¼¼°èÀÇ AI ±â¹Ý Æ®·¡ÇÈ °ü¸® ½ÃÀå ±Ô¸ð, Á¡À¯À² ¹× µ¿Ç⠺м® : ¹èÆ÷ ¸ðµåº°, ±â¼úº°, ±¸¼º¿ä¼Òº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº°, Àü¸Á ¹× ¿¹Ãø(2024-2031³â)
Global AI-Driven Traffic Management Market Size, Share & Trends Analysis Report By Deployment Mode, By Technology, By Component (Software, Hardware, and Services), By Application, By End User, By Regional Outlook and Forecast, 2024 - 2031
»óǰÄÚµå : 1575569
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 367 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,023,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,028,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,439,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è AI ±â¹Ý Æ®·¡ÇÈ °ü¸® ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 29.7%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2031³â±îÁö 1,441¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

KBV Cardinal Matrix-AI ±â¹Ý Æ®·¡ÇÈ °ü¸® ½ÃÀå °æÀï ºÐ¼®

KBV Cardinal MatrixÀÇ ºÐ¼®¿¡ µû¸£¸é, È­¿þÀÌ Å×Å©³î·ÎÁö½º(Huawei Technologies Co., Ltd.), Áö¸à½º(Siemens AG), IBM CorporationÀÌ AI ±â¹Ý Æ®·¡ÇÈ °ü¸® ½ÃÀåÀÇ ¼±±¸ÀÚÀ̸ç, 2024³â 4¿ù È­¿þÀÌ Å×Å©³î·ÎÁö½º(Huawei Technologies Co., Ltd.)¿Í KT°¡ AI ±â¼úÀ» ÅëÇÕÇÏ¿© ³×Æ®¿öÅ© º¸¾ÈÀ» °­È­ÇÏ°í »ç¿ëÀÚ °æÇèÀ» Çâ»ó½Ã۸ç Áö¼Ó°¡´É¼ºÀ» ÃËÁøÇϱâ À§ÇØ Technologies Co., Ltd.¿Í HKT´Â AI¸¦ Ȱ¿ëÇÏ¿© ³×Æ®¿öÅ© º¸¾ÈÀ» °­È­Çϰí, »ç¿ëÀÚ °æÇèÀ» °³¼±Çϰí, Áö¼Ó°¡´É¼ºÀ» ÃËÁøÇϱâ À§ÇØ AI ±â¼úÀ» ÅëÇÕÇÏ¿© ¿î¿µÀ» ÀÚµ¿È­Çϰí, ¼­ºñ½º¸¦ ÃÖÀûÈ­Çϰí, Áö´ÉÇü ³×Æ®¿öÅ©ÀÇ º¯È­¸¦ Áö¿øÇÕ´Ï´Ù. Iteris, Inc. ¹× Ericsson AB¿Í °°Àº ±â¾÷µéÀº AI ±â¹Ý Æ®·¡ÇÈ °ü¸® ½ÃÀåÀÇ ÁÖ¿ä Çõ½Å°¡ Áß ÀϺÎÀÔ´Ï´Ù.

½ÃÀå ¼ºÀå ¿äÀÎ

µµ½Ã Àα¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó Â÷·®°ú º¸ÇàÀÚ ¹Ðµµ°¡ Áõ°¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ È¥ÀâÀ¸·Î ÀÎÇØ À̵¿ ½Ã°£ÀÌ ±æ¾îÁö°í »ç°íÀ²ÀÌ ³ô¾ÆÁö¸ç ´ë±â ¿À¿° ¼öÁØÀÌ Áõ°¡ÇÕ´Ï´Ù. ÷´Ü AI ±â¹Ý ±³Åë ¼Ö·ç¼ÇÀº ½Ç½Ã°£ ±³Åë ÆÐÅÏÀ» ºÐ¼®Çϰí, ½ÅÈ£µî ŸÀ̹ÖÀ» ÃÖÀûÈ­Çϰí, ±³Åë °æ·Î¸¦ ÀçÁ¶Á¤Çϰí, È¥ÀâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. µµ½Ã°¡ ¼ºÀåÇÔ¿¡ µû¶ó µµ½Ã´Â ÀÎÇÁ¶ó¿Í ÀÚ¿ø¿¡ ´ëÇÑ ¾Ð¹Ú¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. °á·ÐÀûÀ¸·Î µµ½ÃÈ­ÀÇ °¡¼ÓÈ­´Â ÷´Ü ±³Åë ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä·Î À̾îÁ® ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀÔ´Ï´Ù.

