석, 2019년-2023년
기업 평가 매트릭스 : 주요 시장 진출기업, 2024년
기업 평가 매트릭스 : 스타트업/중소기업, 2024년
경쟁 시나리오
브랜드/제품 비교
기업 가치 평가와 재무 지표
제13장 기업 개요
주요 시장 진출기업
SCHNEIDER ELECTRIC SE
GE VERNOVA
ABB LTD.
HONEYWELL INTERNATIONAL, INC.
SIEMENS AG
ORACLE CORPORATION
VESTAS WIND SYSTEMS A/S
IBM CORPORATION
MICROSOFT CORPORATION, INC.
AMAZON WEB SERVICES, INC
ATOS SE
TESLA, INC.
C3.AI, INC.
ALPIQ
ENEL S.P.A.
스타트업/중소기업
ORIGAMI ENERGY
INNOWATTS
IRASUS TECHNOLOGIES
GRID4C
UPLIGHT
GRIDBEYOND
ESMART SYSTEMS
NDUSTRIAL
DATATEGY
OMDENA
BIDGELY
AVATHON
제14장 인접 시장 및 관련 시장
제15장 부록
LSH
영문 목차
영문목차
The AI in energy market is estimated at USD 8.91 billion in 2024 to USD 58.66 billion by 2030, at a Compound Annual Growth Rate (CAGR) of 36.9%. AI-based methods and ML techniques are expected to help buildings run more efficiently and provide greater comfort levels to occupants. Buildings and HVAC systems have been designed, constructed, and commissioned as fixed systems and with static environmental assumptions. This can lead to inefficiencies because building use, occupancy, and environmental factors change over time. AI can be applied to parse data collected by building systems and integrate with controls to continuously adjust setpoints to optimize HVAC performance while maintaining or improving occupant comfort. AI-based methods can provide additional. Controls to the operators, enabling increased load flexibility of buildings for participation in Virtual Power Plants (VPPs).
Scope of the Report
Years Considered for the Study
2019-2030
Base Year
2024
Forecast Period
2024-2030
Units Considered
USD (Billion)
Segments
By offering, by application (energy demand forecasting, grid optimization & management, energy storage optimization, renewables integration, energy trading & market forecasting, energy sustainability management, disaster resilience and recovery, other applications (energy theft detection and customer management)) by end use (generation, transmission, distribution, consumption(commercial, industrial))
Regions covered
North America, Europe, Asia Pacific, Middle East & Africa, and Latin America.
"By energy type, conventional energy segment to hold the largest market size during the forecast period."
Artificial intelligence is increasingly being integrated into the more traditional energy sectors such as coal, oil, natural gas, and nuclear energy to make it much more efficient, safe, and sustainable. In fossil fuel-based energy generation, AI optimizes resource extraction, improves plant performance, and enables predictive maintenance that reduces downtime and operational costs. Using coal, oil, and natural gas, AI systems can forecast demand fluctuations, adjust supply levels, and monitor emissions, helping operators comply with environmental regulations. With nuclear energy, AI ensures safety by monitoring reactor conditions and predicting anomalies while automating response mechanisms, hence increasing the overall plant reliability. In addition, AI use supports the development of better extracting processes and fewer operational risks in other conventional energy sources, such as peat, oil shale, and tar sands, toward sustainability in energy production. In doing so, AI is redefining the conventional energy landscape, ensuring it is more efficient, safe, and environmentally friendly.
"The services segment to register the fastest growth rate during the forecast period."
In the AI-driven energy sector, services such as training, consulting, deploying, integrating systems, supporting, and maintenance are critical for operation optimization in generation, distribution, and consumption across an entire power system. Professional services aid energy companies in identifying specific needs using AI solutions, with potential expertise in grid optimization, energy forecasting, and smart grid management. Deployment and integration services guarantee the smooth integration of AI systems with existing energy infrastructures. Support and maintenance ensure that the AI-powered solutions stay up and running with swift troubleshooting and updates, ensuring maximum uptime. Managed services allow energy companies to step back from AI solutions, as external providers handle them to improve efficiency and minimize operational costs. Together, these services empower energy organizations to use AI technologies holistically to drive operational excellence and innovation across the value chain.
"Asia Pacific to hold the highest market growth rate during the forecast period."
In October 2023, BluWave-ai expanded its business in the Japanese market using AI-driven energy optimization technology. BluWave-ai introduced its technology from global AI deployments to enable the energy transition in Japan by optimizing energy at industrial grid-attached plants with solar generation and battery storage. It partnered with Japanese engineering companies and completed a project at an industrial R&D center. The work included optimization of rooftop solar, battery storage, and biomass generation systems. The Smart Grid Optimizer did some incredible feats such as 20% peak demand reduction, 100% utilization of renewable energy without reverse power flow and significant savings in energy costs. By November 2024, ZTE Corporation and China Mobile developed an AI-driven Green Telco Cloud that dynamically adjusts computing resources using load-based network adjustments toward making energy use in telecommunications networks optimal. In China in November 2024, ZTE Corporation and China Mobile developed an AI-driven Green Telco Cloud that makes energy use in telecommunications networks optimal with load-based network adjustments dynamically adjusting computing resources.
