세계의 EV용 복합재료 시장 : 섬유 유형별, 수지 유형별, 유형별, 제조 공정별, 용도별, 지역별 예측(-2029년)
EV Composites Market by Fiber Type (Glass Fiber, Carbon Fiber), Resin Type (Thermoplastics, Thermoset), Type (Ultra-Premium, Premium and Non-Premium), Manufacturing Process, Application, and Region - Global Forecast to 2029
상품코드:1516923
리서치사:MarketsandMarkets
발행일:2024년 07월
페이지 정보:영문 258 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
한글목차
세계 EV용 복합재료 시장 규모는 2024년 23억 달러로 2029년까지 51억 달러에 이를 것으로 예측되며 2024-2029년 CAGR로 17.1%의 성장이 전망됩니다.
유리 섬유 복합재료는 여러 주요 요인으로 인해 전기자동차(EV)에서의 사용이 증가하고 있습니다. 유리섬유 복합재료는 상당한 경량화에 기여하며 효율과 항속거리를 향상시키는 동시에 탄소섬유와 같은 다른 복합재료에 비해 비용효율이 높습니다. 유리 섬유는 높은 인장 강도와 내구성을 가지며 다양한 구조 부품과 비 구조 부품에 적합합니다. 탁월한 열적 특성과 전기 절연 특성은 전기 파워트레인에서 발생하는 열을 관리하고 전기 시스템의 안전한 작동을 보장하는 데 도움이 됩니다. 유리 섬유 디자인의 유연성은 복잡한 모양과 공기 역학 설계를 가능하게 하며, 그 생산은 종종 낮은 에너지 요구 사항과 재활용 가능성으로 인해 친환경적입니다. 또한 유리섬유 복합재료는 소음, 진동, 하슈네스(NVH) 수준을 줄이는 데 도움이 되며, 보다 조용한 차내 환경을 제공하여 EV의 전반적인 운전 경험을 더욱 향상시킵니다.
조사 범위
조사 대상년도
2022-2029년
기준년
2023년
예측 기간
2024-2029년
단위
금액(100만/10억 달러), 수량(킬로톤)
부문
섬유 유형별, 수지 유형별, 유형별, 제조 공정별, 용도별, 지역별
대상 지역
북미, 아시아태평양, 라틴아메리카, 중동 및 아프리카
"열경화성 수지 부문이 금액 기준으로 시장 전체의 최대 점유율을 차지했습니다."
열경화성 복합재료에서는 열경화성 수지가 탄소섬유, 유리 섬유, 천연섬유, 아라미드 섬유 등의 섬유와 함께 매트릭스로 사용됩니다. 현재 열경화성 수지는 경화하면 실온에서 액체 상태가 되기 때문에 EV용 복합재료의 제조에 널리 사용되고 있습니다. 수지의 이 독특한 특성은 강화 섬유를 쉽게 함침시킬 수 있습니다. 열경화성 복합재료는 강성이 높은 상호 연결 분자 구조, 불활성 화학 조성, 자외선 및 화학적 공격에 대한 내성으로 인해 매우 내구성이 우수합니다. 또한, 열경화성 복합재료로 만들어진 구조물은 유지 보수의 번거로움도 적습니다. EV용 복합재료용 열경화성 수지는 EV제조에서 경량이고 고성능인 재료에 대한 수요가 높아짐에 따라 크게 성장할 것으로 예측됩니다.
"RTM 제조 공정 부문이 금액 기준으로 시장 전체의 3위 점유율을 차지했습니다."
