¼¼°èÀÇ ÀÚµ¿±â°èÇнÀ(AutoML) ½ÃÀå ¿¹Ãø(-2028³â) : Á¦°ø(¼Ö·ç¼Ç, ¼­ºñ½º), ¿ëµµ(µ¥ÀÌÅÍ Ã³¸®, ¸ðµ¨ ¼±Á¤, ÇÏÀÌÆÛÆÄ¶ó¹ÌÅÍ ÃÖÀûÈ­ ¹× Æ©´×, Ư¡ ¿£Áö´Ï¾î¸µ, ¾Ó»óºí ¸ðµ¨), »ê¾÷º°, Áö¿ªº°
Automated Machine Learning (AutoML) Market by Offering (Solutions & Services), Application (Data Processing, Model Selection, Hyperparameter Optimization & Tuning, Feature Engineering, Model Ensembling), Vertical and Region - Global Forecast to 2028
»óǰÄÚµå : 1277588
¸®¼­Ä¡»ç : MarketsandMarkets
¹ßÇàÀÏ : 2023³â 05¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 349 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 6,989,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,650 £Ü 9,389,000
PDF (5-user License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 8,150 £Ü 11,507,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÀÌ¿ë Àοø¿¡ Á¦ÇÑÀº ¾øÀ¸³ª, ±¹³»¿¡ ÀÖ´Â »ç¾÷À常 ÇØ´çµÇ¸ç, ÇØ¿Ü ÁöÁ¡ µîÀº Æ÷ÇÔµÇÁö ¾Ê½À´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 10,000 £Ü 14,120,000
PDF (Global License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. (100% ÀÚȸ»ç´Â µ¿ÀÏ ±â¾÷À¸·Î °£Áֵ˴ϴÙ.) Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¼¼°èÀÇ ÀÚµ¿±â°èÇнÀ(AutoML) ½ÃÀå ±Ô¸ð´Â 2023³â 10¾ï ´Þ·¯¿¡¼­ 2028³â±îÁö 64¾ï ´Þ·¯·Î È®´ëµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ Áß ¿¬Æò±Õ 44.6%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. ¼³¸í °¡´ÉÇÑ AI´Â ¸Ó½Å·¯´× ¸ðµ¨ÀÌ ¿¹ÃøÀ» ¼öÇàÇÏ´Â ¹æ½Ä¿¡ ´ëÇÑ Åõ¸í¼ºÀ» Á¦°øÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ´Â AutoMLÀÇ Áß¿äÇÑ Ãø¸éÀÔ´Ï´Ù. Ư¡ÀÇ Á߿䵵¿Í ÀÇ»ç°áÁ¤ Æ®¸®¿Í °°Àº ¼³¸í °¡´ÉÇÑ AI ±â¼úÀ» ÅëÇØ ±â¾÷Àº ¸ðµ¨ÀÌ ¾î¶»°Ô ÀÛµ¿ÇÏ´ÂÁö¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖÀ¸¸ç, À̸¦ ÅëÇØ ´õ ¸¹Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù.

¾÷Á¾º°·Î´Â ¿¹Ãø ±â°£ Áß BFSI°¡ °¡Àå Å« ½ÃÀåÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

