Automated Colony Picking System Market Report: Trends, Forecast and Competitive Analysis to 2031
상품코드:1783660
리서치사:Lucintel
발행일:2025년 07월
페이지 정보:영문 150 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.
한글목차
세계의 자동 콜로니 피킹 시스템 시장 미래는 농업·식물 연구, 바이오연료 생산, 임상 진단, 창약·개발, 환경 모니터링, 식품 산업 품질 관리, 유전자·분자 생물학 연구 시장 등의 기회로 유망시되고 있습니다. 세계의 자동 콜로니 피킹 시스템 시장 규모는 2025-2031년에 CAGR 13.6%를 나타낼 전망입니다. 이 시장의 주요 촉진요인은 생명 공학 및 제약 연구에서 높은 처리량 스크리닝 수요 증가, 실험실 자동화 기술 채택 확대, 감염 및 항생제 내성의 확산 증가입니다.
Lucintel의 예측에 따르면 세포 유형별로는 박테리아 콜로니가 예측 기간 동안 가장 높은 성장을 이룰 전망입니다.
용도별로는 창약 개발이 가장 높은 성장이 예상됩니다.
지역별로는 아시아태평양이 예측 기간 동안 가장 높은 성장이 예상됩니다.
자동 콜로니 피킹 시스템 시장 새로운 동향
자동 콜로니 피킹 시스템 시장은 생명 과학 연구 및 생명 공학 산업에서 효율성, 정확성 및 데이터 집약적인 인사이트의 요구가 증가함에 따라 빠르게 변모하고 있습니다. 이러한 시스템의 미래를 좌우하는 주요 동향에는 개선된 이미징, 인공지능, 통합 기능이 중심이 되고 있습니다.
고급 이미징 기술 통합 : 하나의 큰 동향은 표준 명시야 이미징 외에도 고급 이미징 모달리티를 사용하는 것입니다. 이러한 첨단 이미징 기술은 유전자 변형 콜로니 및 특정 마커를 발현하는 콜로니를 검출하기 위한 형광 이미징, 고해상도 표현형 분석을 위한 다중 스펙트럼 이미징, 정확한 크기와 형태를 측정하기 위한 고해상도 이미징을 가능하게 합니다. 이러한 고급 이미징 기술은 보다 정확하고 정보 기반의 콜로니 선택을 가능하게 합니다.
인공지능과 머신러닝 사용 : AI와 머신러닝(ML)은 현재 로봇화된 콜로니 피킹 시스템에 통합되어 있습니다. AI/ML 알고리즘은 콜로니 감지, 사용자가 지정한 매개변수에 따른 분류, 이미지 분석에서 콜로니 특성의 예측을 자동화하는 데 사용할 수 있습니다. 이를 통해 수동 작업을 최소화하고 원하는 표현형을 피킹하는 정확도를 높이고 피킹의 전체 효율을 최적화할 수 있습니다.
확장 가능한 고처리량 시스템 개발 : 창약 및 합성 생물학 응용 분야에서 대량의 샘플을 처리해야 하는 압력은 고 처리량 자동 콜로니 피킹 시스템 개발에 박차를 가하고 있습니다. 이러한 시스템은 피킹 헤드를 증가시키고, 로봇 암을 가속화하고, 복수의 플레이트를 병렬로 처리하는 기능을 포함합니다. 또한 처리량 요구사항 증가에 대응할 수 있도록 실현 가능한 업그레이드가 가능한 확장 가능한 시스템도 주목받고 있습니다.
검사 정보 관리 시스템과의 원활한 통합 : 현대 검사실은 통합된 워크플로우를 기반으로 합니다. 중요한 동향은 자동 콜로니 피킹 시스템과 샘플 추적 및 데이터 관리를 위한 LIMS와 리퀴드 핸들러 및 로봇 암과 같은 다른 자동화 플랫폼과의 원활한 통합입니다. 이 통합은 전체 실험 프로세스를 원활하게 하고, 수동 데이터 처리를 최소화하고, 데이터 무결성을 향상시킵니다.
