은행업용 예측 분석 시장 보고서 : 동향, 예측 및 경쟁 분석(-2031년)
Predictive Analytics in Banking Market Report: Trends, Forecast and Competitive Analysis to 2031
상품코드 : 1801427
리서치사 : Lucintel
발행일 : 2025년 08월
페이지 정보 : 영문 150 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,850 ₩ 5,596,000
PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. PDF 파일은 DRM(디지털 저작권 관리 시스템)이 장착되어 있습니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 4,650 ₩ 6,759,000
PDF (2 Users License) help
PDF 보고서를 동일 사업장에서 2명까지 이용할 수 있는 라이선스입니다. PDF 파일은 DRM(디지털 저작권 관리 시스템)이 장착되어 있습니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 5,350 ₩ 7,777,000
PDF (5 Users License) help
PDF 보고서를 동일 사업장에서 5명까지 이용할 수 있는 라이선스입니다. PDF 파일은 DRM(디지털 저작권 관리 시스템)이 장착되어 있습니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 7,050 ₩ 10,248,000
PDF (Corporate License) help
PDF 보고서를 기업 내 모든 분이 이용할 수 있는 라이선스입니다. 이용 인원에 제한은 없으나, 국내에 있는 사업장만 해당되며, 해외 지점 등은 포함되지 않습니다. PDF 파일은 DRM(디지털 저작권 관리 시스템)이 장착되어 있습니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

세계 은행업용 예측 분석 시장 전망은 유망하며, 중소기업 시장과 대기업 시장에서 기회가 있을 것으로 보입니다. 세계 뱅킹 예측 분석 시장은 2025-2031년 20.6%의 연평균 복합 성장률(CAGR)을 보일 것으로 예측됩니다. 이 시장의 주요 촉진요인은 AI를 활용한 분석의 채택이 증가하고 있으며, 부정행위 감지 솔루션에 대한 요구가 증가하고 있다는 점입니다.

은행업용 예측 분석 시장의 새로운 트렌드

오늘날 은행업용 예측 분석 산업은 은행의 고객 이해, 리스크 처리, 업무 추진 방식을 재정의하는 다양한 주요 트렌드의 영향을 받고 있습니다. 이러한 추세는 최신 기술과 점점 더 방대해지는 데이터를 활용하고 있습니다.

이러한 추세는 은행업용 예측 분석 시장을 보다 나은 의사결정을 촉진하고 전반적인 뱅킹 경험을 향상시키는 실시간, 투명성, 협업, 고객 중심의 솔루션으로 변화시키고 있습니다.

은행업용 예측 분석 시장의 최근 동향

오늘날 은행업용 예측 분석 산업은 정확성과 효율성을 극대화하고 데이터 활용의 윤리적 요소를 고려하기 위해 중요한 진화를 거듭하고 있습니다. 이러한 발전은 은행이 경쟁력을 확보하고 소비자의 신뢰를 얻는 데 도움이 되고 있습니다. 그 추진력은 책임감과 큰 영향력을 가진 AI로 향하고 있습니다.

이러한 추세는 보다 정확하고 신뢰할 수 있는 모델의 신속한 배포, 복잡한 데이터 관계의 더 나은 이해, 윤리와 프라이버시를 중시하는 데이터 활용을 촉진함으로써 시장에서 은행의 예측 분석에 영향을 미치고 있습니다.

목차

제1장 주요 요약

제2장 시장 개요

제3장 시장 동향과 예측 분석

제4장 세계의 은행업용 예측 분석 시장 : 유형별

제5장 세계의 은행업용 예측 분석 시장 : 용도별

제6장 지역 분석

제7장 북미의 은행업용 예측 분석 시장

제8장 유럽의 은행업용 예측 분석 시장

제9장 아시아태평양의 은행업용 예측 분석 시장

제10장 기타 지역(ROW)의 은행업용 예측 분석 시장

제11장 경쟁 분석

제12장 기회와 전략 분석

제13장 밸류체인 주요 기업 개요

제14장 부록

LSH
영문 목차

영문목차

The future of the global predictive analytics in banking market looks promising with opportunities in the small & medium enterprise and large enterprise markets. The global predictive analytics in banking market is expected to grow with a CAGR of 20.6% from 2025 to 2031. The major drivers for this market are the rising adoption of AI-driven analytics, and the growing need for fraud detection solutions.

Emerging Trends in the Predictive Analytics in Banking Market

The predictive analytics banking industry is today influenced by a range of key trends that are redefining how banks understand customers, handle risk, and drive their operations. These trends tap into the latest technologies and increasingly large pools of data.

These trends collectively are transforming the predictive analytics in banking market into more real-time, transparent, collaborative, and customer-centric solutions that facilitate better decision-making and improve the overall banking experience.

