¼¼°èÀÇ È¯ÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼Ç ½ÃÀå ±Ô¸ð, Á¡À¯À², ¾÷°è ºÐ¼® º¸°í¼­ : Àü°³ ¹æ½Äº°, ¼Ö·ç¼Ç À¯Çüº°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº° Àü¸Á ¹× ¿¹Ãø(2025-2032³â)
Global Patient Data Hub Solutions Market Size, Share & Industry Analysis Report By Deployment Mode, By Solution Type, By End-use,, By Regional Outlook and Forecast, 2025 - 2032
»óǰÄÚµå : 1768853
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 351 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,021,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,025,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,436,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ È¯ÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼Ç ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 7.3%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2032³â±îÁö 26¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

KBV Cardinal matrix- ȯÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼Ç ½ÃÀå °æÀï ºÐ¼®

KBV Cardinal matrixÀÇ ºÐ¼®¿¡ µû¸£¸é, Optum, Inc.´Â 2025³â 5¿ù, Optum, Inc.´Â ȯÀÚÀÇ ÀÓ»ó µ¥ÀÌÅÍ¿Í À繫 µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ´Â º´¿øÀ» À§ÇÑ AI ±â¹Ý ¼öÀÍ Áֱ⠰ü¸®(RCM) Ç÷§ÆûÀ» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ ¼Ö·ç¼ÇÀº û±¸ Á¤È®µµ Çâ»ó, ¿öÅ©Ç÷οì ÀÚµ¿È­, ȯÀÚ µ¥ÀÌÅÍ ÇãºêÀÇ ÁÖ¿ä ±â´ÉÀÎ Á¤º¸¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤À» Áö¿øÇÏ¿© Áß¾Ó ÁýÁᫎ µ¥ÀÌÅÍ ÀÎÅÚ¸®Àü½º¸¦ ÅëÇØ ÀÇ·á ½Ã½ºÅÛ Àü¹ÝÀÇ È¿À²¼º°ú À繫Àû ¼º°ú¸¦ Çâ»ó½Ãŵ´Ï´Ù. Capgemini SE, IQVIA Holdings, Inc., Veeva Systems, Inc. µîÀÌ ÀÌ ½ÃÀåÀÇ ÁÖ¿ä Çõ½Å ±â¾÷ÀÔ´Ï´Ù.

COVID-19 ¿µÇ⠺м®

COVID-19 ÆÒµ¥¹Í ±â°£ µ¿¾È µðÁöÅÐ Çコ ±â¼ú µµÀÔÀÌ Å©°Ô Áõ°¡ÇÏ¿© ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ´ë¸é Áø·á°¡ Á¦Çѵʿ¡ µû¶ó ÀÇ·á ¼­ºñ½º Á¦°øÀڴ ȯÀÚ Á¤º¸ °ü¸®¸¦ µðÁöÅÐ Ç÷§ÆûÀ¸·Î ÀüȯÇÒ ¼ö¹Û¿¡ ¾ø¾ú½À´Ï´Ù. ±× °á°ú, ¿ø°ÝÁø·á, ȯÀÚ ¸ð´ÏÅ͸µ, ÀÌÇØ°ü°èÀÚ °£ÀÇ ¿øÈ°ÇÑ Ä¿¹Â´ÏÄÉÀ̼ÇÀ» Áö¿øÇÒ ¼ö ÀÖ´Â Áß¾Ó ÁýÁᫎ µ¥ÀÌÅÍ ½Ã½ºÅÛÀÌ ºü¸£°Ô µµÀԵǾú½À´Ï´Ù. ÀÌó·³ COVID-19 ÆÒµ¥¹ÍÀº ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù.