2023년 RTM 제조 공정 부문은 금액 기준으로 시장의 3위 점유율을 차지했습니다. RTM은 고품질 EV용 복합재료 부품을 생산하는 비용 효율적이고 효율적인 방법으로 EV 산업 수요 증가에 필수적입니다. 효율과 항속거리 향상을 목적으로 하는 자동차 경량화의 동향은 RTM이 강도와 경량을 모두 겸비한 컴포넌트를 생산하기 때문에 중요한 촉진요인이 되고 있습니다. 또한 RTM은 높은 수준의 설계 유연성과 정확성을 가능하게 하므로 복잡한 형상과 통합된 구성 요소를 만들 수 있으며, 이는 최신 EV에서 볼 수 있는 혁신적인 설계에 필수적입니다. 또한 이 공정은 대량 생산에도 대응하고 EV 시장의 확대 요구에 대응하고 있습니다. 또한 RTM은 높은 열 절연성과 전기 절연성을 가진 수지와 같은 다양한 수지 시스템을 사용할 수 있으므로 EV에서 높은 성능과 안전 기준이 요구되는 부품을 제조하는 데 적합합니다. 전반적으로 RTM의 효율성, 범용성 및 지속가능성은 EV용 복합재료 시장에서 RTM의 성장을 가속하는 주요 요인입니다.
본 보고서에서는 세계 EV용 복합재료 시장에 대한 조사 분석을 통해 주요 촉진요인과 억제요인, 경쟁 구도, 미래 동향 등의 정보를 제공합니다.
목차
제1장 서론
제2장 조사 방법
제3장 주요 요약
제4장 중요 인사이트
EV용 복합재료 시장 기업에게 매력적인 기회
EV용 복합재료 시장 점유율: 섬유 유형별(2023년)
EV용 복합재료 시장 점유율: 수지 유형별(2023년)
EV용 복합재료 시장 점유율 : 제조 공정별(2023년)
EV용 복합재료 시장 점유율: 유형별(2023년)
EV용 복합재료 시장 : 용도별, 지역별(2023년)
EV용 복합재료 시장 : 주요 국가별
제5장 시장 개요
소개
시장 역학
성장 촉진요인
억제요인
기회
과제
Porter's Five Forces 분석
공급망 분석
원재료
제조 공정
최종제품
에코시스템
가격 분석
주요 기업의 평균 판매 가격 동향 : 섬유 유형별
평균 판매 가격의 동향 : 수지 유형별
평균 판매 가격의 동향 : 용도 유형별
평균 판매 가격의 동향 : 제조 공정별
평균 판매 가격의 동향 : 유형별
평균 판매 가격의 동향 :지역별
밸류체인 분석
무역 분석
HS코드 7019의 수출 시나리오
HS코드 7019의 수입 시나리오
HS코드 681511의 수출 시나리오
HS코드 681511의 수입 시나리오
기술 분석
유리 섬유 복합재료의 기술 분석
탄소섬유 복합재료의 기술 분석
탄소섬유의 최신 제조 공정을 위한 보완 기술
탄소섬유의 최신 제조 공정과 관련된 기술
EV용 복합재료 시장에 대한 AI/생성형 AI의 영향
주요 이용 사례와 시장의 미래성
EV용 복합재료 시장에서의 모범 사례
EV용 복합재료 시장에서의 AI 도입 사례
상호접속된 인접 생태계와 시장 기업에 미치는 영향
EV용 복합재료 시장에서의 생성형 AI 도입에 대한 고객의 준비 상황
주요 이해관계자와 구매 기준
특허 분석
규제 상황
주요 컨퍼런스 및 이벤트(2024-2025년)
사례 연구 분석
고객사업에 영향을 주는 동향/혼란
투자와 자금조달 시나리오
제6장 EV용 복합재료 시장 : 섬유 유형별
소개
탄소
유리
기타 섬유
제7장 EV용 복합재료 시장 : 수지 유형별
소개
열경화성 복합재료
열가소성 복합재료
제8장 EV용 복합재료 시장 : 유형별
소개
제9장 EV용 복합재료 시장 : 용도별
소개
외장
인테리어
파워트레인, 섀시
배터리 인클로저
제10장 EV용 복합재료 시장 : 제조 공정별
소개
사출 성형
압축 성형
수지 트랜스퍼 성형
기타 제조 공정
제11장 EV용 복합재료 시장 : 지역별
소개
아시아태평양
중국
일본
인도
한국
호주
기타 아시아태평양
유럽
독일
프랑스
영국
이탈리아
스페인
러시아
벨기에
기타 유럽
북미
미국
캐나다
라틴아메리카
브라질
멕시코
기타 라틴아메리카
중동 및 아프리카
GCC 국가
남아프리카
기타 중동 및 아프리카
제12장 경쟁 구도
개요
주요 기업의 전략/유력 기업
수익 분석
시장 점유율 분석
브랜드/제품 비교 분석
기업 평가 매트릭스: 주요 기업(2023년)
기업의 평가 매트릭스: 스타트업/중소기업(2023년)
EV 복합 벤더의 평가와 재무 지표
경쟁 시나리오와 동향
제13장 기업 프로파일
주요 기업
SYENSQO
TORAY INDUSTRIES, INC.