In-depth interviews have been conducted with chief executive officers (CEOs), Directors, and other executives from various key organizations operating in the AI in energy market.
By Company Type: Tier 1 - 40%, Tier 2 - 35%, and Tier 3 - 25%
By Designation: Directors -25%, Managers - 35%, and Others - 40%
By Region: North America - 37%, Europe - 42%, Asia Pacific - 21
The major players in the AI in energy market include Schneider Electric SE (France), GE Vernova (US), ABB Ltd (Switzerland), Honeywell International (US), Siemens AG (Germany), AWS (US), IBM (US), Microsoft (US), Oracle (US), Vestas Wind Systems A/S (Denmark), Atos zData (US), C3.ai (US), Tesla (US), Alpiq (Switzerland), Enel group (Italy), Origami Energy (UK), Innowatts (US), Irasus technologies (India), Grid4C (US), Uplight (US), GridBeyond (Ireland), eSmart Systems (Norway), Ndustrial (US), Datategy (France), Omdena (US). These players have adopted various growth strategies, such as partnerships, agreements and collaborations, new product launches, enhancements, and acquisitions to expand their AI in energy market footprint.
Research Coverage
The market study covers the AI in energy market size across different segments. It aims at estimating the market size and the growth potential across various segments, including by offering (solutions and services (professional services, managed services) by energy type (conventional energy (fossil fuels, nuclear energy, other conventional energy types) renewable energy (solar, wind, hydropower, biomass, other renewable energy types) by type (Generative AI, other AI), by application (energy demand forecasting, grid optimization & management, energy storage optimization , renewables integration , energy trading & market forecasting, energy sustainability management, disaster resilience and recovery, other applications (energy theft detection and customer management)) by end use (generation, transmission , distribution, consumption(commercial, industrial)) and Region (North America, Europe, Asia Pacific, Middle East & Africa, and Latin America). The study includes an in-depth competitive analysis of the leading market players, their company profiles, key observations related to product and business offerings, recent developments, and market strategies.
Key Benefits of Buying the Report
The report will help the market leaders/new entrants with information on the closest approximations of the global AI in energy market's revenue numbers and subsegments. This report will help stakeholders understand the competitive landscape and gain more insights to position their businesses better and plan suitable go-to-market strategies. Moreover, the report will provide insights for stakeholders to understand the market's pulse and provide them with information on key market drivers, restraints, challenges, and opportunities.
The report provides insights on the following pointers:
Analysis of key drivers (energy market volatility and risk management, rising consumer demand for smart energy solutions, AI-Powered robots increasing energy sector worker safety), restraints (data privacy and security, high implementation cost) opportunities (increasing shift towards carbon emission reduction and sustainability, renewable energy integration), and challenges (insufficient real-time energy data limiting the training and deployment of AI models, lack of skilled professionals in AI and energy analytics.) influencing the growth of the AI in energy market.
Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product & service launches in the AI in energy market.
Market Development: The report provides comprehensive information about lucrative markets and analyses the AI in energy market across various regions.
Market Diversification: Exhaustive information about new products & services, untapped geographies, recent developments, and investments in the AI in energy market.
Competitive Assessment: In-depth assessment of market shares, growth strategies and service offerings of leading include include Schneider Electric SE (France), GE Vernova (US), ABB Ltd (Switzerland), Honeywell International (US), Siemens AG (Germany), AWS (US), IBM (US), Microsoft (US), Oracle (US), Vestas Wind Systems A/S (Denmark), Atos zData (US), C3.ai (US), Tesla (US), Alpiq (Switzerland), Enel group (Italy), Origami Energy (UK), Innowatts (US), Irasus technologies (India), Grid4C (US), Uplight (US), GridBeyond (Ireland), eSmart Systems (Norway), Ndustrial (US), Datategy (France), Omdena (US).