½ÃÀå ¼ºÀå¿äÀÎ

¿À´Ã³¯ÀÇ ÇコÄÉ¾î »ýŰ迡¼­ ´Ù¾çÇÑ ÇコÄɾî Ç÷§Æû°ú ÀÇ·á ¼­ºñ½º Á¦°øÀÚ °£¿¡ ȯÀÚ µ¥ÀÌÅ͸¦ ¿øÈ°ÇÏ°Ô °øÀ¯Çϰí, Á¢±ÙÇϰí, Ȱ¿ëÇÒ ¼ö ÀÖ´Â °ÍÀº ÇʼöÀûÀÎ ¿ì¼±¼øÀ§°¡ µÇ°í ÀÖ½À´Ï´Ù. »óÈ£¿î¿ë¼º¿¡ ´ëÇÑ °ü½ÉÀÇ Áõ°¡´Â Àü ¼¼°èÀûÀ¸·Î ȯÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼ÇÀÇ µµÀÔÀ» ÃËÁøÇÏ´Â °¡Àå °­·ÂÇÑ Ã˸ÅÁ¦ Áß ÇϳªÀÔ´Ï´Ù. »óÈ£¿î¿ë¼ºÀ̶õ ¼­·Î ´Ù¸¥ ½Ã½ºÅÛ, ÀåÄ¡, ¾ÖÇø®ÄÉÀ̼ÇÀÌ ¼­·Î ´Ù¸¥ ½Ã½ºÅÛ, ÀåÄ¡, ¾ÖÇø®ÄÉÀ̼ÇÀÌ ÃÖÁ¾»ç¿ëÀÚ¿¡°Ô Ãß°¡ÀûÀÎ ¹ø°Å·Î¿òÀ» ÁÖÁö ¾Ê°í ¼­·Î ¿¬°áµÇ°í Åë½ÅÇÒ ¼ö ÀÖ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. Áï, »óÈ£¿î¿ë¼º°ú ÅëÇÕ µ¥ÀÌÅÍ »ýŰèÀÇ Çʿ伺Àº ÀÇ·á ±â°üÀ» ȯÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼ÇÀ¸·Î À̲ô´Â ±Ùº»ÀûÀÎ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ´Ü¼øÈ÷ ÃËÁøÇÏ´Â °Í»Ó¸¸ ¾Æ´Ï¶ó, ¿¬°áµÇ°í È¿À²ÀûÀÎ ÇコÄɾî ȯ°æÀ» ±¸ÇöÇÏ´Â °ÍÀÔ´Ï´Ù.

¶ÇÇÑ, Àü ¼¼°è ÇコÄɾî ȯ°æÀº ȹÀÏÀûÀÎ Á¢±Ù ¹æ½Ä¿¡¼­ º¸´Ù °³ÀÎÈ­µÇ°í Á¤¹ÐÇÑ Ä¡·á ¸ðµ¨·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â °³ÀÎÈ­µÈ Ä¡·á¿¡ ÇÊ¿äÇÑ ¹æ´ëÇÑ ¾çÀÇ ´Ù¾çÇÑ È¯ÀÚ µ¥ÀÌÅ͸¦ °ü¸®Çϰí ÅëÇÕÇÏ¿© °³ÀÎÈ­µÈ Ä¡·á¿¡ ÇʼöÀûÀÎ Àο¡ÀÌºí·¯ ¿ªÇÒÀ» Çϴ ȯÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼Ç¿¡ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. µû¶ó¼­ °³ÀÎÈ­µÈ ÀÇ·á¿Í Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀÇ Áõ°¡´Â ´Ü¼øÇÑ Æ®·»µå°¡ ¾Æ´Ñ ÀÇ·á ÆÐ·¯´ÙÀÓÀÇ ±Ùº»ÀûÀÎ º¯È­À̸ç, ´ÙÂ÷¿øÀûÀΠȯÀÚ µ¥ÀÌÅ͸¦ ÅëÇÕÇϰí Àϰü¼º ÀÖ°í ½Ç¿ëÀûÀÎ ÀÎÅÚ¸®Àü½º·Î ÀüȯÇϱâ À§ÇØ È¯ÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼Ç¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ´Â »óȲÀÔ´Ï´Ù.