¶ÇÇÑ, µµ½Ã Àα¸¿Í ÀÚµ¿Â÷ ¼ÒÀ¯°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±³Åë»ç°í´Â Àü ¼¼°èÀûÀ¸·Î ½Ã±ÞÇÑ ¹®Á¦·Î ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ¼¼°èº¸°Ç±â±¸(WHO)¿¡ µû¸£¸é ±³Åë»ç°í·Î ÀÎÇÑ ºÎ»óÀº Àü ¼¼°è »ç¸ÁÀÇ ÁÖ¿ä ¿øÀÎÀ¸·Î ¸Å³â ¾à 135¸¸ ¸íÀÌ »ç¸ÁÇϰí ÀÖ½À´Ï´Ù. ÀÌ ³î¶ó¿î Åë°è·Î ÀÎÇØ Á¤ºÎ¿Í ±³Åë ´ç±¹Àº ¾ÈÀü Á¶Ä¡¸¦ ¿ì¼±½ÃÇϰí À§ÇèÀ» ÁÙÀ̱â À§ÇØ Ã·´Ü ±â¼úÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ ¾ÈÀü°ú »ç°í °ü¸®¿¡ ´ëÇÑ °­Á¶°¡ ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ

ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» µµÀÔÇϱâ À§Çؼ­´Â ¸¹Àº ÀÎÇÁ¶ó ÅõÀÚ°¡ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹½À´Ï´Ù. ¿©±â¿¡´Â ±âÁ¸ ±³Åë ½ÅÈ£µî ¾÷±×·¹À̵å, ¼¾¼­ ¹× Ä«¸Þ¶ó ¼³Ä¡, µ¥ÀÌÅÍ ±³È¯À» Áö¿øÇÏ´Â °­·ÂÇÑ Åë½Å ³×Æ®¿öÅ© ±¸Ãà µîÀÌ Æ÷ÇԵ˴ϴÙ. ³ôÀº Ãʱ⠺ñ¿ëÀ¸·Î ÀÎÇØ ƯÈ÷ ¿¹»êÀÌ ÇÑÁ¤µÈ ÁöÀÚü¿¡¼­´Â µµÀÔÀ» ÁÖÀúÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âÁ¸ ±³Åë °ü¸® ½Ã½ºÅÛ¿¡ ÷´Ü AI ¼Ö·ç¼ÇÀ» ÅëÇÕÇÏ´Â °ÍÀº º¹ÀâÇÏ°í ºñ¿ëÀÌ ¸¹ÀÌ µé ¼ö ÀÖ½À´Ï´Ù. °á·ÐÀûÀ¸·Î °í±Þ ±³Åë ¼Ö·ç¼ÇÀÇ ³ôÀº µµÀÔ ºñ¿ëÀÌ ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀÇ ÁÖ¿ä ±â¾÷µéÀº ½ÃÀå¿¡¼­ °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ ´Ù¾çÇϰí Çõ½ÅÀûÀÎ Á¦Ç°À¸·Î °æÀïÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷µéÀº ´Ù¾çÇÑ »ê¾÷ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ ´Ù¾çÇÑ Àü·«À» äÅÃÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ ÁÖ¿ä °³¹ß Àü·«Àº ÆÄÆ®³Ê½Ê°ú Çù¾÷ÀÔ´Ï´Ù.