컴팩트하고 친숙한 시스템 디자인 : 보다 폭넓은 실험실 규모와 예산에 대응하기 위해 보다 컴팩트하고 사용하기 쉬운 자동 콜로니 피킹 시스템을 만들려는 움직임이 있습니다. 이러한 시스템은 사용하기 쉬운 소프트웨어 인터페이스, 보다 간편한 유지보수 프로토콜, 보다 컴팩트한 실적를 포함하는 경향이 있으며, 공간에 한정된 소규모 연구 그룹 및 핵심 시설에 대한 액세스를 가능하게 합니다. 이 자동화의 민주화는 시장 기회를 넓히고 있습니다.
이러한 새로운 동향은 보다 지능적이고 효율적이고 통합된 사용하기 쉬운 솔루션으로 기술 혁신의 방향을 추진함으로써 자동 콜로니 피킹 시스템 시장을 한꺼번에 변화시키고 있습니다. 이미징, 인공지능, 처리량, 시스템 통합, 사용 편의성 등의 기술 개발로 자동 콜로니 피킹은 현대 생명 과학 연구 및 산업 생명 공학에 필수적인 도구로 변모하고 있습니다.
자동 콜로니 피킹 시스템 시장 최근 동향
자동 콜로니 피킹 시스템 시장은 다양한 하류 목적으로 미생물 콜로니 선택의 효율성, 정확성 및 유연성을 향상시키려는 기술 혁신이 진행 중입니다. 최근의 동향은 첨단 기술의 도입과 사용자 경험의 향상에 집중하고 있습니다.
이미징 및 콜로니 특성화 기능 향상 : 중요한 개발 중 하나는 자동 콜로니 피커에서 사용되는 이미징 시스템의 발전입니다. 여기에는 고해상도 카메라, 멀티컬러 형광 현미경, 크기, 모양, 색상, 형광 강도에 따라 고해상도 콜로니 특성을 결정하는 고급 알고리즘이 포함됩니다. 이를 통해 원하는 표현형의 콜로니를 더 정확하게 선택할 수 있습니다.
고속 피킹을 위한 차세대 로보틱스 통합 : 자동 콜로니 피킹 시스템은 처리량을 향상시키기 위해 속도와 정확도를 향상시킨 보다 정교한 로봇 암을 통합합니다. 로봇 시스템은 모든 플레이트 유형에서 효율적이고 정확하게 콜로니를 피킹하고 원하는 튜브 및 플레이트로 이송하는 능력을 갖추고있어 처리 시간을 크게 단축합니다.
인공지능(AI) 탑재 콜로니 선택 소프트웨어 개발 : 최근의 큰 진보의 하나로, AI 알고리즘의 도입이 있습니다. AI 기반 소프트웨어는 사용자 취향에 따라 콜로니를 자동으로 인식하고, 순위를 매기고, 과거의 피킹 결과로부터 학습하고, 심지어 이미지 분석을 통해 콜로니의 특징을 예측하고, 선택의 효율성과 정밀도를 높일 수 있습니다.
소형 벤치탑 시스템 가용성 : 예산 및 공간 제약이 있는 실험실을 위해 제조업체는 작고 탁상용 자동 콜로니 피킹 시스템을 개발하고 있습니다. 이러한 시스템은 대형의 기능과 기능은 비슷하지만, 장소를 차지하지 않고 가격도 적당한 경우가 많고, 자동화가 보다 많은 연구 그룹의 손이 닿는 곳에 와 있습니다.
사용자 인터페이스 강화 및 워크플로우 호환성 : 최근의 진보의 핵심은 사용하기 쉬운 소프트웨어 인터페이스와 현재 실험실 워크플로우 간의 원활한 통합을 통해 사용자 경험을 개선하는 것입니다. 이러한 특징은 간단한 프로토콜 설정, 피킹 절차의 실시간 모니터링, 효과적인 데이터 처리 및 샘플 추적을 위한 실험실 정보 관리 시스템(LIMS)과의 호환성 등입니다.