POLYTEC HOLDING AG
OPMOBILITY
FORVIA
ELRINGKLINGER AG
HENGRUI CORPORATION(HRC)
EXEL COMPOSITES
SGL CARBON
TEIJIN LIMITED
MITSUBISHI CHEMICAL GROUP CORPORATION
OWENS CORNING
PIRAN ADVANCED COMPOSITES
MAR-BAL, INC.
ROCHLING SE & CO. KG
기타 기업
HANKUK CARBON CO., LTD.
CIE AUTOMOTIVE INDIA
UFP TECHNOLOGIES, INC.
ZHONGAO CARBON
ATLAS FIBRE
KAUTEX
ENVALIOR
TRB LIGHTWEIGHT STRUCTURES
THE GUND COMPANY
IDI COMPOSITES INTERNATIONAL
제14장 부록
JHS
영문 목차
영문목차
The EV Composites market is estimated at USD 2.3 billion in 2024 and is projected to reach USD 5.1 billion by 2029, at a CAGR of 17.1% from 2024 to 2029. Glass fiber composites are increasingly used in electric vehicles (EVs) due to several key factors. They contribute to significant weight reduction, enhancing efficiency and range, while being more cost-effective compared to other composites like carbon fiber. Glass fiber offers high tensile strength and durability, making it suitable for various structural and non-structural parts. Its excellent thermal and electrical insulation properties help manage heat generated by electric powertrains and ensure safe operation of electrical systems. The design flexibility of glass fiber allows for complex shapes and aerodynamic designs, and its production is often more environmentally friendly with lower energy requirements and recycling potential. Additionally, fiberglass composites help reduce noise, vibration, and harshness (NVH) levels, providing a quieter cabin environment, further enhancing the overall driving experience in EVs.
Scope of the Report
Years Considered for the Study
2022-2029
Base Year
2023
Forecast Period
2024-2029
Units Considered
Value (USD Million/Billion), Volume (Kiloton)
Segments
By Fiber Type, By Resin Type, By Type, By Manufacturing Process, Application, and Region
Regions covered
Europe, North America, Asia Pacific, Latin America, Middle East, and Africa
''In terms of value, thermoset resin segment accounted for the largest share of the overall EV Composites market.''
In thermoset composites, thermoset resins are used as the matrix with fibers such as carbon fiber, fiberglass, natural fiber, and aramid fiber. Currently, thermoset resins are widely used for manufacturing EV composites as, when cured, they are in the liquid state at room temperature. This unique property of the resin allows for the convenient impregnation of reinforcing fiber. On account of their rigid interlinking molecular structure, inert chemical composition, and resistance to ultraviolet and chemical attack, thermoset composites are very durable. Structures made of thermoset composites are also low on maintenance. The thermoset resin for EV composites is expected to grow significantly due to the increasing demand for lightweight and high-performance materials in EV production.
''In terms of value, RTM manufacturing process segment accounted for the third largest share of the overall EV Composites market.''
