데이터센터용 액침 냉각제 시장 : 냉각제 화학 조성별, 유전체 유형별, 유체 유형별, 데이터센터 유형별, 용도별, 최종 사용자 산업별 예측(2026-2032년)
Data Center Immersion Cooling Coolant Market by Coolant Chemistry, Dielectric Type, Fluid Type, Data Center Type, Application, End User Industry - Global Forecast 2026-2032
상품코드 : 1919187
리서치사 : 360iResearch
발행일 : 2026년 01월
페이지 정보 : 영문 199 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,772,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,226,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,439,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,213,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

데이터센터용 액침 냉각제 시장은 2025년에 12억 1,000만 달러로 평가되었고, 2026년에는 13억 1,000만 달러로 성장하고 CAGR 8.66%로 성장을 지속하여 2032년까지 21억 7,000만 달러에 달할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도(2025년) 12억 1,000만 달러
추정연도(2026년) 13억 1,000만 달러
예측연도(2032년) 21억 7,000만 달러
CAGR(%) 8.66%

액침 냉각 동향과 냉각제 선택의 고려사항에 대한 종합적인 지침이 데이터센터의 열 관리 전략을 재구성합니다.

액침 냉각 기술의 급속한 진화는 데이터센터 운영자, 인프라 설계자 및 기업 이해관계자 모두에게 중요한 전환점을 가져왔습니다. 액침 냉각(단상 및 2상 유전체 접근법 포함)은 기존의 공냉 시스템과는 근본적으로 다른 열 관리 패러다임을 제공합니다. 조직이 고밀도화, 전력 제약, 증가하는 지속가능성에 대한 대처에 직면하는 가운데, 액침 냉각은 성능 요건과 운영 효율성을 양립시키는 현실적인 선택으로 부상하고 있습니다.

유체 화학, 인클로저 설계 및 서비스 에코시스템의 급속한 진보가 수렴하여 모든 데이터센터 유형에서 액침 냉각의 도입을 가속화하는 상황

액침 냉각을 둘러싼 환경은 기술, 규제 및 운용 요인이 수렴하면서 혁신적인 변화를 이루고 있습니다. 첫째, 컴포넌트 수준의 호환성과 인클로저 설계의 발전으로 통합 장벽이 낮아지고 기업과 코로케이션 사업자의 도입이 가속화되고 있습니다. 고전력밀도 프로세서 아키텍처와 가속기 모듈의 혁신은 액침 냉각의 이점을 증폭시켜 지속적인 고열 부하를 가진 워크로드에 대한 액침 냉각이 점점 매력적인 선택이 되고 있습니다.

2025년 미국이 실시한 관세조치가 액침 냉각 시스템의 조달 전략, 공급망의 회복력, 구매결정에 미치는 파급효과를 검증합니다.

2025년 미국의 관세 및 무역 조치는 액침 냉각의 구성 요소와 냉각제 조달 채널, 공급업체 선정, 공급망 회복탄력성에 영향을 미치는 복잡한 요소를 초래했습니다. 특정 수입 재료와 완제품에 대한 관세 인상은 조달 경제성을 변화시키고 구매자 측에 총 양륙비용을 재평가하고 공급업체의 다양화를 모색하도록 요구했습니다. 관세가 공급업체 간의 비교 우위를 변화시키는 가운데 기업은 지역의 공급 파트너 탐색, 니어쇼어링 옵션, 재고 비축 전략의 검토를 통해 혼란을 완화하기 위해 노력하고 있습니다.

상세한 세분화 분석을 통해 유전체 선택, 유체 화학, 데이터센터 유형, 수직 수요, 구성 요소 생태계가 액침 냉각 시장을 형성하는 방식을 제시합니다.

세분화 분석을 통해 유전체 구성, 유체 화학, 데이터센터 유형, 최종 사용자 산업 및 구성 요소 수준의 각 제공 제품에 대해 차별화된 촉진요인과 채택 패턴이 나타납니다. 유전체 유형은 유체 처리의 간편성과 예측 가능한 열전달에 선호되는 단상 시스템과 시스템 제어의 복잡화를 대가로 높은 열유속 제거를 실현하는 2상 접근법으로 나뉩니다. 유체 유형의 선택(플루오로카본, 미네랄 오일, 합성 유체 등)은 유전 특성, 환경 부하 및 유지보수 시스템에 대한 절충안을 제공합니다.

지역 시장의 역학과 규제 압력은 아메리카, 유럽, 중동 및 아프리카, 아시아태평양에서 서로 다른 도입 채널과 공급자 전략을 형성합니다.

지역 동향은 액침 냉각의 보급 속도, 공급자 네트워크 및 규제 제약을 형성합니다. 미국 대륙에서는 적극적인 지속가능성 목표, 기업 수요의 밀집, 입수하기 쉬운 자본이 함께 조기 파일럿 프로그램과 생산 도입을 촉진해 왔습니다. 북미의 하이퍼스케일 사업자와 코로케이션 사업자는 인클로저 설계 및 운영 모니터링의 혁신을 추진하고 있는 한편, 전력회사와 송전망의 고려사항은 전기 및 냉각 전략의 경제성에 영향을 미치고 있습니다.