이러한 발전은 연구자들에게 보다 효율적이고, 강력하며, 사용자 친화적이며, 미생물을 선택할 수 있는 사용하기 쉬운 도구를 제공함으로써 자동 콜로니 피킹 시스템 시장에 큰 영향을 미치고 있습니다. 이미징, 로봇 공학, 인공지능 기반 소프트웨어, 시스템의 소형화, 워크플로우 통합의 발전은 실험실 워크플로우를 최적화하고 다양한 생명 과학 연구 분야를 가속화하고 있습니다.
목차
제1장 주요 요약
제2장 세계의 자동 콜로니 피킹 시스템 시장 : 시장 역학
서론, 배경, 분류
공급망
PESTLE 분석
특허 분석
규제 환경
업계의 성장 촉진요인과 과제
제3장 시장 동향과 예측 분석(2019-2031년)
거시 경제 동향(2019-2024년)과 예측(2025-2031년)
세계의 자동 콜로니 피킹 시스템 시장 동향(2019-2024년)과 예측(2025-2031년)
세계의 자동 콜로니 피킹 시스템 시장 : 세포 유형별
조류 콜로니 : 동향과 예측(2019-2031년)
박테리아 콜로니 : 동향과 예측(2019-2031년)
곰팡이 콜로니 : 동향과 예측(2019-2031년)
곤충 세포 콜로니 : 동향과 예측(2019-2031년)
포유류 세포 콜로니 : 동향과 예측(2019-2031년)
식물 세포 콜로니 : 동향과 예측(2019-2031년)
원생 동물 콜로니 : 동향과 예측(2019-2031년)
효모 콜로니 : 동향과 예측(2019-2031년)
세계의 자동 콜로니 피킹 시스템 시장 : 용도별
농업 및 식물 연구 : 동향과 예측(2019-2031년)
바이오연료 생산 : 동향과 예측(2019-2031년)
임상 진단 : 동향과 예측(2019-2031년)
신약 발견 및 개발 : 동향과 예측(2019-2031년)
환경 모니터링 : 동향과 예측(2019-2031년)
식품 산업 품질 관리 : 동향과 예측(2019-2031년)
유전학 및 분자 생물학 연구 : 동향과 예측(2019-2031년)
기타 : 동향과 예측(2019-2031년)
세계의 자동 콜로니 피킹 시스템 시장 : 최종 용도별
학술 및 연구 기관 : 동향과 예측(2019-2031년)
생명 공학 및 제약 회사 : 동향과 예측(2019-2031년)
계약 연구 기관 : 동향과 예측(2019-2031년)
환경 및 농업 연구 : 동향과 예측(2019-2031년)
식음료 : 동향과 예측(2019-2031년)
제4장 시장 동향과 예측 분석 : 지역별(2019-2031년)
세계의 자동 콜로니 피킹 시스템 시장 : 지역별
북미의 자동 콜로니 피킹 시스템 시장
유럽의 자동 콜로니 피킹 시스템 시장
아시아태평양의 자동 콜로니 피킹 시스템 시장
기타 지역의 자동 콜로니 피킹 시스템 시장
제5장 경쟁 분석
제품 포트폴리오 분석
운영 통합
Porter's Five Forces 분석
경쟁 기업 간 경쟁 관계
구매자의 협상력
공급기업의 협상력
대체품의 위협
신규 참가업체의 위협
제6장 성장 기회와 전략 분석
성장 기회 분석
세계의 자동 콜로니 피킹 시스템 시장 성장 기회 : 세포 유형별
세계의 자동 콜로니 피킹 시스템 시장 성장 기회 : 용도별
세계의 자동 콜로니 피킹 시스템 시장 성장 기회 : 최종 용도별
세계의 자동 콜로니 피킹 시스템 시장 성장 기회 : 지역별
세계의 자동 콜로니 피킹 시스템 시장 새로운 동향
전략 분석
신제품 개발
세계의 자동 콜로니 피킹 시스템 시장 생산 능력 확대
세계의 자동 콜로니 피킹 시스템 시장 합병, 인수, 합작 사업
인증 및 라이선싱
제7장 주요 기업 프로파일
Becton, Dickinson & Company
Bio-Rad Laboratories
BioRobotics
COPAN ITALIA
Danaher Corporation
Hamilton Company
Hudson Robotics
Kbiosystems
Lab Services BV
Microtec
KTH
영문 목차
영문목차
The future of the global automated colony picking system market looks promising with opportunities in the agriculture & plant research, biofuel production, clinical diagnostic, drug discovery & development, environmental monitoring, food industry quality control, and genetic & molecular biology research markets. The global automated colony picking system market is expected to grow with a CAGR of 13.6% from 2025 to 2031. The major drivers for this market are the rising demand for high-throughput screening in biotechnology & pharmaceutical research, the growing adoption of laboratory automation technologies, and the increasing prevalence of infectious diseases & antibiotic resistance.
