½ÅÆ¿·¹ÀÌÅÍ´Â ¿¬±¸ÀÚ°¡ ´Ù¼öÀÇ ¹æ»ç¼±°ú ÀÔÀÚ¸¦ ãÀ» ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. ±¤ÀüÀÚ Áõ¹è°ü°ú Æ÷Åä´ÙÀÌ¿Àµå´Â ÈÄ¼Ó ´Ü°è¿¡¼ ÀÔÀÚ¸¦ ÀÌ¿ëÇÏ¿© µ¿½Ã¿¡ °ËÃâµË´Ï´Ù. ÀÔÀÚ°¡ ½ÅÆ¿·¹ÀÌÅÍ¿¡ ´êÀ¸¸é ½ÅÆ¿·¹ÀÌÅÍ´Â ÀÔÀÚÀÇ ¿¡³ÊÁö¸¦ Èí¼öÇÏ°í ¹ß±¤ÇÕ´Ï´Ù. ½ÅÆ¿·¹ÀÌÅÍ´Â ÀϹÝÀûÀ¸·Î Å©¸®½ºÅ»°ú °°Àº Åõ¸íÇÑ Àç·á·Î ±¸¼ºµÇ¾î ÀÖÁö¸¸, Áß¿ø¼Ò¸¦ Æ÷ÇÔÇÏ´Â °ÍÀÌ ´õ ³ªÀº ¼º´ÉÀ» ¹ßÈÖÇϱ⠽¬¿öÁý´Ï´Ù. ÀÌ´Â ½ÅÆ¿·¹ÀÌÅͰ¡ ¹°ÁúÀÇ °¨¸¶¼±À» Èí¼öÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌó·³ ½ÅÆ¿·¹ÀÌÅÍ´Â ÇÑ ¹ø¿¡ ¸¹Àº ¶óº§¸µ ½ÇÇèÀ» ÇÒ ¼ö ÀÖ´Â °ÍÀÌ º¸±ÞÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¶ÇÇÑ ÁÖ¿ä Á¦Á¶¾÷üÀÇ ±â¼ú°³¼±¿¡ ´ëÇÑ ÁÖ·Â, ¾Æ½Ã¾Æ ±¹°¡ÀÇ ¿øÀڷ¹ßÀü¼Ò Áõ°¡, ±¤¹üÀ§ÇÑ ÃÖÁ¾ ¿ëµµ¿¡¼ ½ÅÆ¿·¹ÀÌÅÍÀÇ »ç¿ë È®´ë°¡ ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå ¼ºÀåÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù.
¶ÇÇÑ ½ÅÆ¿·¹ÀÌÅÍÀÇ ÀÇ·á ½ºÄµ ¹× ±âŸ ¹æ»ç¼± ÀÀ¿ë ºÐ¾ß¿¡¼ »ç¿ë Áõ°¡, ½ÉÀå Áúȯ ¹× ½Å°æ ÁúȯÀÇ À¯º´·ü Áõ°¡´Â ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå °¡Ä¡¸¦ ³ôÀÏ °ÍÀÔ´Ï´Ù. R&D ºñ¿ëÀº »ó½ÂÇÏ°í ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå È®´ë¿¡ ±æÀ» ¿±´Ï´Ù.
±â¼ú Áøº¸ Áõ°¡¿Í ´Ù¾çÇÑ ¿ëµµ¸¦ ÇâÇÑ Âü½ÅÇÑ ±â¼úÀÌ ½ÃÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ Á¶Á÷ÀÌ ÀÌ ±â¼úÀ» Á¶»çÇßÀ¸¸ç, ¿¹¸¦ µé¾î ±¹Åä ¾Èº¸ºÎ ±¹³» ÇÙ °ËÁö±¹Àº ºÐ±¤½Ä °³ÀÎ¿ë ¹æ»ç¼± °ËÃâ±âÀÇ ½Å±â¼úÀ» ޱ¸ÇÏ·Á°í Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¿¬±¸´Â º¸´Ù ¿ì¼öÇÑ °ËÃ⠽ýºÅÛÀ» °³¹ßÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ÇÙ¹°ÁúÀ̳ª ¹æ»ç¼º ¹°ÁúÀ» ƯÁ¤¡¤ÀνÄÇÏ·Á°í ÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ ³ë·Â¿¡ ÀÇÇØ ¸¸µé¾îÁø ±â¼úÀº »õ·Î¿î ÈÞ´ë¿ë °¡Á¬°ú °áÇյǾî Á¤»óÀûÀΠȰµ¿¿¡ »ç¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. DHS°¡ ÇÙÀÇ À§ÇùÀ» ÀνÄÇÏ°í ºÀ¼âÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Çâ»ó½Ã۱â À§ÇØ ÇʼöÀûÀÎ ÇÙ¡¤¹æ»ç¼º ¹°Áú °ËÃâ ´É·ÂÀÇ °È¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.