In 2023, RTM manufacturing process segment accounted for the third largest share of the EV Composites market, in terms of value. RTM is a cost-effective and efficient method for producing high-quality EV composite parts, which is crucial for the growing demand in the EV industry. The trend towards lightweight vehicles for improved efficiency and range is a significant driver, as RTM produces components that are both strong and lightweight. Additionally, RTM allows for high levels of design flexibility and precision, enabling complex shapes and integrated components, which is essential for the innovative designs seen in modern EVs. The process also supports high-volume production, aligning with the scaling needs of the EV market. Moreover, RTM's capability to use various resin systems, including those with high thermal and electrical insulation properties, makes it suitable for manufacturing components that require high performance and safety standards in EVs. Overall, the efficiency, versatility, and sustainability of RTM are key factors driving its growth in the EV composites market.
"During the forecast period, the EV Composites market in Europe region is projected to be the second largest region."
The growth of EV composites in Europe is fuelled by regulatory pressures, government incentives, automotive innovation, infrastructure development, and sustainability goals. Trends such as the adoption of carbon fiber composites, advanced manufacturing techniques, and the focus on battery enclosures highlight the dynamic nature of this market. As Europe continues to lead in the transition to electric mobility, the demand for high-performance composites is set to increase, driving further advancements and adoption in the EV industry. Leading companies like Rochling SE & Co. KG and ElringKlinger AG are ramping up their R&D efforts to develop new products, aligning with market trends and meeting the growing demand for EV Composites.
This study has been validated through primary interviews with industry experts globally. These primary sources have been divided into the following three categories:
By Company Type- Tier 1- 40%, Tier 2- 33%, and Tier 3- 27%
By Designation- C Level- 50%, Director Level- 30%, and Others- 20%
By Region- North America- 15%, Europe- 50%, Asia Pacific- 20%, Latin America- 10%, Middle East & Africa (MEA)-5%.
The report provides a comprehensive analysis of company profiles:
Prominent companies include Toray Industries, Inc. (Japan), Teijin Limited (Japan), Syensqo (Belgium), Piran Advanced Composites (UK), HRC (Hengrui Corporation) (China), Envalior (Germany), Exel Composites (Finland), Kautex Textron GmbH & Co. KG (Germany), SGL Carbon (Germany), POLYTEC HOLDING AG (Austria), Plastic Omnium (France), Rochling SE & Co. KG (Germany), Mar-Bal, Inc. (US), ElringKlinger AG (Germany), and Faurecia (France).
Research Coverage
This research report categorizes the EV Composites Market By Fiber Type (Glass Fiber, Carbon Fiber, Other Fibers), By Resin Type (Thermoplastics, Thermoset), By Type (Ultra-Premium, Premium and Non-Premium), By Manufacturing Process (Compression Molding, Injection Molding, RTM), Application (Interior, Exterior, Battery Enclosure, Powertrain & Chassis), Region (North America, Europe, Asia Pacific, the Middle East & Africa, and Latin America). The scope of the report includes detailed information about the major factors influencing the growth of the EV Composites market, such as drivers, restraints, challenges, and opportunities. A thorough examination of the key industry players has been conducted in order to provide insights into their business overview, solutions, and services, key strategies, contracts, partnerships, and agreements. New product and service launches, mergers and acquisitions, and recent developments in the EV Composites market are all covered. This report includes a competitive analysis of upcoming startups in the EV Composites market ecosystem.
Reasons to buy this report:
The report will help the market leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall EV Composites market and the subsegments. This report will help stakeholders understand the competitive landscape and gain more insights to position their businesses better and plan suitable go-to-market strategies. The report also helps stakeholders understand the pulse of the market and provides them with information on key market drivers, restraints, challenges, and opportunities.
The report provides insights on the following pointers:
Analysis of key drivers (Increasing adoption of EV composites, Technological advancements), restraints (Competition with low-cost mature products, Limited market penetration), opportunities (Reduction in cost of carbon fiber, Expansion of EV Infrastructure), and challenges (Maintaining uninterrupted supply chain and operating at full production capacity, liquidity crunch) influencing the growth of the EV Composites market
Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product & service launches in the EV Composites market
Market Development: Comprehensive information about lucrative markets - the report analyses the EV Composites market across varied regions.