Lucintel forecasts that, within the cell type category, bacterial colony is expected to witness the highest growth over the forecast period.
Within the application category, drug discovery & development is expected to witness the highest growth.
In terms of region, APAC is expected to witness the highest growth over the forecast period.
Gain valuable insights for your business decisions with our comprehensive 150+ page report. Sample figures with some insights are shown below.
Emerging Trends in the Automated Colony Picking System Market
The market for automated colony picking systems is rapidly transforming with the growing needs of efficiency, precision, and data-intensive insights in life science research and biotechnology industries. Some of the major trends influencing the future of such systems are centered around improved imaging, artificial intelligence, and integration features.
Integration of Advanced Imaging Technologies: One major trend is the use of advanced imaging modalities in addition to standard brightfield imaging. These advanced imaging techniques allow for fluorescence imaging to detect genetically modified colonies or colonies expressing a particular marker, multi-spectral imaging for high-resolution phenotypic analysis, and high-resolution imaging for precise size and morphology measurements. These advanced imaging technologies allow for more accurate and informed colony selection.
Use of Artificial Intelligence and Machine Learning: AI and machine learning (ML) are now being incorporated into robotized colony picking systems. AI/ML algorithms can be used to automate colony detection, classification according to user-specified parameters, and forecasting of colony features from image analysis. This minimizes manual intervention, increases precision in picking desired phenotypes, and optimizes the entire efficiency of picking
Scalable and High-Throughput System Development: The pressure to process high volumes of samples in drug discovery and synthetic biology applications is fueling the creation of high-throughput automated colony picking systems. These involve systems with increased picking heads, higher-speed robotic arms, and capability to process multiple plates in parallel. Scalable systems that can be upgraded feasibly to sustain growing throughput requirements are also becoming more prominent
Smooth Integration with Laboratory Information Management Systems: Contemporary laboratories are based on integrated workflows. A significant trend is seamless integration of automated colony picking systems with LIMS for sample tracking and data management, and with other automation platforms such as liquid handlers and robotic arms. This integration smooths the whole experimental process, minimizes manual data handling, and enhances data integrity.
Compact and Friendly System Designs: For service to a broader range of laboratory sizes and budgets, there is a movement towards making more compact and user-friendly automated colony picking systems. Those systems tend to include easy-to-use software interfaces, easier maintenance protocols, and more compact footprints, allowing access to smaller research groups and core facilities with limited space. This democratization of automation is broadening the market opportunity.
These new trends together are transforming the automated colony picking system market collectively by pushing the direction of innovation towards more intelligent, efficient, integrated, and accessible solutions. The technology developments in imaging, AI, throughput, system integration, and user-friendliness are transforming automated colony picking into an essential tool for life science research in contemporary times and industrial biotechnology.
Recent Developments in the Automated Colony Picking System Market
The automated colony picking system market is going through ongoing innovations that seek to advance the efficiency, accuracy, and flexibility of microbial colony selection for diverse downstream purposes. Most recent developments concentrate on incorporating advanced technologies and enhancing user experience.