ÆÐ½Ãºê °í¼Ó À̵¿ Áß¼ºÀÚ °ËÃâ ¼Ö·ç¼ÇÀº ´Ù¾çÇÑ ´Éµ¿Àû °ËÃâ ¹æ¹ý¿¡ °ÉÃÄ Â÷ÆóµÈ °íÀ¯ ÇÙ¹°ÁúÀÇ °ËÃâÀ» Áõ°¡½ÃÄÑ Æ¯Á¤ ÇÙ¹°Áú, ƯÈ÷ ¹«±â±Þ Ç÷çÅä´½ÀÇ Á¸À縦 ³ªÅ¸³¾ ¼ö ÀÖ´Â ÁöÇ¥°¡ µË´Ï´Ù. ¶ÇÇÑ ½ÅÆ¿·¹ÀÌÅÍÀÇ °íÁ¤¹Ðµµ, È¿´É, ±×¸®°í Àú·¹º§ÀÇ ¹æ»ç¼±À» °ËÃâÇÏ´Â ´É·Â°ú °°Àº ¸Å·ÂÀûÀΠƯ¼ºÀº ´Ù¾çÇÑ »ê¾÷¿¡¼ ¼ö¸¹Àº Áøº¸¸¦ ²ø°í ÀÖ½À´Ï´Ù.
¶ÇÇÑ PET ½ºÄ³³Ê¿¡¼ ½ÅÆ¿·¹ÀÌ¼Ç Àç·á¸¦ »ç¿ëÇÏ´Â ½À°üÀÇ È®´ë´Â ÁÖ¿ä ±¹°¡ÀÇ ÀÇ·á±â±â ¼öÀÍÀ» Áõ°¡½ÃŰ´Â ÀÇ·á À̹Ì¡ ±â¼úÀÇ ¹ßÀü¿¡ Å©°Ô ±â¿©ÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù. ¿¹¸¦ µé¾î ±¹Á¦¹«¿ª±¹ÀÇ 2020³â º¸°í¼¿¡ µû¸£¸é ¹Ì±¹ ÀÇ·á±â±â ¼öÀÍÀº 2019³â 1,980¾ï ´Þ·¯¿¡¼ 2020³â¿¡´Â 2,090¾ï ´Þ·¯·Î Áõ°¡Çß½À´Ï´Ù.
½ÅÆ¿·¹ÀÌÅÍ´Â Æò¸é X¼± À̹Ì¡, X¼± ÄÄÇ»ÅÍ ´ÜÃþÃÔ¿µ(X¼± CT), SPECT, PET ½ºÄµ µî ´Ù¾çÇÑ ÀÇ·á ¿µ»ó Áø´Ü ÀåÄ¡ÀÇ Á¦Á¶¿¡ »ç¿ëµË´Ï´Ù. ½ÅÆ¿·¹ÀÌÅÍ ¹× ½ÅÆ¿·¹ÀÌ¼Ç Àç·á´Â °¨¸¶¼±°ú X¼±ÀÇ Á¤È®ÇÑ À§Ä¡, ¹æÃ⠽ð£ ¹× º¯È¯ ½Ã°£¿¡ ´ëÇÑ °ü·Ã Á¤º¸¸¦ Á¦°øÇϰí Á¤È®ÇÑ À̹ÌÁö¸¦ ÃÔ¿µÇÏ´Â µ¥ µµ¿òÀÌ µÇ±â ¶§¹®¿¡ À̹Ì¡ ÀåÄ¡¿¡ »ç¿ëµË´Ï´Ù. µû¶ó¼ Á¾¾çÀ̳ª ºÎ»ó°ú °°Àº ¸¸¼º Áúȯ Áõ°¡·Î Áø´Ü ¿µ»ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶óÀÌ ºÎ¹®ÀÇ ¼ºÀåÀÌ À̾îÁö°í ÀÖ½À´Ï´Ù. ÃÖ±Ù NHS º¸°í¼¿¡ µû¸£¸é ¿µ±¹Àº 2022³â 4,400¸¸ °ÇÀÇ À̹ÌÁö °Ë»ç¸¦ ±â·ÏÇßÀ¸¸ç, Àü³â 3,490¸¸ °Ç¿¡¼ 26% Áõ°¡Çß½À´Ï´Ù. °¡Àå ÀϹÝÀûÀÎ °ÍÀº X¼± °Ë»ç·Î 2,180¸¸ °Ç(Àü³â ´ëºñ 30% Áõ°¡), À̾î ÃÊÀ½ÆÄ °Ë»ç°¡ 1,010¸¸ °Ç(µ¿ 23% Áõ°¡), ÄÄÇ»ÅÍ ´ÜÃþ ÃÔ¿µÀÌ 670¸¸ °Ç(µ¿ 21% Áõ°¡), Àڱ⠰ø¸í ¿µ»ó ÀåÄ¡(MRI)°¡ 380¸¸ °Ç(µ¿ 28% Áõ°¡)À̾ú½À´Ï´Ù.