AutoMLÀº ¹Ýº¹ÀûÀÌ°í ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â ÀÛ¾÷À» ÀÚµ¿È­Çϰí, »ý»ê¼º, È¿À²¼º, ´ë±Ô¸ð·Î ¸Ó½Å·¯´× ¸ðµ¨À» ±¸ÃàÇϸç, ¸Ó½Å·¯´× ¸ðµ¨ ±¸Çö ¹× ÈÆ·Ã¿¡ ÇÊ¿äÇÑ Áö½Ä ±â¹Ý ¸®¼Ò½º¸¦ ÃÖ¼ÒÈ­Çϱâ À§ÇØ BFSI ºÎ¹®¿¡¼­ »ç¿ëµÇ°í ÀÖ´Â »õ·Î¿î ±â¼úÀÔ´Ï´Ù. AutoMLÀº ½Å¿ëÄ«µå ºÎÁ¤»ç¿ë ŽÁö, ¸®½ºÅ© Æò°¡, ÅõÀÚÀÇ ½Ç½Ã°£ ¼ÕÀÍ ¿¹Ãø µî¿¡ Ȱ¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AutoMLÀº µ¥ÀÌÅÍ ÃßÃâ°ú ¾Ë°í¸®ÁòÀ» ÀÚµ¿È­ÇÏ¿© ºÐ¼®ÀÇ ¼öÀÛ¾÷ ºÎºÐÀ» ¾ø¾Ö°í µµÀÔ ½Ã°£À» Å©°Ô ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Consensus CorporationÀº AutoMLÀ» »ç¿ëÇÏ¿© µµÀÔ ½Ã°£À» 3-4ÁÖ¿¡¼­ 8½Ã°£À¸·Î ´ÜÃàÇßÀ¸¸ç, AutoMLÀº BFSI ºÎ¹®ÀÇ ¿À·ù ¹× ÆíÇâ °¡´É¼ºÀ» ÃÖ¼ÒÈ­ÇÏ¿© ±â¾÷ÀÌ ÀλçÀÌÆ®¸¦ ³ôÀÌ°í ¸ðµ¨ Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. AutoMLÀº BFSI ¾÷°è¿¡ ¸î °¡Áö ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. º¹ÀâÇÏ°í ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â ¼öÀÛ¾÷ µ¥ÀÌÅÍ °úÇÐ ÇÁ·Î¼¼½ºÀÇ Çʿ伺À» ÁÙÀÌ°í µ¥ÀÌÅÍ °úÇÐÀÚÀÇ ÀÛ¾÷À» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AutoMLÀº µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ºñÁî´Ï½º ¼º°ú ÃÖÀûÈ­¸¦ Áö¿øÇÏ¿© ºñÁî´Ï½º ¸®´õ°¡ ½Ç½Ã°£ ºÐ¼®À¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