Improved Imaging and Colony Characterization Functionality: One of the important developments is the advancement in imaging systems used in automated colony pickers. These include better resolution cameras, multi-color fluorescence microscopy, and sophisticated algorithms for higher resolution colony characterization according to size, shape, color, and fluorescence intensity. This allows for more accurate selection of colonies of the desired phenotype.
Integration of Next-Generation Robotics for Accelerated Picking: Automated colony picking systems are integrating more sophisticated robotic arms with enhanced speed and accuracy in order to boost throughput. The robotic systems have the ability to pick colonies efficiently and accurately from any plate type and deliver them to destination tubes or plates, which reduces processing time considerably.
Artificial Intelligence (AI) Powered Colony Selection Software Development: One of the major advances in recent times is the inclusion of AI algorithms. AI-based software is capable of recognizing and ranking colonies according to user preference automatically, learning from past picking outcomes, and even making predictions about colony features through image analysis, enhancing the efficiency and precision of the selection.
Availability of Smaller and Benchtop Systems: For laboratories with constrained budgets and space, manufacturers are creating more compact and benchtop automated colony picking systems. These are similar in functionality to larger ones but take up less space and are frequently more affordable, bringing automation within the reach of more research groups.
Enhanced User Interfaces and Workflow Compatibility: Recent advancements also center on refining the user experience through easy-to-use software interfaces and smooth integration with current laboratory workflows. These feature such aspects as simple protocol setup, real-time monitoring of the picking procedure, and compatibility with Laboratory Information Management Systems (LIMS) for effective data handling and sample tracking.
These advancements are greatly affecting the market for automated colony picking systems by giving researchers more efficient, powerful, user-friendly, and accessible tools to choose microorganisms. Advances in imaging, robotics, artificial intelligence-based software, system miniaturization, and workflow integration are optimizing lab workflows and speeding up different life science research areas.
Strategic Growth Opportunities in the Automated Colony Picking System Market
The automated colony picking system market offers multiple strategic opportunities for growth across applications in life science research and industrial biotechnology. Targeting specific high-growth markets and creating customized solutions can unlock considerable market potential.
High-Throughput Screening in Drug Discovery: The pharmaceutical industry's continuous need for high-throughput screening of microbial libraries for drug candidates presents a significant growth opportunity. Developing automated colony picking systems with ultra-fast picking speeds, high accuracy, and seamless integration with liquid handling robots can cater to this demand and accelerate the drug discovery process.
Synthetic Biology and Strain Engineering: The fast-growing domain of synthetic biology is significantly dependent on efficient microbial strain selection and manipulation with desired genetic alterations. In-demand colony picking systems incorporating intelligent imaging for detecting targeted phenotypes and seamless interoperability with genome editors present a considerable growth potential in this emerging field.
Genomics and Microbiomics Research: The heightened emphasis on genomics and microbial community studies (microbiomes) necessitates the isolation and analysis of many single microbial colonies. Automatic colony picking systems with the ability to work with varied plate geometries and generating extensive colony characterization data can serve the emerging research demands in these areas.
Automated Quality Control in Food and Beverage Industries: The food and beverage industries use microbial cultures in many processes and need rigorous quality control measures. Automated colony picking technology can be modified for high-throughput screening of microbial contaminations or useful cultures, providing a growth opportunity in product safety and quality assurance.
Clinical Microbiology and Diagnostics: Although historically more labor-intensive, an expanding opportunity exists for automated colony picking systems in clinical microbiology laboratories for high-throughput identification and isolation of bacterial and fungal colonies from patient specimens. Creating systems with features optimized for clinical workflows and regulatory conditions is a strategic growth opportunity in diagnostics.
These strategic growth markets emphasize the wide range of potential for automated colony picking systems beyond common research applications. By targeting the targeted demands of high-throughput screening, synthetic biology, genomics, industrial quality assurance, and clinical diagnostics, vendors can capitalize on meaningful market growth and support advances in all life science disciplines and industries.
Automated Colony Picking System Market Driver and Challenges
The market for automated colony picking systems is driven by a convergence of rising research needs, technology developments, and cost factors that serve both as powerful growth drivers and major impediments to be addressed. Grasping these forces is essential for players to move successfully within the market and take advantage of promising opportunities.