½ÅÆ¿·¹ÀÌÅÍ´Â Æò¸é X¼± À̹Ì¡, X¼± ÄÄÇ»ÅÍ ´ÜÃþÃÔ¿µ(X¼± CT), SPECT, PET ½ºÄµ µî ´Ù¾çÇÑ ÀÇ·á¿ë À̹Ì¡ ÀåÄ¡ÀÇ Á¦Á¶¿¡ »ç¿ëµË´Ï´Ù. ½ÅÆ¿·¹ÀÌÅÍ ¹× ½ÅÆ¿·¹ÀÌ¼Ç Àç·á´Â °¨¸¶¼±°ú X¼±ÀÇ Á¤È®ÇÑ À§Ä¡, ¹æÃ⠽ð£ ¹× º¯È¯ ½Ã°£¿¡ ´ëÇÑ °ü·Ã Á¤º¸¸¦ Á¦°øÇϰí Á¤È®ÇÑ À̹ÌÁö¸¦ ÃÔ¿µÇÏ´Â µ¥ µµ¿òÀÌ µÇ±â ¶§¹®¿¡ À̹Ì¡ ÀåÄ¡¿¡ »ç¿ëµË´Ï´Ù. µû¶ó¼ Á¾¾çÀ̳ª ºÎ»ó°ú °°Àº ¸¸¼º Áúȯ Áõ°¡·Î Áø´Ü ¿µ»ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶óÀÌ ºÎ¹®ÀÇ ¼ºÀåÀÌ À̾îÁö°í ÀÖ½À´Ï´Ù. ÃÖ±Ù NHS º¸°í¼¿¡ µû¸£¸é ¿µ±¹Àº 2022³â 4,400¸¸ °ÇÀÇ À̹ÌÁö °Ë»ç¸¦ ±â·ÏÇßÀ¸¸ç, Àü³â 3,490¸¸ °Ç¿¡¼ 26% Áõ°¡Çß½À´Ï´Ù. ÀÏ¹Ý X¼± ÃÔ¿µÀÌ °¡Àå ¸¹¾Æ 2,180¸¸ °Ç(Àü³â ´ëºñ 30% Áõ°¡), ÀÌ¾î¼ Áø´Ü¿ë ÃÊÀ½ÆÄ °Ë»ç°¡ 1,010¸¸ °Ç(µ¿ 23% Áõ°¡), ÄÄÇ»ÅÍ ´ÜÃþ ÃÔ¿µÀÌ 670¸¸ °Ç(µ¿ 21% Áõ°¡), Àڱ⠰ø¸í È»ó¹ý(MRI, 380¸¸°Ç, µ¿ 28% Áõ°¡)ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¸¸¼º Áúȯ Áõ°¡¿Í À¯Ç༺(¼¼°èÀû À¯Çà)°ú °°Àº »óȲ¿¡ µû¶ó ÃֽŠÁø´Ü ÀÇ·á±â±â¸¦ °³¹ßÇϱâ À§ÇÑ ¿¬±¸¿Í °³¹ßÀÌ È°¹ßÇØÁö°í ÀÖÀ¸¸ç, ÇコÄÉ¾î ºÐ¾ß¿¡¼ ½ÅÆ¿·¹ÀÌÅÍÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2023³â 5¿ù, Ç÷θ®´Ù ÁÖ¸³ ´ëÇÐÀÇ °úÇÐÀÚ ±×·ìÀº CT ½ºÄµ, ¿¢½º·¹ÀÌ Àåºñ ¹× ±âŸ ¹æ»ç¼± °ËÃâ ¹× À̹Ì¡ ±â¼úÀÇ ÈÁúÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â Â÷¼¼´ë À¯±â-¹«±â ÇÏÀ̺긮µå Àç·á¸¦ °³¹ßÇÕ´Ï´Ù. Çß½À´Ï´Ù. ÈÇС¤»ýÈÇаúÀÇ Biwu Ma ±³¼ö µîÀº ÀÌ »õ·Î¿î Àç·á¸¦ °³¹ßÇß½À´Ï´Ù. X¼± ¹× ±âŸ °í¿¡³ÊÁö ¹æ»ç¼±¿¡ ³ëÃâµÇ¸é ÀÌ·¯ÇÑ ¹°ÁúÀÌ ¹ß±¤ÇÕ´Ï´Ù.