Àü°³ ¸ðµå Àü¸Á

¹èÄ¡ ¸ðµå¿¡ µû¶ó ÀÌ ½ÃÀåÀº Ŭ¶ó¿ìµå¿Í ¿ÂÇÁ·¹¹Ì½º·Î ±¸ºÐµÇ¸ç, 2023³â¿¡´Â ¿ÂÇÁ·¹¹Ì½º ºÎ¹®ÀÌ ÀÌ ½ÃÀå¿¡¼­ 44%ÀÇ ¸ÅÃâ Á¡À¯À²À» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µ¥ÀÌÅÍ º¸¾È, Á¦¾î ¹× ÇöÁö ±ÔÁ¤ Áؼö¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ¿ÂÇÁ·¹¹Ì½º ¹èÆ÷¸¦ ¼±È£ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¿ÂÇÁ·¹¹Ì½º ¼Ö·ç¼ÇÀº Á¶Á÷ÀÌ µ¥ÀÌÅÍ¿Í ½Ã½ºÅÛÀ» Á÷Á¢ Á¦¾îÇÒ ¼ö ÀÖ¾î ¹Î°¨ÇÑ Æ®·¡ÇÈ µ¥ÀÌÅͰ¡ ÀÎÇÁ¶ó ³»¿¡ ¸Ó¹«¸¦ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ ¹èÆ÷ ¸ðµå´Â ƯÈ÷ °íµµÀÇ Ä¿½ºÅ͸¶ÀÌ¡°ú ±âÁ¸ ÀÎÇÁ¶ó¿ÍÀÇ ÅëÇÕÀÌ ÇÊ¿äÇÑ Á¤ºÎ ±â°ü°ú ´ë±Ô¸ð ±³Åë °ü¸® ¼¾ÅÍ¿¡¼­ ¼±È£ÇÕ´Ï´Ù.

±â¼ú Àü¸Á

±â¼ú¿¡ µû¶ó ÀÌ ½ÃÀåÀº ¸Ó½Å·¯´×(ML), ÄÄÇ»ÅÍ ºñÀü, ÀÚ¿¬¾î ó¸®(NLP), »ç¹°ÀÎÅͳÝ(IoT) µîÀ¸·Î ºÐ·ùµË´Ï´Ù. ÄÄÇ»ÅÍ ºñÀü ºÎ¹®Àº 2023³â ÀÌ ½ÃÀå¿¡¼­ 27%ÀÇ ¸ÅÃâ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. ÄÄÇ»ÅÍ ºñÀü ±â¼úÀ» ÅëÇØ ´ÜÀÏ À̹ÌÁö ¶Ç´Â ÀÏ·ÃÀÇ À̹ÌÁö¿¡¼­ À¯¿ëÇÑ Á¤º¸¸¦ ÀÚµ¿À¸·Î ÃßÃâ, ºÐ¼® ¹× ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ±³Åë °ü¸®¿¡¼­ ÄÄÇ»ÅÍ ºñÀüÀº Â÷·® °¨Áö, ¹øÈ£ÆÇ ÀνÄ, ºñµð¿À ¸ð´ÏÅ͸µÀ» ÅëÇÑ ±³Åë »óȲ ¸ð´ÏÅ͸µ¿¡ »ç¿ëµË´Ï´Ù.

ÄÄÆ÷³ÍÆ® Àü¸Á

ÄÄÆ÷³ÍÆ®¸¦ ±âÁØÀ¸·Î ÀÌ ½ÃÀåÀº ¼ÒÇÁÆ®¿þ¾î, Çϵå¿þ¾î, ¼­ºñ½º·Î ³ª´µ¸ç, 2023³â Çϵå¿þ¾î ºÎ¹®Àº ÀÌ ½ÃÀå¿¡¼­ 35%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ºÎ¹®¿¡´Â ¼¾¼­, Ä«¸Þ¶ó ¹× ±³Åë °ü¸® ½Ã½ºÅÛÀÇ ±â´É¿¡ ÇʼöÀûÀÎ ±âŸ ÀåÄ¡¿Í °°Àº ¹°¸®Àû ±¸¼º ¿ä¼Ò°¡ Æ÷ÇԵ˴ϴÙ. Çϵå¿þ¾î ºÎ¹®ÀÇ ³ôÀº ¸ÅÃâ Á¡À¯À²Àº ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» ±¸ÇöÇÏ´Â µ¥ ÇÊ¿äÇÑ ¹°¸®Àû ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¸¦ ³ªÅ¸³À´Ï´Ù.