¾ÖÇø®ÄÉÀ̼Ǻ°·Î´Â ¾Ó»óºí ¸ðµ¨ ºÎ¹®ÀÌ ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¾Ó»óºí ¸ðµ¨À» À§ÇÑ AutoMLÀº ¿¹Ãø Á¤È®µµ¸¦ Çâ»ó½Ã۱â À§ÇØ °áÇÕÇÒ ¼ö ÀÖ´Â ¸ðµ¨ Ä÷º¼ÇÀ» »ý¼ºÇϱâ À§ÇØ ÀÚµ¿È­µÈ ±â¼úÀ» »ç¿ëÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. ¾Ó»óºíÀº ¿©·¯ ¸ðµ¨ÀÇ ¿¹ÃøÀ» °áÇÕÇÏ¿© º¸´Ù Á¤È®ÇÑ ÃÖÁ¾ ¿¹ÃøÀ» »ý¼ºÇÏ´Â ¸Ó½Å·¯´×ÀÇ ÀϹÝÀûÀÎ ¹æ¹ý·ÐÀ¸·Î, AutoMLÀº ¹é±ë, ºÎ½ºÆÃ, ½ºÅÂÅ· µî ´Ù¾çÇÑ ¹æ¹ýÀ¸·Î ¾Ó»óºí ¸ðµ¨À» ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾Ë°í¸®Áò°ú ÇÏÀÌÆÛÆÄ¶ó¹ÌÅ͸¦ »ç¿ëÇÏ¿© ¿©·¯ ¸ðµ¨À» ÀÚµ¿À¸·Î »ý¼ºÇϰí, ¾Ó»óºí ±â¼úÀ» »ç¿ëÇÏ¿© À̵éÀ» °áÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. AutoMLÀ» ¾Ó»óºí ¸ðµ¨¸µ¿¡ »ç¿ëÇÏ¸é ¸ðµ¨ ¼±Á¤°ú °áÇÕ °úÁ¤À» ÀÚµ¿È­ÇÒ ¼ö ÀÖÀ¸¸ç, µ¥ÀÌÅÍ °úÇÐÀÚÀÇ ½Ã°£°ú ³ë·ÂÀ» Àý¾àÇÒ ¼ö ÀÖ´Ù´Â ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ½Ã°£°ú ³ë·ÂÀ» Àý¾àÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¶ÇÇÑ AutoMLÀº ´Ù¾çÇÑ ¾Ó»óºí ±â¹ýÀÇ ¼º´ÉÀ» Æò°¡ÇÏ¿© ƯÁ¤ µ¥ÀÌÅÍ ¼¼Æ®¿¡¼­ °¡Àå ¿ì¼öÇÑ ¼º´ÉÀ» ¹ßÈÖÇÏ´Â ±â¹ýÀ» ¼±ÅÃÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼­ºñ½ºº°·Î´Â ÄÁ¼³ÆÃ ¼­ºñ½º ºÎ¹®ÀÌ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå ±Ô¸ð¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÄÁ¼³ÆÃ ¼­ºñ½º´Â ÀϹÝÀûÀ¸·Î Ÿ»ç º¥´õ³ª ÄÁ¼³ÆÃ ȸ»ç°¡ Á¦°øÇϸç, ¸Ó½Å·¯´× Àü·« ¹× ±¸Çö¿¡ ´ëÇÑ Àü¹® Áö½Ä°ú °¡À̵带 Á¦°øÇÕ´Ï´Ù. AutoMLÀÇ ÄÁ¼³ÆÃ ¼­ºñ½º´Â Á¶Á÷ÀÌ µ¥ÀÌÅÍ Áغñ »óŸ¦ Æò°¡Çϰí, »ç¿ë »ç·Ê¸¦ ½Äº°Çϰí, Á¶Á÷ ³»¿¡¼­ ¸Ó½Å·¯´×À» ±¸ÇöÇϱâ À§ÇÑ ·Îµå¸ÊÀ» ÀÛ¼ºÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç, Á¶Á÷ÀÌ ¸Ó½Å·¯´× µµ±¸¿Í Ç÷§ÆûÀÇ º¹ÀâÇÑ »óȲÀ» ÆÄ¾ÇÇϰí, ƯÁ¤ ¿ä±¸¿Í ¸ñÇ¥¿¡ µû¶ó ¾î¶² µµ±¸¿Í ±â¼úÀ» »ç¿ëÇÒÁö °áÁ¤Çϵµ·Ï µ½½À´Ï´Ù. ¾î¶² µµ±¸¿Í ±â¼úÀ» »ç¿ëÇÒ °ÍÀÎÁö¿¡ ´ëÇÑ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ Áغñ, ¸ðµ¨ ¼±Á¤, ÇÏÀÌÆÛÆÄ¶ó¹ÌÅÍ Æ©´×, ¸Ó½Å·¯´× ¸ðµ¨ÀÇ ¼º´É ¹× À¯È¿¼ºÀ» Æò°¡ÇÒ ¼ö ÀÖµµ·Ï ÁöµµÇÒ ¼ö ÀÖ½À´Ï´Ù. ÄÁ¼³ÅÏÆ®´Â ÇöÀå ¶Ç´Â ¿ø°ÝÀ¸·Î ÀÛ¾÷ÇÒ ¼ö ÀÖÀ¸¸ç, ¸Ó½Å·¯´× ¼ö¸íÁÖ±â Àü¹Ý¿¡ °ÉÃÄ Áö¼ÓÀûÀÎ Áö¿ø°ú °¡À̵带 Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü¹® Áö½Ä, Áöħ ¹× ±³À°À» Á¦°øÇÔÀ¸·Î½á ÄÁ¼³ÅÏÆ®´Â ±â¾÷ÀÌ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç °áÁ¤À» ³»¸®°í ¸Ó½Å·¯´× ±¸»ó¿¡¼­ ´õ ³ªÀº °á°ú¸¦ ¾òÀ» ¼ö ÀÖµµ·Ï µµ¿ï ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå ±Ô¸ð¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÏ¹Ì´Â AutoML ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â °ÍÀ¸·Î ÃßÁ¤µÇ¸ç, ºÏ¹Ì°¡ ¼¼°èÀÇ AutoML ½ÃÀåÀ» Áö¹èÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ¼¼°èÀÇ AutoML ½ÃÀå¿¡¼­ °¡Àå ³ôÀº ¼öÀÍÀ» âÃâÇÏ´Â Áö¿ªÀ¸·Î, ¹Ì±¹ÀÌ °¡Àå ³ôÀº ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖÀ¸¸ç, ij³ª´Ù°¡ ±× µÚ¸¦ ÀÕ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ÀÇ·á, ±ÝÀ¶, ¼Ò¸Å µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¸Ó½Å·¯´× ¹× ÀΰøÁö´É ±â¼ú µµÀÔ·üÀÌ ³ô¾Æ AutoML ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ª¿¡´Â ¸¹Àº µ¥ÀÌÅÍ ±â¹Ý ½ºÅ¸Æ®¾÷°ú ±â¾÷ÀÌ Á¸ÀçÇÑ´Ù´Â Á¡µµ ºÏ¹Ì AutoML ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå Áß¿ä ÀλçÀÌÆ®