The factors responsible for driving the automated colony picking system market include:
1. Heightened Demand for High-Throughput Screening: The increasing demand to rapidly screen large microbial libraries for drug discovery, synthetic biology, and genomic research is one of the key drivers of automated colony picking systems since manual picking is inefficient and time consuming.
2. Demand for Better Reproducibility and Accuracy: Automated systems provide greater accuracy and reproducibility than manual picking, minimizing human interference and providing more consistent results, which is paramount in industrial and scientific research applications.
3. Technology Advances in Imaging and Robotics: Ongoing developments in high-resolution imaging technologies, multi-spectral analysis, and accurate robotic manipulation are empowering the evolution of more advanced and efficient automated colony picking technologies.
4. Increasing Interest in Laboratory Automation: Overall laboratory automation trend for enhanced efficiency, cost reduction, and reduced human involvement is propelling the usage of automated colony picking systems as an integral part of laboratory workflow.
5. Inflating Investments in Pharmaceutical and Biotech R&D: Inflating investments in pharmaceutical and biotech research and development are driving demand for newer, higher-end laboratory equipment, such as automated colony picking machines, to speed up discovery and development processes.
Challenges in the automated colony picking system market are:
1. Prohibitive Cost of Sophisticated Systems: Advanced automated colony picking systems featuring sophisticated imaging and robotics are costly, making them a cost-prohibitive option for smaller research labs and budget-strapped academic institutions.
2. Difficulty in System Integration: Seamlessly integrating automated colony picking systems into current laboratory procedures and data management systems (LIMS) can be complicated and demanding in terms of expertise.
3. Managing Varied Colony Morphology and Media: Automated systems must be adaptable enough to properly pick colonies with varied morphologies and from different growth media, which can pose technical hurdles in the form of imaging and picking mechanisms.
The market for automated colony picking systems is motivated by the expanding requirement for high-throughput screening, the necessity for enhanced accuracy and reproducibility, the developments in enabling technologies, laboratory automation trend, and increased investments in life science research. Nonetheless, issues concerning the high price of advanced systems, system integration complexity, and the requirement to manage heterologous colony types must be overcome so that there may be greater utilization and the full potential of this technology is achieved in speeding up life science research and industrial biotechnology.
List of Automated Colony Picking System Companies
Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. With these strategies automated colony picking system companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the automated colony picking system companies profiled in this report include-
Becton, Dickinson & Company
Bio-Rad Laboratories
BioRobotics
COPAN ITALIA
Danaher Corporation
Hamilton Company
Hudson Robotics
Kbiosystems
Lab Services BV
Microtec
Automated Colony Picking System Market by Segment
The study includes a forecast for the global automated colony picking system market by cell type, application, end use, and region.
Automated Colony Picking System Market by Cell Type [Value from 2019 to 2031]:
Algal Colonies
Bacterial Colonies
Fungal Colonies
Insect Cell Colonies
Mammalian Cell Colonies
Plant Cell Colonies
Protozoan Colonies
Yeast Colonies
Automated Colony Picking System Market by Application [Value from 2019 to 2031]:
Agriculture & Plant Research
Biofuel Production
Clinical Diagnostics
Drug Discovery & Development
Environmental Monitoring
Food Industry Quality Control
Genetics & Molecular Biology Research
Others
Automated Colony Picking System Market by Region [Value from 2019 to 2031]:
North America
Europe
Asia Pacific
The Rest of the World
Country Wise Outlook for the Automated Colony Picking System Market
The automated colony picking system market is a vital part of laboratory automation, offering high-throughput and accurate microbial colony selection for downstream applications in drug discovery, genomics, and synthetic biology. The systems combine software, robotics, and imaging to mechanize the historically labor-intensive and time-consuming process of picking and identifying colonies with desired properties. Recent innovations are aimed at improving the speed, accuracy, and multi-parameter ability of these systems, with added advanced imaging technologies and artificial intelligence for better colony analysis and selection. The market is also witnessing a trend towards more compact and integrated systems to fit different sizes and budgets of laboratories. This background leads to introducing a review of country-specific innovations and upcoming trends in this crucial market.