ÀÀ¿ë ºÐ¾ß Àü¸Á

¿ëµµÀ» ±âÁØÀ¸·Î ÀÌ ½ÃÀåÀº ±³Åë ½ÅÈ£ Á¦¾î ½Ã½ºÅÛ, °æ·Î ÃÖÀûÈ­, »ç°í °¨Áö ¹× °ü¸®, ´ëÁß±³Åë °ü¸®, ±âŸ·Î ºÐ·ùµÇ¸ç, 2023³â¿¡´Â »ç°í °¨Áö ¹× °ü¸® ºÎ¹®ÀÌ ÀÌ ½ÃÀå¿¡¼­ 24%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ºÎ¹®¿¡´Â »ç°í ¹× °íÀå°ú °°Àº ±³Åë »ç°í¸¦ ½Ç½Ã°£À¸·Î °¨ÁöÇϰí ÀÌ·¯ÇÑ »ç°í¿¡ ´ëÇÑ ´ëÀÀÀ» °ü¸®ÇÏ´Â ±â¼ú ¹× ½Ã½ºÅÛÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ ºÎ¹®ÀÇ ³ôÀº Á¡À¯À²Àº ±³Åë È¥ÀâÀ» ÃÖ¼ÒÈ­ÇÏ°í µµ·Î ¾ÈÀüÀ» °­È­ÇÏ¸ç ¿øÈ°ÇÑ ±³Åë È帧À» º¸ÀåÇϱâ À§ÇØ ½Å¼ÓÇÑ »ç°í °¨Áö ¹× È¿°úÀûÀÎ °ü¸®ÀÇ Á߿伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

ÃÖÁ¾ »ç¿ëÀÚ Àü¸Á

ÃÖÁ¾ »ç¿ëÀÚ¸¦ ±âÁØÀ¸·Î ÀÌ ½ÃÀåÀº Á¤ºÎ ±â°ü, °í¼Óµµ·Î ¿î¿µÀÚ, ±âŸ·Î ±¸ºÐµÇ¸ç, 2023³â¿¡´Â °í¼Óµµ·Î ¿î¿µÀÚ ºÎ¹®ÀÌ ÀÌ ½ÃÀå¿¡¼­ 32%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °í¼Óµµ·Î ¿î¿µÀÚ(°í¼Óµµ·Î ¹× °í¼Óµµ·Î À¯Áö °ü¸®¸¦ ´ã´çÇÏ´Â Á¶Á÷ Æ÷ÇÔ)´Â ±³Åë È帧À» °³¼±Çϰí À̵¿ ½Ã°£À» ´ÜÃàÇÏ¸ç °í¼Óµµ·ÎÀÇ ¾ÈÀüÀ» °³¼±Çϱâ À§ÇØ AI ±â¹Ý ¼Ö·ç¼ÇÀ» Á¡Á¡ ´õ ¸¹ÀÌ Ã¤ÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼Ç¿¡´Â ¿¹Ãø À¯Áö º¸¼ö, ½Ç½Ã°£ ±³Åë ¸ð´ÏÅ͸µ ¹× »ç°í °ü¸®¸¦ À§ÇÑ AI°¡ Æ÷ÇԵ˴ϴÙ.

Áö¿ª Àü¸Á

Áö¿ªº°·Î ÀÌ ½ÃÀåÀº ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«¿¡¼­ ºÐ¼®µÇ¾úÀ¸¸ç, 2023³â¿¡´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ÀÌ ½ÃÀå¿¡¼­ 25%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ Á¤ºÎ´Â ±³Åë È¥Àâ, ¿À¿° ¹× µµ·Î ¾ÈÀü ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ Ã·´Ü ±³Åë °ü¸® ±â¼úÀ» äÅÃÇÏ´Â µ¥ Á¡Á¡ ´õ ¸¹Àº ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ÀÌ Áö¿ªÀÇ »ó´çÇÑ ¸ÅÃâ Á¡À¯À²Àº ±³Åë °ü¸® ºÐ¾ßÀÇ ±â¼ú ¹ßÀü°ú AI ±â¹Ý ¼Ö·ç¼ÇÀÇ ±¸Çö Áõ°¡¸¦ ¹Ý¿µÇÕ´Ï´Ù.

½ÃÀå °æÀï ¹× Æ¯¼º

AI ±â¹Ý ±³Åë °ü¸® ½ÃÀåÀº ´Ù¾çÇÑ ½ºÅ¸Æ®¾÷°ú ½Å»ý ±â¾÷µé »çÀÌ¿¡¼­ ´Ù¾çÇÑ °æÀïÀÌ ¹ú¾îÁö°í ÀÖ´Â °ÍÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ÀÌµé ±â¾÷Àº Çõ½ÅÀûÀÎ ±â¼úÀ» Ȱ¿ëÇØ ±³Åë È帧À» °³¼±Çϰí, ±³Åë üÁõÀ» ÁÙÀ̸ç, ¾ÈÀü¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ±âÁ¸ ¾÷üµéÀÇ ¹®Á¦¿¡ Á÷¸éÇϰí ÀÖÁö¸¸, ½ÃÀåÀÇ ¼ºÀå °¡´É¼ºÀº Áö¼ÓÀûÀÎ ¹ßÀüÀ» ÃËÁøÇÏ°í ¿ªµ¿ÀûÀÌ°í °æÀïÀûÀΠȯ°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼® : ¼¼°è

Á¦5Àå ¼¼°èÀÇ AI ±â¹Ý Æ®·¡ÇÈ °ü¸® ½ÃÀå : Àü°³ ¸ðµåº°

Á¦6Àå ¼¼°èÀÇ AI ±â¹Ý Æ®·¡ÇÈ °ü¸® ½ÃÀå : ±â¼úº°

Á¦7Àå ¼¼°èÀÇ AI ±â¹Ý Æ®·¡ÇÈ °ü¸® ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦8Àå ¼¼°èÀÇ AI ±â¹Ý Æ®·¡ÇÈ °ü¸® ½ÃÀå : ¿ëµµº°

Á¦9Àå ¼¼°èÀÇ AI ±â¹Ý Æ®·¡ÇÈ °ü¸® ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦10Àå ¼¼°èÀÇ AI ±â¹Ý Æ®·¡ÇÈ °ü¸® ½ÃÀå : Áö¿ªº°

Á¦11Àå ±â¾÷ °³¿ä

Á¦12Àå AI ±â¹Ý Æ®·¡ÇÈ °ü¸® ½ÃÀåÀ» À§ÇÑ ¼º°ø Çʼö Á¶°Ç

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global AI-Driven Traffic Management Market size is expected to reach $144.1 billion by 2031, rising at a market growth of 29.7% CAGR during the forecast period.

The North America region witnessed 37% revenue share in the AI-driven traffic management market in 2023. This can be attributed to several factors, including the early adoption of advanced technologies, significant investments in smart city initiatives, and robust infrastructure development. The presence of key market players and extensive research and development activities in the United States and Canada also contribute to the region's dominance in this market.

The major strategies followed by the market participants are Partnerships as the key developmental strategy to keep pace with the changing demands of end users. For instance, In February 2024, Iteris, Inc. has partnered with Arity to integrate enhanced traffic data solutions into its ClearMobility(R) Platform. This collaboration aims to improve transportation efficiency and safety by utilizing Arity's near real-time traffic insights, enriching Iteris' ClearGuide(R) and ClearData(R) applications. Moreover, In August, 2024, Econolite Group, Inc. and Derq are partnering with Caltrans to deploy an advanced intersection safety system in Orange County, utilizing AI-driven insights and video detection. This initiative aims to enhance road safety and support Caltrans' Vision Zero goal to eliminate road fatalities by 2050.

KBV Cardinal Matrix - AI-Driven Traffic Management Market Competition Analysis

Based on the Analysis presented in the KBV Cardinal matrix; Huawei Technologies Co., Ltd., Siemens AG and IBM Corporation are the forerunners in the AI-Driven Traffic Management Market. In April, 2024, Huawei Technologies Co., Ltd. and HKT came into partnership to leverage AI for enhancing network security, improving user experience, and promoting sustainability. The integration of AI technologies will automate operations, optimize services, and support intelligent network transformation, leading to significant advancements in the telecom sector. Companies such as Iteris, Inc. and Ericsson AB are some of the key innovators in AI-Driven Traffic Management Market.

Market Growth Factors

As urban areas become more populated, the density of vehicles and pedestrians increases. This congestion leads to longer travel times, higher rates of accidents, and elevated levels of air pollution. Advanced AI-powered traffic solutions can analyze real-time traffic patterns, optimize signal timings, reroute traffic, and reduce congestion. With urban growth, cities face pressure on infrastructure and resources. In conclusion, accelerating urbanization, leading to demand for advanced traffic solutions, drives the market's growth.

Additionally, With the rise in urban populations and vehicle ownership, road traffic accidents have become a pressing concern worldwide. According to the World Health Organization (WHO), road traffic injuries are a leading cause of death globally, with approximately 1.35 million fatalities each year. This alarming statistic has prompted governments and transportation authorities to prioritize safety measures and implement advanced technologies to mitigate risks. Thus, emphasis on safety and incident management drives the market's growth.