½ÃÀå ¾ïÁ¦¿äÀÎ

ȯÀÚ µ¥ÀÌÅÍ Çãºê(PDH) ¼Ö·ç¼ÇÀÇ º¸±ÞÀ» °¡·Î¸·´Â °¡Àå Å« Á¦¾à Áß Çϳª´Â µµÀÔ, ÅëÇÕ ¹× Àå±âÀûÀÎ À¯Áöº¸¼ö¿¡ µû¸¥ ¸·´ëÇÑ ºñ¿ë ºÎ´ãÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº º¹ÀâÇϰí, °íµµÀÇ IT ÀÎÇÁ¶ó, Àü¹® ÀηÂ, ±×¸®°í Áö¼ÓÀûÀÎ ½Ã½ºÅÛ ¾÷±×·¹À̵尡 ÇÊ¿äÇϸç, ÀÌ ¸ðµç °Í¿¡ ¸·´ëÇÑ ¼³ºñ ÅõÀÚ¿Í ¿î¿µ ºñ¿ëÀÌ ¼Ò¿äµË´Ï´Ù. Áï, °í°¡ÀÇ ¼³ºñ ÅõÀÚ, º¹ÀâÇÑ ÅëÇÕ ¹× Áö¼ÓÀûÀÎ ¿î¿µ ºñ¿ëÀº ƯÈ÷ ¼Ò±Ô¸ðÀÇ ÇÑÁ¤µÈ ÀÚ¿øÀ» °¡Áø ÀÇ·á±â°üÀÇ °æ¿ì, µµÀÔ¿¡ Å« °æÁ¦Àû À庮ÀÌ µÇ¾î ½ÃÀå ħÅõ¸¦ ÀúÇØÇϰí ÀÖ½À´Ï´Ù.

°¡Ä¡»ç½½ ºÐ¼®

ÀÌ ½ÃÀåÀÇ °¡Ä¡»ç½½ ºÐ¼®Àº µ¥ÀÌÅÍ ¼­ºñ½ºÀÇ Æ÷°ýÀûÀÌ°í ¼øÈ¯ÀûÀÎ È帧À» º¸¿©ÁÝ´Ï´Ù. ¸ÕÀú µ¥ÀÌÅÍ ¼öÁýÀ» ½ÃÀÛÀ¸·Î µ¥ÀÌÅÍ ÅëÇÕ°ú Åäūȭ¸¦ ÅëÇØ ¾ÈÀüÇÑ Ã³¸®¸¦ º¸ÀåÇÕ´Ï´Ù. ´ÙÀ½À¸·Î µ¥ÀÌÅÍ ÀúÀå ¹× °ü¸®¸¦ ÅëÇØ È¿À²ÀûÀΠ󸮸¦ Áö¿øÇϰí, ºÐ¼® ¹× ÀλçÀÌÆ® âÃâÀ» ÅëÇØ ½Ç¿ëÀûÀÎ °á°ú¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÄÄÇöóÀ̾𽺠¹× ±ÔÁ¦ Áö¿øÀº °Ç°­ °ü·Ã ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇÕ´Ï´Ù. ÀÌ ¹ë·ùüÀÎÀº ¸¶ÄÉÆÃ ¹× ¿µ¾÷ Áö¿ø, Ç÷§Æû Á¦°ø ¹× »ç¿ëÀÚ °æÇè, °í°´ Áö¿ø ¹× ±³À°À¸·Î À̾îÁý´Ï´Ù. ¸¶Áö¸·À¸·Î, Áö¼ÓÀûÀÎ Çõ½Å°ú ¿¬±¸°³¹ßÀ» ÅëÇØ °³¼±À» ÃËÁøÇÏ°í µ¥ÀÌÅÍ ¼öÁý ÇÁ·Î¼¼½º¸¦ °­È­ÇÕ´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼®

Àü°³ ¸ðµåÀÇ Àü¸Á

Àü°³ ¹æ½Ä¿¡ µû¶ó ½ÃÀåÀº Ŭ¶ó¿ìµå ±â¹Ý°ú ¿ÂÇÁ·¹¹Ì½º·Î ºÐ·ùµË´Ï´Ù. ¿ÂÇÁ·¹¹Ì½º ºÎ¹®Àº 2024³â ½ÃÀå ¸ÅÃâ Á¡À¯À²ÀÇ 30%¸¦ Â÷ÁöÇß½À´Ï´Ù. ¿ÂÇÁ·¹¹Ì½º ºÎ¹®Àº ƯÁ¤ µ¥ÀÌÅÍ º¸¾È, »ç¿ëÀÚ ÁöÁ¤ ¶Ç´Â ±ÔÁ¦ ¿ä±¸ »çÇ×ÀÌ ÀÖ´Â Á¶Á÷¿¡ Áö¼ÓÀûÀ¸·Î ¼­ºñ½º¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ÇコÄÉ¾î ±â°üÀÇ ¹°¸®Àû ½Ã¼³¿¡¼­ È£½ºÆÃµÇ±â ¶§¹®¿¡ µ¥ÀÌÅÍ ÀúÀå ¹× ¾×¼¼½º¸¦ º¸´Ù ¾ö°ÝÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼Ö·ç¼Ç À¯Çü Àü¸Á