United States: The US market is a major adopter of automated colony picking systems due to the high number of pharmaceutical and biotechnology firms, as well as research institutes. Some recent advancements include combining sophisticated imaging methods such as fluorescence and multi-spectral imaging for advanced colony phenotyping. There is also emphasis on creating user-friendly software interfaces and the integration of artificial intelligence for automated colony selection based on criteria set by the user. The need for high-throughput screening solutions continues to propel innovation.
China: China's biopharmaceutical and biotech industries are expanding rapidly, driving demand for automated colony picking systems. Recent trends have involved rising investment in local production of the systems and advances in cheaper solutions. Greater emphasis on laboratory automation and pharmaceutical quality assurance is being placed. There is increased synergy between local manufacturers and research institutions that is driving progress in system functionality and affordability.
Germany: Germany, which has a strong emphasis on life sciences and pharmaceutical research, is a prime market for high-quality automated colony picking systems. Recent advancements involve integrating sophisticated robotics to achieve quicker and more accurate colony picking, as well as creating systems with improved environmental control to ensure colony viability. Seamless integration with other laboratory automation platforms is also an emphasis to enable smooth workflows in drug discovery and synthetic biology.
India: The Indian automated colony picking systems market is growing, spurred by the growth of the biotechnology and pharmaceutical sectors, as well as investment in research and development. Recent trends have seen increased adoption of automation technologies within more larger-sized research facilities and pharmaceutical firms. There is rising demand for systems that are capable of accommodating multiple plate types and providing flexibility in picking parameters. Cost-effectiveness and user-friendliness are crucial factors in market acceptability.
Japan: Japan boasts a mature pharmaceutical and biotechnology industry, which creates demand for high-end automated colony picking systems. Recent advances include the creation of systems with high throughput and precision, and integration with sophisticated imaging and analysis tools to provide detailed characterization of colonies. Reliability and ruggedness for long-term use in challenging laboratory environments are also emphasized. Japanese companies are renowned for precision engineering and quality.
Features of the Global Automated Colony Picking System Market
Market Size Estimates: Automated colony picking system market size estimation in terms of value ($B).
Trend and Forecast Analysis: Market trends (2019 to 2024) and forecast (2025 to 2031) by various segments and regions.
Segmentation Analysis: Automated colony picking system market size by cell type, application, end use, and region in terms of value ($B).
Regional Analysis: Automated colony picking system market breakdown by North America, Europe, Asia Pacific, and Rest of the World.
Growth Opportunities: Analysis of growth opportunities in different cell type, application, end use, and regions for the automated colony picking system market.
Strategic Analysis: This includes M&A, new product development, and competitive landscape of the automated colony picking system market.
Analysis of competitive intensity of the industry based on Porter's Five Forces model.
This report answers following 11 key questions:
Q.1. What are some of the most promising, high-growth opportunities for the automated colony picking system market by cell type (algal colonies, bacterial colonies, fungal colonies, insect cell colonies, mammalian cell colonies, plant cell colonies, protozoan colonies, and yeast colonies), application (agriculture & plant research, biofuel production, clinical diagnostics, drug discovery & development, environmental monitoring, food industry quality control, genetics & molecular biology research, and others), end use (academic & research institutions, biotechnology & pharmaceutical companies, contract research organizations, environmental & agricultural research, food & beverage, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
Q.2. Which segments will grow at a faster pace and why?
Q.3. Which region will grow at a faster pace and why?
Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
Q.5. What are the business risks and competitive threats in this market?
Q.6. What are the emerging trends in this market and the reasons behind them?
Q.7. What are some of the changing demands of customers in the market?
Q.8. What are the new developments in the market? Which companies are leading these developments?
Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?