Á¦5Àå ½ÃÀå °³¿ä¿Í ¾÷°è µ¿Çâ

Á¦6Àå AutoML ½ÃÀå : Á¦°øº°

Á¦7Àå AutoML ½ÃÀå : ¾ÖÇø®ÄÉÀ̼Ǻ°

Á¦8Àå AutoML ½ÃÀå : ¾÷Á¾º°

Á¦9Àå AutoML ½ÃÀå : Áö¿ªº°

Á¦10Àå °æÀï ±¸µµ

Á¦11Àå ±â¾÷ °³¿ä

Á¦12Àå ÀÎÁ¢ ½ÃÀ塤°ü·Ã ½ÃÀå

Á¦13Àå ºÎ·Ï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The market for Automated Machine Learning is projected to grow from USD 1.0 billion in 2023 to USD 6.4 billion by 2028, at a CAGR of 44.6% during the forecast period. Explainable AI is a crucial aspect of AutoML that aims to provide transparency into how machine learning models make predictions. By using explainable AI techniques, such as feature importance and decision trees, businesses can gain insights into how their models work and make more informed decisions.

The BFSI vertical is projected to be the largest market during the forecast period

AutoML is an emerging technology used in the BFSI sectors to automate iterative and time-consuming tasks, build machine learning models with productivity, efficiency, and high scale, and minimize the knowledge-based resources needed to implement and train machine learning models. AutoML can be used for credit card fraud detection, risk assessment, and real-time gain and loss prediction for investments. AutoML can also help reduce deployment time by automating data extraction and algorithms, eliminating manual parts of the analyses, and significantly reducing deployment time. For instance, the Consensus Corporation reduced its deployment time from 3-4 weeks to eight hours using AutoML. AutoML can help enterprises boost insights and enhance model accuracy by minimizing the chances of error or bias in the BFSI sector. AutoML provides several benefits to the BFSI industry. It helps to reduce the need for manual data science processes, which can be complex and time-consuming, and can accelerate the work of data scientists. AutoML can also help optimize business performance driven by data, enabling business leaders to make decisions with real-time analytics.