Scintillators enable researchers to find numerous radiation and particles. The photomultipliers and photodiodes are simultaneously detected using the particles in a later step. When a particle strikes a scintillator, the scintillator emits luminesce by absorbing the energy of the particle. Scintillators, which typically consist of water-clear crystalline materials, are more likely to perform better if they contain heavy elements. This is since it enables the scintillators to absorb gamma radiation from the substance. The scintillators' capacity to conduct many labeling experiments at once is what is driving their wider use.
Further, expanding focus on technological improvements by the major producers, rising the number of nuclear power plants in Asian countries, and the expanding use of scintillators for a broad range of end-use applications are leading to the market growth of scintillators.
Moreover, the increasing use of scintillators in medical scanning and other radiological applications in medicine, as well as the rising prevalence of heart and neurological illnesses, will boost the scintillator market value. The cost of conducting research and development will rise, which will pave the way for the market for scintillators to expand.
Growing technical advancement and novel technologies for a variety of uses is driving the market. Various organizations are researching this technology such as The Domestic Nuclear Detection Office of the Department of Homeland Security, which is trying to explore new technologies for Spectroscopic Personal Radiation Detectors. The study attempts to locate and recognize nuclear or radioactive sources as well as develop better detection systems. The technologies created through this effort could be combined with brand-new handheld gadgets and used in regular activities. It is putting a lot of effort into enhancing nuclear and radiological detection capabilities, which is essential to improving the DHS's capacity to recognize and contain nuclear threats.
The passive fast-moving neutron detection solution, which in turn increases the detection of shielded unique nuclear material across various active detection methods, is a possible indicator of the presence of certain nuclear materials, notably weapons-grade plutonium. Further, the enticing characteristics of scintillators, such as high precision, effectiveness, and the capacity to detect even lower radiation levels, are drawing numerous advancements in a variety of industries.
Additionally, the expanding practice of using scintillating materials in PET scanners is expected to significantly contribute to the development of medical imaging techniques which has increased the revenue for medical devices in major countries. For instance, as per the 2020 report of International Trade Administration, the revenue of medical devices in America increased from US$198 billion in 2019 to US$209 billion in 2020.
Scintillators are used in the production of a wide variety of medical imaging devices such as planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT and PET scan. Scintillators and scintillating materials are used in imaging devices as they provide relevant information regarding the exact position, emission time and time of conversion of each gamma and X ray which help in taking precise images. Therefore, growing demand for diagnostic images because of rising prevalence of chronic disease such as tumors or injuries is driving the growth of this segment. According to a recent NHS report, in England, 44.0 million imaging tests were recorded in 2022, up from 34.9 million the previous year, representing a 26 per cent rise. Plain radiography or X-ray was the most common, accounting for 21.8 million treatments, an increase of 30 per cent from previous year followed by Diagnostic Ultrasonography with 10.1 million scans, an increase of 23 per cent), Computerized Axial Tomography recorded 6.7 million scans, representing an increase of 21 per cent, and Magnetic Resonance Imaging (MRI, 3.8 million, an increase of 28%).
Scintillators are used in the production of a wide variety of medical imaging devices such as planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT and PET scan. Scintillators and scintillating materials are used in imaging devices as they provide relevant information regarding the exact position, emission time and time of conversion of each gamma and X ray which help in taking precise images. Therefore, growing demand for diagnostic images because of rising prevalence of chronic disease such as tumors or injuries is driving the growth of this segment. According to a recent NHS report, in England, 44.0 million imaging tests were recorded in 2022, up from 34.9 million the previous year, representing a 26 per cent rise. Plain radiography or X-ray was the most common, accounting for 21.8 million treatments, an increase of 30 per cent from previous year followed by Diagnostic Ultrasonography with 10.1 million scans, an increase of 23 per cent), Computerized Axial Tomography recorded 6.7 million scans, representing an increase of 21 per cent, and Magnetic Resonance Imaging (MRI, 3.8 million, an increase of 28%).
Rising prevalence of chronic disease and pandemic like situations have led to increased research and trails to develop latest diagnostic medical devices, driving the growth of scintillators in the healthcare sector. For instance, in May 2023, a group of Florida State University scientists has developed a new generation of organic-inorganic hybrid materials that potentially improve picture quality in CT scans, X-Ray machines, and other radiation detection and imaging technologies. Professor Biwu Ma of the Department of Chemistry and Biochemistry and his colleagues developed these novel materials, which may be used as scintillators. When exposed to X-Rays and other high-energy radiations, these materials emit light.