Recent Developments in the Predictive Analytics in Banking Market

The predictive analytics in banking industry today is undergoing key advancements aimed at maximizing accuracy, efficiency, as well as considering ethical factors of using data. The advancements help the banks achieve competitiveness and obtain trust from consumers. The push is towards AI with responsible as well as significant impact.

These trends are influencing the banking predictive analytics in market by facilitating quicker deployment of more accurate and trustworthy models, better understanding of intricate data relationships, and focus on ethics and privacy-driven use of data.

Strategic Growth Opportunities in the Predictive Analytics in Banking Market

The predictive analytics in banking market has significant strategic growth opportunities across different applications based on the prospect of optimizing revenues, lowering costs, and improving customer relationships. Data-driven insights can revolutionize different aspects of banking operations.

These strategic growth prospects demonstrate the value creation potential of predictive analytics throughout the banking value chain, from customer acquisition and retention to risk management and operation optimization, ultimately leading to profitability and competitiveness enhancement.

Predictive Analytics in Banking Market Driver and Challenges

Banking predictive analytics market is driven by a strong synergy of forces highlighting the growing prominence of data-informed decision-making in finance as well as having major challenges capable of limiting widespread and efficient usage. To tackle this dynamic developing landscape, appreciating these drivers is imperative.

The factors responsible for driving the predictive analytics in banking market include:

1. Exponential Growth in Volume and Variety of Data: The huge volumes of data created through banking transactions and customer interactions present a fertile ground for leveraging predictive analytics to extract valuable insights.

2. Improvements in Artificial Intelligence and Machine Learning: Ongoing improvements in AI and ML algorithms make it possible to create more complex and accurate predictive models for numerous banking applications.

3. Growing Regulatory Attention to Risk Management and Compliance: Regulatory demands for strengthening risk management, fraud prevention, and meeting anti-money laundering requirements propel predictive analytics adoption in the interest of better oversight.

4. Rising Customer Expectations of Personalized Services: Customers now increasingly demand personal and relevant financial products and services, which can be effectively offered by banks using predictive analytics.

5. Competitive Pressure from FinTech's and Digital-Native Banks: The emergence of nimble fintech firms and neobanks that use data analytics adds to the pressure on traditional banks to gain similar capabilities in order to be competitive.

Challenges in the predictive analytics in banking market are:

1. Data Privacy and Security Concerns: The confidential nature of financial information calls for severe data privacy and security protocols that make data access and use more challenging for predictive analytics.

2. Legacy IT Infrastructure and Data Silos: Most conventional banks are plagued by legacy IT systems and isolated data silos, which prevent smooth integration and analysis of data to support effective predictive modeling.

3. Lack of Qualified Data Scientists and Analysts: Insufficient experts with the right skills in data science, machine learning, and banking domain knowledge can slow the creation and deployment of sophisticated analytics solutions.

Strong forces of data growth, technology breakthroughs, and regulatory requirements are driving predictive analytics adoption in the banking sector. But to benefit fully from predictive analytics' disruptive power, it is essential that banks overcome barriers to data privacy, legacy, and talent onboarding.

List of Predictive Analytics in Banking Companies

Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. With these strategies predictive analytics in banking companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the predictive analytics in banking companies profiled in this report include-

Predictive Analytics in Banking Market by Segment

The study includes a forecast for the global predictive analytics in banking market by type, application, and region.

Predictive Analytics in Banking Market by Type [Value from 2019 to 2031]:

Predictive Analytics in Banking Market by Application [Value from 2019 to 2031]:

Predictive Analytics in Banking Market by Region [Value from 2019 to 2031]:

Country Wise Outlook for the Predictive Analytics in Banking Market

The global predictive analytics in banking industry is increasingly using predictive analytics to better understand customer behavior, streamline operations, and manage risks. Advances in artificial intelligence, machine learning, and big data technologies over the past few years are powering major trends in how banks in leading economies are applying predictive analytics to improve their competitive advantage and respond to changing market conditions.

Features of the Global Predictive Analytics in Banking Market

Analysis of competitive intensity of the industry based on Porter's Five Forces model.

This report answers following 11 key questions:

Table of Contents

1. Executive Summary

2. Market Overview

3. Market Trends & Forecast Analysis

4. Global Predictive Analytics in Banking Market by Type

5. Global Predictive Analytics in Banking Market by Application

6. Regional Analysis

7. North American Predictive Analytics in Banking Market

8. European Predictive Analytics in Banking Market

9. APAC Predictive Analytics in Banking Market

10. ROW Predictive Analytics in Banking Market

11. Competitor Analysis

12. Opportunities & Strategic Analysis

13. Company Profiles of the Leading Players Across the Value Chain

14. Appendix

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기