Market Diversification: Exhaustive information about new products & services, untapped geographies, recent developments, and investments in the EV Composites market
Competitive Assessment: In-depth assessment of market shares, growth strategies and service offerings of leading players like Toray Industries, Inc. (Japan), Teijin Limited (Japan), Syensqo (Belgium), Piran Advanced Composites (UK), HRC (Hengrui Corporation) (China), Envalior (Germany), Exel Composites (Finland), Kautex Textron GmbH & Co. KG (Germany), SGL Carbon (Germany), POLYTEC HOLDING AG (Austria), Plastic Omnium (France), Rochling SE & Co. KG (Germany), Mar-Bal, Inc. (US), ElringKlinger AG (Germany), and Faurecia (France), The Gund Company (US), IDI Composites International (US), TRB Lightweight Structures (US), CIE Automotive India (India), ZhongAo Carbon (China), Atlas Fibre (US), Jiangsu Kangde Xin Composite Material (China), Euro Advanced Carbon Fiber Composites GmbH (US), Owens Corning (US) among others in the EV Composites market.
TABLE OF CONTENTS
1 INTRODUCTION
1.1 STUDY OBJECTIVES
1.2 MARKET DEFINITION
1.3 INCLUSIONS & EXCLUSIONS
1.4 MARKET SCOPE
1.4.1 YEARS CONSIDERED
1.5 CURRENCY CONSIDERED
1.6 UNITS CONSIDERED
1.7 STAKEHOLDERS
2 RESEARCH METHODOLOGY
2.1 RESEARCH DATA
2.1.1 SECONDARY DATA
2.1.1.1 Key data from secondary sources
2.1.2 PRIMARY DATA
2.1.2.1 Key data from primary sources
2.1.2.2 Key primary participants
2.1.2.3 Breakdown of primary interviews
2.1.2.4 Key industry insights
2.2 BASE NUMBER CALCULATION
2.2.1 APPROACH 1: DEMAND-SIDE ANALYSIS
2.2.2 APPROACH 2: SUPPLY-SIDE ANALYSIS
2.3 FORECAST NUMBER CALCULATION
2.3.1 SUPPLY SIDE
2.3.2 DEMAND SIDE
2.4 MARKET SIZE ESTIMATION
2.4.1 BOTTOM-UP APPROACH
2.4.2 TOP-DOWN APPROACH
2.5 DATA TRIANGULATION
2.6 FACTOR ANALYSIS
2.7 ASSUMPTIONS
2.8 GROWTH FORECAST
2.9 RESEARCH LIMITATIONS
2.10 RISK ASSESSMENT
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN EV COMPOSITES MARKET
4.2 EV COMPOSITES MARKET SHARE, BY FIBER TYPE, 2023
4.3 EV COMPOSITES MARKET SHARE, BY RESIN TYPE, 2023
4.4 EV COMPOSITES MARKET SHARE, BY MANUFACTURING PROCESS, 2023
4.5 EV COMPOSITES MARKET SHARE, BY TYPE, 2023
4.6 EV COMPOSITES MARKET, BY APPLICATION AND REGION, 2023
4.7 EV COMPOSITES MARKET, BY KEY COUNTRY
5 MARKET OVERVIEW
5.1 INTRODUCTION
5.2 MARKET DYNAMICS
5.2.1 DRIVERS
5.2.1.1 Stringent standards on emission control
5.2.1.2 Increasing adoption of composite materials by premium EV manufacturers
5.2.1.3 Government policies and incentives driving EV adoption
5.2.2 RESTRAINTS
5.2.2.1 High processing and manufacturing cost of composites