Among Application, model ensembling segment is registered to grow at the highest CAGR during the forecast period

AutoML for model ensembling involves the use of automated techniques to create a collection of models that can be combined to improve prediction accuracy. Ensembling is a popular technique in machine learning that involves combining the predictions of multiple models to generate a more accurate final prediction. AutoML can use various techniques for model ensembling, such as bagging, boosting, and stacking. AutoML can automatically create multiple models using different algorithms and hyperparameters and then combine them using ensembling techniques. This can improve the robustness and accuracy of the final model, as it reduces the risk of overfitting and leverages the strengths of different algorithms. The benefit of using AutoML for model ensembling is that it can automate the process of selecting and combining models, which can save time and effort for data scientists. AutoML can also evaluate the performance of different ensembling methods and select the one that performs the best on the given dataset.

Among services, consulting services segment is anticipated to account for the largest market size during the forecast period

Consulting services are typically offered by third-party vendors or consulting firms, providing expertise and guidance on machine learning strategy and implementation. Consulting services can help organizations evaluate their data readiness, identify use cases, and develop a roadmap for implementing machine learning within their organization. AutoML consulting services can help organizations navigate the complex landscape of machine learning tools and platforms and make informed decisions about which tools and technologies to use based on their specific needs and goals. Consultants can also guide data preparation, model selection, and hyperparameter tuning and can help organizations evaluate the performance and effectiveness of their machine learning models. Consultants may work onsite or remotely and provide ongoing support and guidance throughout the machine learning lifecycle. By providing expertise, guidance, and education, consultants can help organizations make informed decisions and achieve better results with their machine learning initiatives.

North America to account for the largest market size during the forecast period

North America is estimated to account for the largest share of the Automated Machine Learning market. The global market for Automated Machine Learning is dominated by North America. North America is the highest revenue-generating region in the global Automated Machine Learning market, with the US constituting the highest market share, followed by Canada. The region has a high adoption rate of machine learning and artificial intelligence technologies across various industries, including healthcare, finance, and retail, which is expected to drive the demand for AutoML solutions. Moreover, the presence of a large number of data-driven startups and companies in the region is further fueling the growth of the AutoML market in North America.

Breakdown of primaries

In-depth interviews were conducted with Chief Executive Officers (CEOs), innovation and technology directors, system integrators, and executives from various key organizations operating in the Automated Machine Learning market.

Major vendors offering Automted Machine Learning solutions and services across the globe are IBM (US), Oracle (US), Microsoft (US), ServiceNow (US), Google (US), Baidu (China), AWS (US), Alteryx (US), Salesforce (US), Altair (US), Teradata (US), H2O.ai (US), DataRobot (US), BigML (US), Databricks (US), Dataiku (France), Alibaba Cloud (China), Appier (Taiwan), Squark (US), Aible (US), Datafold (US), Boost.ai (Norway), Tazi.ai (US), Akkio (US), Valohai (Finland), dotData (US), Qlik (US), Mathworks (US), HPE (US), and SparkCognition (US).

Research Coverage

The market study covers Automated Machine Learning across segments. It aims at estimating the market size and the growth potential across different segments, such as offering, application, vertical, and region. It includes an in-depth competitive analysis of the key players in the market, along with their company profiles, key observations related to product and business offerings, recent developments, and key market strategies.

Key Benefits of Buying the Report

The report would provide the market leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall market for Automated Machine Learning and its subsegments. It would help stakeholders understand the competitive landscape and gain more insights better to position their business and plan suitable go-to-market strategies. It also helps stakeholders understand the pulse of the market and provides them with information on key market drivers, restraints, challenges, and opportunities.

The report provides insights on the following pointers:

TABLE OF CONTENTS

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

5 MARKET OVERVIEW AND INDUSTRY TRENDS

6 AUTOMATED MACHINE LEARNING MARKET, BY OFFERING

7 AUTOMATED MACHINE LEARNING MARKET, BY APPLICATION

8 AUTOMATED MACHINE LEARNING MARKET, BY VERTICAL

9 AUTOMATED MACHINE LEARNING MARKET, BY REGION

10 COMPETITIVE LANDSCAPE

11 COMPANY PROFILES

12 ADJACENT AND RELATED MARKETS

13 APPENDIX

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â