TABLE OF CONTENTS
1 INTRODUCTION
1.1 STUDY OBJECTIVES
1.2 MARKET DEFINITION
1.3 STUDY SCOPE
1.3.1 MARKET SEGMENTATION
1.3.2 INCLUSIONS AND EXCLUSIONS
1.4 YEARS CONSIDERED
1.5 CURRENCY CONSIDERED
1.6 STAKEHOLDERS
2 RESEARCH METHODOLOGY
2.1 RESEARCH DATA
2.1.1 SECONDARY DATA
2.1.2 PRIMARY DATA
2.1.2.1 Primary interviews with experts
2.1.2.2 Breakdown of primary profiles
2.1.2.3 Key insights from industry experts
2.2 MARKET SIZE ESTIMATION
2.2.1 TOP-DOWN APPROACH
2.2.2 BOTTOM-UP APPROACH
2.2.3 AI IN ENERGY MARKET ESTIMATION: DEMAND-SIDE ANALYSIS
2.3 DATA TRIANGULATION
2.4 LIMITATIONS AND RISK ASSESSMENT
2.5 RESEARCH ASSUMPTIONS
2.6 RESEARCH LIMITATIONS
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
4.1 OPPORTUNITIES FOR KEY PLAYERS IN AI IN ENERGY MARKET
4.2 AI IN ENERGY MARKET, BY OFFERING
4.3 AI IN ENERGY MARKET, BY SERVICE
4.4 AI IN ENERGY MARKET, BY PROFESSIONAL SERVICE
4.5 AI IN ENERGY MARKET, BY APPLICATION
4.6 AI IN ENERGY MARKET, BY ENERGY TYPE
4.7 AI IN ENERGY MARKET, BY END USE
4.8 AI IN ENERGY MARKET, BY TYPE
4.9 NORTH AMERICA: AI IN ENERGY MARKET, BY OFFERING AND END USE
5 MARKET OVERVIEW AND INDUSTRY TRENDS
5.1 INTRODUCTION
5.2 MARKET DYNAMICS
5.2.1 DRIVERS
5.2.1.1 Energy market volatility and risk management
5.2.1.2 Rising consumer demand for smart energy solutions
5.2.1.3 AI-powered robots increasing energy sector worker safety
5.2.2 RESTRAINTS
5.2.2.1 Data privacy and security
5.2.2.2 High implementation costs
5.2.3 OPPORTUNITIES
5.2.3.1 Increasing shift toward carbon emission reduction and sustainability
5.2.3.2 Renewable energy integration
5.2.4 CHALLENGES
5.2.4.1 Insufficient real-time energy data limiting training and deployment of AI models
5.2.4.2 Lack of skilled professionals in AI and energy analytics
5.3 BRIEF HISTORY OF AI IN ENERGY MARKET
5.4 ECOSYSTEM ANALYSIS
5.5 CASE STUDY ANALYSIS
5.5.1 OPTIMIZING ENERGY EFFICIENCY ACROSS PORTFOLIOS: BLACKSTONE'S STRATEGIC PARTNERSHIP WITH SCHNEIDER ELECTRIC
5.5.2 C3 AI ENERGY MANAGEMENT PLATFORM HELPED LEADING PETROCHEMICAL COMPANY BOOST ENERGY EFFICIENCY AND ENVIRONMENTAL PERFORMANCE
5.5.3 ENVERUS INSTANT ANALYST ENABLED ENERGY COMPANIES IMPROVE DECISION-MAKING AND OPERATIONAL EFFICIENCY
5.5.4 AI-POWERED MICROGRIDS FACILITATED ENERGY RESILIENCE AND EQUITY IN REGIONAL COMMUNITIES
5.5.5 C3 AI ENERGY MANAGEMENT PLATFORM HELPED LEADING STEEL MANUFACTURER GAIN SUBSTANTIAL COST SAVINGS AND OPERATIONAL IMPROVEMENTS
5.6 SUPPLY CHAIN ANALYSIS
5.7 TARIFF AND REGULATORY LANDSCAPE
5.7.1 TARIFF RELATED TO PROCESSORS AND CONTROLLERS (HSN: 854231)
5.7.2 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
5.7.3 KEY REGULATIONS: AI IN ENERGY
5.7.3.1 North America
5.7.3.1.1 SCR 17: Artificial Intelligence Bill (California)
5.7.3.1.2 S1103: Artificial Intelligence Automated Decision Bill (Connecticut)
5.7.3.1.3 National Artificial Intelligence Initiative Act (NAIIA)
5.7.3.1.4 The Artificial Intelligence and Data Act (AIDA) - Canada
5.7.3.2 Europe
5.7.3.2.1 European Union (EU) - Artificial Intelligence Act (AIA)
5.7.3.2.2 General Data Protection Regulation (Europe)
5.7.3.3 Asia Pacific
5.7.3.3.1 Interim Administrative Measures for Generative Artificial Intelligence Services (China)
5.7.3.3.2 National AI Strategy (Singapore)
5.7.3.3.3 Hiroshima AI Process Comprehensive Policy Framework (Japan)
5.7.3.4 Middle East & Africa
5.7.3.4.1 National Strategy for Artificial Intelligence (UAE)
5.7.3.4.2 National Artificial Intelligence Strategy (Qatar)
5.7.3.4.3 AI Ethics Principles and Guidelines (Dubai)