¼Ö·ç¼Ç À¯Çü¿¡ µû¶ó ½ÃÀåÀº ÀÇ·á µ¥ÀÌÅÍ ¾Û ¹× AI, µ¥ÀÌÅÍ ÅëÇÕ, ȯÀÚ 360µµ ºä Ç÷§Æû, ±âŸ·Î ºÐ·ùµË´Ï´Ù. µ¥ÀÌÅÍ ÅëÇÕ ºÎ¹®Àº 2024³â ½ÃÀå ¸ÅÃâ Á¡À¯À²ÀÇ 35%¸¦ Â÷ÁöÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ÀüÀڰǰ­±â·Ï(EHR), ¿µ»ó ½Ã½ºÅÛ, °Ë»ç µ¥ÀÌÅÍ, Ÿ»ç ¾ÖÇø®ÄÉÀÌ¼Ç µî ¿©·¯ ÇコÄɾî Ç÷§ÆûÀÇ Á¤º¸¸¦ ÅëÇÕÇÏ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. µ¥ÀÌÅÍ ÅëÇÕ ¼Ö·ç¼ÇÀº ¿¬°áµÈ »ýŰ踦 ±¸ÃàÇÏ¿© ÀÓ»óÀÇ, °ü¸®ÀÚ ¹× ±âŸ ÀÌÇØ°ü°èÀÚ°¡ Á¤È®Çϰí Á¾ÇÕÀûÀÎ Á¤º¸¿¡ Àû½Ã¿¡ Á¢±ÙÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

ÃÖÁ¾ ¿ëµµ Àü¸Á

ÃÖÁ¾ ¿ëµµº°·Î ½ÃÀåÀº ÇコÄÉ¾î ±â¾÷, ÇコÄɾî Á¦°øÀÚ, ÇコÄɾî ÁöºÒÀÚ, ±âŸ·Î ºÐ·ùµË´Ï´Ù. ÀÇ·á ¼­ºñ½º Á¦°øÀÚ ºÎ¹®Àº 2024³â ½ÃÀå ¸ÅÃâ Á¡À¯À² 29%¸¦ Â÷ÁöÇß½À´Ï´Ù. ÀÇ·á Á¦°øÀÚ ºÎ¹®¿¡´Â º´¿ø, Áø·á¼Ò, ¿Ü·¡ Áø·á ¼¾ÅÍ, Àü¹® ÀÇ·á ±â°üÀÌ Æ÷ÇԵ˴ϴÙ. À̵é Á¶Á÷Àº ȯÀÚ µ¥ÀÌÅÍ Çãºê¸¦ Ȱ¿ëÇÏ¿© ÀÓ»óÀû ÀÇ»ç°áÁ¤ °³¼±, ȯÀÚ ¾ÈÀü Çâ»ó, Áø·á Á¶Á¤ÀÇ È¿À²¼º Çâ»óÀ» À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

Áö¿ª Àü¸Á

Áö¿ªº°·Î´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«·Î ½ÃÀåÀ» ºÐ¼®Çß½À´Ï´Ù. ºÏ¹Ì ºÎ¹®Àº 2024³â ½ÃÀå¿¡¼­ °¡Àå Å« ¸ÅÃâ Á¡À¯À²ÀÎ 39%¸¦ Â÷ÁöÇß½À´Ï´Ù. ºÏ¹Ì´Â ȯÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼ÇÀÇ ÁÖ¿ä ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ÷´Ü ÀÇ·á ÀÎÇÁ¶ó, ÀüÀÚ ÀÇ·á ±â·Ï(EHR)ÀÇ ±¤¹üÀ§ÇÑ µµÀÔ, »óÈ£ ¿î¿ë¼º ¹× ÀÇ·á IT ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´ëÇÑ °­·ÂÇÑ ±ÔÁ¦ Áö¿ø µîÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù.