Table of Contents
1. Executive Summary
2. Global Automated Colony Picking System Market : Market Dynamics
2.1: Introduction, Background, and Classifications
2.2: Supply Chain
2.3: PESTLE Analysis
2.4: Patent Analysis
2.5: Regulatory Environment
2.6: Industry Drivers and Challenges
3. Market Trends and Forecast Analysis from 2019 to 2031
3.1. Macroeconomic Trends (2019-2024) and Forecast (2025-2031)
3.2. Global Automated Colony Picking System Market Trends (2019-2024) and Forecast (2025-2031)
3.3: Global Automated Colony Picking System Market by Cell Type
3.3.1: Algal Colonies: Trends and Forecast (2019 to 2031)
3.3.2: Bacterial Colonies: Trends and Forecast (2019 to 2031)
3.3.3: Fungal Colonies: Trends and Forecast (2019 to 2031)
3.3.4: Insect Cell Colonies: Trends and Forecast (2019 to 2031)
3.3.5: Mammalian Cell Colonies: Trends and Forecast (2019 to 2031)
3.3.6: Plant Cell Colonies: Trends and Forecast (2019 to 2031)
3.3.7: Protozoan Colonies: Trends and Forecast (2019 to 2031)
3.3.8: Yeast Colonies: Trends and Forecast (2019 to 2031)
3.4: Global Automated Colony Picking System Market by Application
3.4.1: Agriculture & Plant Research: Trends and Forecast (2019 to 2031)
3.4.2: Biofuel Production: Trends and Forecast (2019 to 2031)
3.4.3: Clinical Diagnostics: Trends and Forecast (2019 to 2031)
3.4.4: Drug Discovery & Development: Trends and Forecast (2019 to 2031)
3.4.5: Environmental Monitoring: Trends and Forecast (2019 to 2031)
3.4.6: Food Industry Quality Control: Trends and Forecast (2019 to 2031)
3.4.7: Genetics & Molecular Biology Research: Trends and Forecast (2019 to 2031)
3.4.8: Others: Trends and Forecast (2019 to 2031)
3.5: Global Automated Colony Picking System Market by End Use
3.5.1: Academic & Research Institutions: Trends and Forecast (2019 to 2031)
3.5.2: Biotechnology & Pharmaceutical Companies: Trends and Forecast (2019 to 2031)
3.5.3: Contract Research Organizations: Trends and Forecast (2019 to 2031)
3.5.4: Environmental & Agricultural Research: Trends and Forecast (2019 to 2031)
3.5.5: Food & Beverage: Trends and Forecast (2019 to 2031)
4. Market Trends and Forecast Analysis by Region from 2019 to 2031
4.1: Global Automated Colony Picking System Market by Region
4.2: North American Automated Colony Picking System Market
4.2.1: North American Market by Cell Type: Algal Colonies, Bacterial Colonies, Fungal Colonies, Insect Cell Colonies, Mammalian Cell Colonies, Plant Cell Colonies, Protozoan Colonies, and Yeast Colonies
4.2.2: North American Market by Application: Agriculture & Plant Research, Biofuel Production, Clinical Diagnostics, Drug Discovery & Development, Environmental Monitoring, Food Industry Quality Control, Genetics & Molecular Biology Research, and Others
4.2.3: The United States Automated Colony Picking System Market
4.2.4: Mexican Automated Colony Picking System Market
4.2.5: Canadian Automated Colony Picking System Market
4.3: European Automated Colony Picking System Market
4.3.1: European Market by Cell Type: Algal Colonies, Bacterial Colonies, Fungal Colonies, Insect Cell Colonies, Mammalian Cell Colonies, Plant Cell Colonies, Protozoan Colonies, and Yeast Colonies
4.3.2: European Market by Application: Agriculture & Plant Research, Biofuel Production, Clinical Diagnostics, Drug Discovery & Development, Environmental Monitoring, Food Industry Quality Control, Genetics & Molecular Biology Research, and Others
4.3.3: German Automated Colony Picking System Market
4.3.4: French Automated Colony Picking System Market
4.3.5: Spanish Automated Colony Picking System Market
4.3.6: Italian Automated Colony Picking System Market
4.3.7: The United Kingdom Automated Colony Picking System Market