Market Restraining Factors

Implementing these systems often requires substantial infrastructure investments. This includes upgrading existing traffic signals, installing sensors and cameras, and establishing a robust communication network to support data exchange. The high upfront costs can deter municipalities, particularly those with limited budgets. Integrating advanced AI solutions with existing traffic management systems can be complex and costly. In conclusion, the high implementation costs of advanced traffic solutions are hampering the market's growth.

The leading players in the market are competing with diverse innovative offerings to remain competitive in the market. The above illustration shows the percentage of revenue shared by some of the leading companies in the market. The leading players of the market are adopting various strategies in order to cater demand coming from the different industries. The key developmental strategies in the market are Partnerships & Collaborations.

Deployment Mode Outlook

By deployment mode, this market is divided into cloud and on-premises. In 2023, the on-premises segment registered 44% revenue share in this market. Concerns over data security, control, and compliance with local regulations often drive this preference for on-premises deployment. On-premises solutions allow organizations direct control over their data and systems, ensuring that sensitive traffic data remains within their infrastructure. This deployment mode is particularly favored by governmental agencies and large-scale traffic management centers that require high levels of customization and integration with existing infrastructure.

Technology Outlook

Based on technology, this market is categorized into machine learning (ML), computer vision, natural language processing (NLP), internet of things (IoT), and others. The computer vision segment witnessed 27% revenue share in this market in 2023. Computer vision technology enables the automatic extraction, analysis, and understanding of useful information from a single image or a sequence of images. In traffic management, computer vision is used for vehicle detection, license plate recognition, and monitoring traffic conditions through video surveillance.

Component Outlook

Based on component, this market is divided into software, hardware, and services. In 2023, the hardware segment garnered 35% revenue share in this market. This segment includes physical components such as sensors, cameras, and other devices essential for functioning traffic management systems. The high revenue share of the hardware segment indicates substantial investment in the physical infrastructure required to implement these solutions.

Application Outlook

On the basis of application, this market is segmented into traffic signal control systems, route optimization, incident detection & management, public transport management, and others. In 2023, the incident detection & management segment attained 24% revenue share in this market. This segment encompasses technologies and systems that detect real-time traffic incidents, such as accidents or breakdowns, and manage the response to these incidents. The significant share of this segment underscores the importance of rapid incident detection and effective management in minimizing traffic disruptions, enhancing road safety, and ensuring the smooth flow of traffic.

End User Outlook

Based on end user, this market is divided into government authorities, highway operators, and others. In 2023, the highway operators segment procured 32% revenue share in this market. Highway operators, which include organizations responsible for maintaining and operating highways and expressways, increasingly adopt AI-driven solutions to enhance traffic flow, reduce travel time, and improve safety on high-speed roadways. These solutions involve AI for predictive maintenance, real-time traffic monitoring, and incident management.

Regional Outlook

Region-wise, this market is analyzed across North America, Europe, Asia Pacific, and LAMEA. In 2023, the Asia Pacific region generated 25% revenue share in this market. Governments in the region are increasingly focusing on adopting advanced traffic management technologies to address the challenges of traffic congestion, pollution, and road safety. The region's substantial revenue share also reflects the growing technological advancements and the rising implementation of AI-driven solutions in traffic management.

Market Competition and Attributes

The AI-driven traffic management market is characterized by diverse competition among various emerging companies and startups. These players leverage innovative technologies to enhance traffic flow, reduce congestion, and improve safety. Although they face challenges from established firms, the market's growth potential encourages continuous advancements, fostering a dynamic and competitive landscape.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global AI-Driven Traffic Management Market Report Segmentation

By Deployment Mode

By Technology

By Component

By Application

By End User

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Global AI-Driven Traffic Management Market by Deployment Mode

Chapter 6. Global AI-Driven Traffic Management Market by Technology

Chapter 7. Global AI-Driven Traffic Management Market by Component

Chapter 8. Global AI-Driven Traffic Management Market by Application

Chapter 9. Global AI-Driven Traffic Management Market by End User

Chapter 10. Global AI-Driven Traffic Management Market by Region

Chapter 11. Company Profiles

Chapter 12. Winning Imperatives of AI-Driven Traffic Management Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â