½ÃÀå °æÀï°ú Ư¼º

ÀÌ ½ÃÀå¿¡¼­ÀÇ °æÀïÀº ¾÷°è ³»¿¡¼­ Ä¡¿­ÇÑ °æÀïÀÌ ¹ú¾îÁö°í ÀÖ½À´Ï´Ù. ¸¹Àº Áß°ß±â¾÷°ú ½Å»ý±â¾÷µéÀÌ Çõ½Å, °¡°Ý, ¼­ºñ½º Â÷º°È­¸¦ À§ÇØ Ä¡¿­ÇÑ °æÀïÀ» ¹úÀ̰í ÀÖ½À´Ï´Ù. ÀæÀº ±â¼ú ¹ßÀü, ³·Àº ½ºÀ§Äª ºñ¿ë, ¿øÈ°ÇÑ µ¥ÀÌÅÍ ÅëÇÕ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î °æÀïÀÌ Ä¡¿­ÇØÁö¸é¼­ ±â¾÷µéÀº Áö¼ÓÀûÀ¸·Î ¼­ºñ½º¸¦ °­È­Çϰí Àü·«Àû Á¦ÈÞ¸¦ ¸Î¾î ½ÃÀå¿¡¼­ÀÇ ÁÖµµ±ÇÀ» °­È­Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼® - ¼¼°è

Á¦5Àå ȯÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼Ç ½ÃÀå ¹ë·ùüÀÎ ºÐ¼®

Á¦6Àå ȯÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼Ç ½ÃÀåÀÇ ÁÖ¿ä °í°´ ±âÁØ

Á¦7Àå ¼¼°èÀÇ È¯ÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼Ç ½ÃÀå : Àü°³ ¹æ½Äº°

Á¦8Àå ¼¼°èÀÇ È¯ÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼Ç ½ÃÀå : ¼Ö·ç¼Ç À¯Çüº°

Á¦9Àå ¼¼°èÀÇ È¯ÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼Ç ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ È¯ÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼Ç ½ÃÀå : Áö¿ªº°

Á¦11Àå ±â¾÷ °³¿ä

Á¦12Àå ȯÀÚ µ¥ÀÌÅÍ Çãºê ¼Ö·ç¼Ç ½ÃÀå ¼º°ø Çʼö Á¶°Ç

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global Patient Data Hub Solutions Market size is expected to reach $2.64 billion by 2032, rising at a market growth of 7.3% CAGR during the forecast period.

These systems enable healthcare providers, payers, and researchers to access real-time patient information, consolidate electronic health records (EHR), and support interoperability among various digital health platforms. The model offers enhanced scalability, cost-efficiency, and accessibility compared to on-premise solutions. As the healthcare sector continues its digital transformation, cloud-based platforms have emerged as a preferred option due to their ability to streamline clinical workflows, support remote care delivery, and ensure secure data sharing.

The major strategies followed by the market participants are Product Launches as the key developmental strategy to keep pace with the changing demands of end users. For instance, In June, 2025, IQVIA Holdings, Inc. unveiled AI Agents designed to automate and streamline healthcare and life sciences operations. These tools support real-time decision-making by integrating diverse patient data, aligning with Patient Data Hub Solutions to optimize patient engagement, data unification, and clinical workflow automation. Additionally, In June, 2025, Innovaccer, Inc. unveiled AI agents to reduce administrative burdens in healthcare by automating routine tasks. These agents enhance data interoperability and care workflows, aligning with the Market by improving access to real-time patient insights and streamlining data-centric decision-making across clinical and administrative operations.

KBV Cardinal Matrix - Patient Data Hub Solutions Market Competition Analysis

Based on the Analysis presented in the KBV Cardinal matrix; Optum, Inc. is the forerunner in the Market. In May, 2025, Optum, Inc. unveiled an AI-powered revenue cycle management (RCM) platform for hospitals that integrates clinical and financial patient data. The solution enhances claims accuracy, automates workflows, and supports informed decision-making-key functions of a Patient Data Hub-boosting efficiency and financial outcomes across health systems through centralized data intelligence. Companies such as Capgemini SE, IQVIA Holdings, Inc., and Veeva Systems, Inc. are some of the key innovators in the Market.

COVID-19 Impact Analysis

During the COVID-19 pandemic, there was a significant surge in the adoption of digital health technologies, which positively influenced the market. Healthcare providers were compelled to transition to digital platforms for managing patient information due to the limitations imposed on in-person consultations. This led to a rapid deployment of centralized data systems capable of supporting remote care, patient monitoring, and streamlined communication between stakeholders. Thus, the COVID-19 pandemic had a positive impact on the market.