5.2.2.2 Lack of EV infrastructure
5.2.3 OPPORTUNITIES
5.2.3.1 Reduction in cost of carbon fibers
5.2.3.2 Growing demand for EVs from emerging economies
5.2.3.3 Growing application of composites in EV batteries
5.2.4 CHALLENGES
5.2.4.1 Recycling of composite materials
5.2.4.2 Developing low-cost technologies
5.3 PORTER'S FIVE FORCES ANALYSIS
5.3.1 THREAT OF NEW ENTRANTS
5.3.2 THREAT OF SUBSTITUTES
5.3.3 BARGAINING POWER OF SUPPLIERS
5.3.4 BARGAINING POWER OF BUYERS
5.3.5 INTENSITY OF COMPETITIVE RIVALRY
5.4 SUPPLY CHAIN ANALYSIS
5.4.1 RAW MATERIAL
5.4.2 MANUFACTURING PROCESS
5.4.3 FINAL PRODUCT
5.5 ECOSYSTEM
5.6 PRICING ANALYSIS
5.6.1 AVERAGE SELLING PRICE TREND OF KEY PLAYERS, BY FIBER TYPE
5.6.2 AVERAGE SELLING PRICE TREND, BY RESIN TYPE
5.6.3 AVERAGE SELLING PRICE TREND, BY APPLICATION TYPE
5.6.4 AVERAGE SELLING PRICE TREND, BY MANUFACTURING PROCESS
5.6.5 AVERAGE SELLING PRICE TREND, BY TYPE
5.6.6 AVERAGE SELLING PRICE TREND, BY REGION
5.7 VALUE CHAIN ANALYSIS
5.8 TRADE ANALYSIS
5.8.1 EXPORT SCENARIO FOR HS CODE 7019
5.8.2 IMPORT SCENARIO FOR HS CODE 7019
5.8.3 EXPORT SCENARIO FOR HS CODE 681511
5.8.4 IMPORT SCENARIO FOR HS CODE 681511
5.9 TECHNOLOGY ANALYSIS
5.9.1 TECHNOLOGY ANALYSIS FOR GLASS FIBER COMPOSITES
5.9.2 TECHNOLOGY ANALYSIS FOR CARBON FIBER COMPOSITES
5.9.3 COMPLEMENTARY TECHNOLOGIES FOR LATEST MANUFACTURING PROCESS OF CARBON FIBERS
5.9.4 ADJACENT TECHNOLOGIES FOR LATEST MANUFACTURING PROCESS OF CARBON FIBERS
5.10 IMPACT OF AI/GEN AI ON EV COMPOSITES MARKET
5.10.1 TOP USE CASES AND MARKET POTENTIAL
5.10.2 BEST PRACTICES IN EV COMPOSITES MARKET
5.10.3 CASE STUDIES OF AI IMPLEMENTATION IN EV COMPOSITES MARKET
5.10.4 INTERCONNECTED ADJACENT ECOSYSTEM AND IMPACT ON MARKET PLAYERS
5.10.5 CLIENTS' READINESS TO ADOPT GENERATIVE AI IN EV COMPOSITES MARKET
5.11 KEY STAKEHOLDERS AND BUYING CRITERIA
5.11.1 KEY STAKEHOLDERS IN BUYING PROCESS
5.11.2 BUYING CRITERIA
5.12 PATENT ANALYSIS
5.12.1 INTRODUCTION
5.12.2 METHODOLOGY
5.12.3 PATENT TYPES
5.12.4 INSIGHTS
5.12.5 LEGAL STATUS
5.12.6 JURISDICTION ANALYSIS
5.12.7 TOP APPLICANTS
5.13 REGULATORY LANDSCAPE
5.13.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
5.14 KEY CONFERENCES AND EVENTS IN 2024-2025
5.15 CASE STUDY ANALYSIS
5.15.1 CASE STUDY 1: WATT ELECTRIC VEHICLES AND THE NATIONAL COMPOSITES CENTRE PARTNERSHIP TO MANUFACTURE COMPOSITE BATTERY
5.15.2 CASE STUDY 2: TEIJIN'S DEVELOPMENT OF CARBON FIBER BATTERY ENCLOSURE
5.16 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS
5.17 INVESTMENT AND FUNDING SCENARIO
6 EV COMPOSITES MARKET, BY FIBER TYPE
6.1 INTRODUCTION
6.2 CARBON