Market Growth Factors

In today's healthcare ecosystem, the ability to seamlessly share, access, and utilize patient data across various healthcare platforms and providers has become an essential priority. The growing emphasis on interoperability is one of the most powerful catalysts driving the adoption of patient data hub solutions globally. Interoperability refers to the capability of disparate systems, devices, and applications to connect and communicate in a coordinated manner, without requiring extra effort from the end user. In conclusion, the imperative for interoperability and integrated data ecosystems is a foundational force that continues to drive healthcare organizations toward Patient Data Hub solutions. These systems are not merely facilitators but enablers of a connected and efficient healthcare environment.

Additionally, the global healthcare landscape is shifting from a one-size-fits-all approach to more personalized and precision-based models of treatment. This transformation is a major driver for Patient Data Hub solutions, which serve as essential enablers by managing and harmonizing vast volumes of diverse patient data necessary for individualized care. Therefore, the rising emphasis on personalized and precision medicine is not merely a trend but a fundamental shift in the care paradigm-one that heavily relies on Patient Data Hub solutions to synthesize multi-dimensional patient data into coherent, actionable intelligence.

Market Restraining Factors

One of the most critical restraints hampering the widespread adoption of Patient Data Hub (PDH) solutions is the significant cost burden associated with their deployment, integration, and long-term maintenance. These platforms are complex, requiring advanced IT infrastructure, specialized human resources, and ongoing system upgrades-all of which demand substantial capital and operational expenditure. In conclusion, the high capital investment, integration complexity, and recurring operational costs present a substantial financial barrier to adoption, particularly for smaller and resource-constrained healthcare providers, limiting the market's penetration.

Value Chain Analysis

The value chain analysis of this Market illustrates a comprehensive, cyclical flow of data services. It begins with Data Acquisition, followed by Data Integration & Tokenization to ensure secure processing. Data Storage & Management supports efficient handling, enabling Analytics & Insight Generation for actionable outcomes. Compliance & Regulatory Support ensures adherence to health regulations. The chain continues through Marketing & Sales Enablement, Platform Delivery & User Experience, and Customer Support & Training. Finally, Continuous Innovation & R&D fuels improvements, looping back to strengthen the data acquisition process.

Market Share Analysis

Deployment Mode Outlook

Based on deployment mode, the market is characterized into cloud-based and on-premise. The on-premise segment procured 30% revenue share in the market in 2024. On-premise segment continues to serve organizations with specific data security, customization, or regulatory needs. These solutions are hosted within the physical premises of healthcare institutions, offering greater control over data storage and access.

Solution Type Outlook

On the basis of solution type, the market is classified into health data apps & AI, data integration, patient 360 view platforms, and others. The data integration segment recorded 35% revenue share in the market in 2024. These solutions are responsible for aggregating information from multiple healthcare platforms such as electronic health records (EHRs), imaging systems, lab data, and third-party applications. By creating a connected ecosystem, data integration solutions ensure that clinicians, administrators, and other stakeholders have timely access to accurate and comprehensive information.

End-use Outlook

By end use, the market is divided into healthcare companies, healthcare providers, healthcare payers, and others. The healthcare providers segment garnered 29% revenue share in the market in 2024. The healthcare providers segment encompasses hospitals, clinics, ambulatory care centers, and specialty care institutions. These organizations leverage patient data hubs to improve clinical decision-making, enhance patient safety, and streamline care coordination.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The North America segment recorded 39% the largest revenue share in the market in 2024. The North America segment stands out as a leading market for patient data hub solutions. The region benefits from a highly advanced healthcare infrastructure, widespread adoption of electronic health records (EHRs), and strong regulatory support for interoperability and health IT initiatives.

Market Competition and Attributes

The competition in this Market is marked by high industry rivalry. Numerous mid-sized firms and startups compete aggressively on innovation, pricing, and service differentiation. Frequent technological advancements, low switching costs, and increasing demand for seamless data integration intensify the race, driving companies to continuously enhance their offerings and form strategic collaborations to gain market traction.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global Patient Data Hub Solutions Market Report Segmentation

By Deployment Mode

By Solution Type

By End-use

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Value Chain Analysis of Patient Data Hub Solutions Market

Chapter 6. Key Costumer Criteria of Patient Data Hub Solutions Market

Chapter 7. Global Patient Data Hub Solutions Market by Deployment Mode

Chapter 8. Global Patient Data Hub Solutions Market by Solution Type

Chapter 9. Global Patient Data Hub Solutions Market by End-use

Chapter 10. Global Patient Data Hub Solutions Market by Region

Chapter 11. Company Profiles

Chapter 12. Winning Imperatives of Patient Data Hub Solutions Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â