6.2.1 USEFUL IN REDUCING WEIGHT OF BATTERY PACKS AND IMPROVING COOLING
6.2.2 EV CARBON FIBER COMPOSITES MARKET, BY REGION
6.3 GLASS
6.3.1 WIDELY UTILIZED AS REINFORCEMENTS IN EV COMPOSITE, OFFERING BALANCE OF STRENGTH, AFFORDABILITY, AND CORROSION RESISTANCE
6.3.2 EV GLASS FIBER COMPOSITES MARKET, BY REGION
6.4 OTHER FIBERS
6.4.1 OTHER EV FIBER COMPOSITES MARKET, BY REGION
7 EV COMPOSITES MARKET, BY RESIN TYPE
7.1 INTRODUCTION
7.2 THERMOSET COMPOSITES
7.2.1 LOW ON MAINTENANCE-KEY FACTOR PROPELLING MARKET GROWTH
7.2.2 POLYESTER
7.2.3 VINYL ESTER
7.2.4 EPOXY
7.2.5 OTHER THERMOSET RESINS
7.2.6 EV THERMOSET COMPOSITES MARKET, BY REGION
7.3 THERMOPLASTIC COMPOSITES
7.3.1 HIGH COST TO RESTRAIN ADOPTION
7.3.2 POLYPROPYLENE
7.3.3 POLYAMIDE
7.3.4 POLYPHENYLENE SULFIDE
7.3.5 OTHER THERMOPLASTIC RESINS
7.3.5.1 Polyetheretherketone
7.3.5.2 Polyetherimide
7.3.6 EV THERMOPLASTIC COMPOSITES MARKET, BY REGION
8 EV COMPOSITES MARKET, BY TYPE
8.1 INTRODUCTION
8.1.1 EV COMPOSITES MARKET IN BATTERY ENCLOSURE APPLICATIONS
8.1.2 EV COMPOSITES MARKET IN INTERIOR APPLICATIONS
8.1.3 EV COMPOSITES MARKET IN EXTERIOR APPLICATIONS
8.1.4 EV COMPOSITES MARKET IN POWERTRAIN & CHASSIS APPLICATIONS
9 EV COMPOSITES MARKET, BY APPLICATION
9.1 INTRODUCTION
9.2 EXTERIOR
9.2.1 EXTERIOR PARTS MANUFACTURED WITH COMPOSITES IMPART RIGIDITY
9.2.2 EV COMPOSITES MARKET IN EXTERIOR APPLICATIONS, BY FIBER TYPE
9.3 INTERIOR
9.3.1 GLASS FIBER COMPOSITES WIDELY USED IN INTERIOR APPLICATIONS
9.3.2 EV COMPOSITES MARKET IN INTERIOR APPLICATIONS, BY FIBER TYPE
9.4 POWERTRAIN & CHASSIS
9.4.1 STRINGENT GOVERNMENT REGULATIONS TO REDUCE OVERALL WEIGHT OF VEHICLES
9.4.2 EV COMPOSITES MARKET IN POWERTRAIN & CHASSIS APPLICATIONS, BY FIBER TYPE
9.5 BATTERY ENCLOSURES
9.5.1 DESIGNED TO ENSURE SAFETY OF BATTERY AND PASSENGERS IN EVENT OF COLLISION
9.5.2 EV COMPOSITES MARKET IN BATTERY ENCLOSURE APPLICATIONS, BY FIBER TYPE
10 EV COMPOSITES MARKET, BY MANUFACTURING PROCESS
10.1 INTRODUCTION
10.2 INJECTION MOLDING
10.2.1 OFFERS LOW-COST TOOLING FOR PRODUCTION OF LOW VOLUME OF LARGE PARTS
10.2.2 INJECTION MOLDING: EV COMPOSITES MARKET, BY REGION
10.3 COMPRESSION MOLDING
10.3.1 PRODUCE HIGH-STRENGTH COMPLEX PARTS IN A VARIETY OF SIZES
10.3.2 COMPRESSION MOLDING: EV COMPOSITES MARKET, BY REGION
10.4 RESIN TRANSFER MOLDING
10.4.1 SUITABLE FOR MEDIUM-VOLUME PRODUCTION OF LARGE COMPONENTS
10.4.2 RESIN TRANSFER MOLDING: EV COMPOSITES MARKET, BY REGION
10.5 OTHER MANUFACTURING PROCESSES
10.5.1 FILAMENT WINDING PROCESS
10.5.2 CONTINUOUS PROCESS
10.5.3 LAY-UP PROCESS
10.5.4 OTHER MANUFACTURING PROCESSES: EV COMPOSITES MARKET, BY REGION
11 EV COMPOSITES MARKET, BY REGION
11.1 INTRODUCTION
11.2 ASIA PACIFIC
11.2.1 CHINA
11.2.1.1 Rising efforts by domestic automakers to support market growth
11.2.2 JAPAN
11.2.2.1 High demand from OEMs to drive market
11.2.3 INDIA
11.2.3.1 Government support to favor market growth
11.2.4 SOUTH KOREA
11.2.4.1 Government incentives to promote EV demand to drive market
11.2.5 AUSTRALIA
11.2.5.1 Growing sales of electric cars to drive market
11.2.6 REST OF ASIA PACIFIC
11.3 EUROPE
11.3.1 GERMANY
11.3.1.1 Government and OEM plans for rapid EV shift to drive market
11.3.2 FRANCE
11.3.2.1 Plans for rapid electrification to support market growth
11.3.3 UK
11.3.3.1 Heavy investments in EV ecosystem to propel market
11.3.4 ITALY
11.3.4.1 Advanced manufacturing and innovation to drive market
11.3.5 SPAIN
11.3.5.1 Increasing investments in EV space to drive market
11.3.6 RUSSIA
11.3.6.1 Government support for EV adoption to propel market
11.3.7 BELGIUM
11.3.7.1 Increasing investments in EV space to drive market
11.3.8 REST OF EUROPE
11.4 NORTH AMERICA
11.4.1 US
11.4.1.1 High investments and government focus on cleaner mobility to drive market
11.4.2 CANADA
11.4.2.1 Increasing development of EV infrastructure to drive market
11.5 LATIN AMERICA
11.5.1 BRAZIL
11.5.1.1 Growth of electric vehicles industry to propel market
11.5.2 MEXICO
11.5.2.1 Lower manufacturing cost and proximity to OEMs in US to drive market
11.5.3 REST OF LATIN AMERICA
11.6 MIDDLE EAST & AFRICA
11.6.1 GCC COUNTRIES
11.6.1.1 UAE
11.6.1.1.1 Supportive government policies to boost market growth
11.6.1.2 Rest of GCC countries
11.6.2 SOUTH AFRICA
11.6.2.1 Local and international investments to boost market
11.6.3 REST OF MIDDLE EAST & AFRICA
12 COMPETITIVE LANDSCAPE
12.1 OVERVIEW
12.2 KEY PLAYER STRATEGIES/RIGHT TO WIN
12.3 REVENUE ANALYSIS
12.4 MARKET SHARE ANALYSIS
12.5 BRAND/PRODUCT COMPARATIVE ANALYSIS
12.5.1 BRAND/PRODUCT COMPARATIVE ANALYSIS, BY EV COMPOSITE PRODUCT
12.6 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2023
12.6.1 STARS
12.6.2 EMERGING LEADERS
12.6.3 PERVASIVE PLAYERS
12.6.4 PARTICIPANTS
12.6.5 COMPANY FOOTPRINT: KEY PLAYERS, 2023
12.6.5.1 Company footprint
12.6.5.2 Fiber type footprint
12.6.5.3 Type footprint
12.6.5.4 Resin type footprint
12.6.5.5 Application footprint
12.6.5.6 Region footprint
12.7 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2023
12.7.1 PROGRESSIVE COMPANIES
12.7.2 RESPONSIVE COMPANIES
12.7.3 DYNAMIC COMPANIES
12.7.4 STARTING BLOCKS
12.7.5 COMPETITIVE BENCHMARKING OF KEY STARTUPS/SMES
12.8 VALUATION AND FINANCIAL METRICS OF EV COMPOSITE VENDORS