경영진이 회복력과 지속가능성을 고려한 액침 냉각의 도입을 시험, 운용, 조달, 확대하기 위한 실천적인 전략적 단계와 운영상 우선순위

산업 리더는 액침 냉각이 제공하는 장기적인 운용면과 지속가능성면의 우위성을 획득하기 위해 결정적이고 실행 가능한 조치를 강구해야 합니다. 첫째, 조직은 작업 부하의 특성과 중복 요구사항을 충족하는 인클로저 및 냉각 유체 선택을 검증하는 기술 파일럿을 시행해야 합니다. 파일럿은 대표적인 부하 패턴 하에서 통합 워크플로, 장애 관리 프로토콜, 서비스 레벨 목표 검증을 위해 설계되어야 합니다. 조기 실험은 리노베이션 과제를 시각화하고 광범위한 배포를 위한 표준화된 도입 템플릿을 구축하는 데 기여합니다.

전문가 인터뷰, 기술 사양서, 실천자의 사례 연구를 통합한 투명성이 높고 재현 가능한 조사 기법으로 실행 가능한 도입 지침을 제공합니다.

본 분석의 기반이 되는 조사 기법에서는 기술 문헌의 통합, 벤더와 최종 사용자 커뮤니티의 전문가 인터뷰, 컴포넌트와 서비스 기능의 체계적인 비교 평가를 조합하고 있습니다. 주요 정성적 인풋에는 하드웨어 엔지니어, 유체 화학자, 시스템 통합자 및 데이터센터 운영 책임자와의 상호 작용이 포함되어 있으며 도입 장벽, 성능 절충 및 유지보수 요구사항에 대한 실세계 관점을 제공합니다. 이 인사이트는 제조업체의 기술 사양 및 규제 지침 문서와 일치하여 견고한 기술적 정확성을 보장합니다.

다양한 데이터센터 환경에서의 액침 냉각 도입에 대한 실용적 경로를 뒷받침하는 기술, 규제 및 운영 인사이트의 통합

결론적으로 액침 냉각은 현대 데이터센터가 직면하는 열 문제와 지속가능성 문제를 해결하는 성숙한 기술입니다. 유전체 접근, 유체 화학, 인클로저 설계, 소프트웨어 구동 운용 제어의 진보가 함께 도입 장벽을 낮추고, 코로케이션, 엔터프라이즈, 하이퍼스케일 환경에서의 파일럿 운용과 실제 도입을 가능하게 하고 있습니다. 은행, 정부, 의료 및 통신 부문의 최종 사용자 요구사항은 특히 신뢰성, 컴플라이언스 및 환경 영향에 대한 솔루션의 우선순위를 계속 형성하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향(2025년)

제7장 AI의 누적 영향(2025년)

제8장 데이터센터용 액침 냉각제 시장 : 냉각제 화학 조성별

제9장 데이터센터용 액침 냉각제 시장 : 유전체 유형별

제10장 데이터센터용 액침 냉각제 시장 : 유체 유형별

제11장 데이터센터용 액침 냉각제 시장 : 데이터센터 유형별

제12장 데이터센터용 액침 냉각제 시장 : 용도별

제13장 데이터센터용 액침 냉각제 시장 : 최종 사용자 산업별

제14장 데이터센터용 액침 냉각제 시장 : 지역별

제15장 데이터센터용 액침 냉각제 시장 : 그룹별

제16장 데이터센터용 액침 냉각제 시장 : 국가별

제16장 미국의 데이터센터용 액침 냉각제 시장

제17장 중국의 데이터센터용 액침 냉각제 시장

제19장 경쟁 구도

CSM
영문 목차

영문목차

The Data Center Immersion Cooling Coolant Market was valued at USD 1.21 billion in 2025 and is projected to grow to USD 1.31 billion in 2026, with a CAGR of 8.66%, reaching USD 2.17 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 1.21 billion
Estimated Year [2026] USD 1.31 billion
Forecast Year [2032] USD 2.17 billion
CAGR (%) 8.66%

Comprehensive orientation to immersion cooling dynamics and coolant selection considerations reshaping data center thermal management strategies

The rapid evolution of immersion cooling technologies has created a pivotal moment for data center operators, infrastructure architects, and enterprise stakeholders. Immersion cooling-encompassing both single-phase and two-phase dielectric approaches-offers a fundamentally different thermal management paradigm compared with traditional air-cooled systems. As organizations grapple with densification, constrained power envelopes, and heightened sustainability commitments, immersion cooling emerges as a pragmatic alternative that reconciles performance needs with operational efficiency.

This introduction outlines the critical technological contours and stakeholder implications tied to coolant-driven immersion systems. Single-phase fluids, which transfer heat without phase change, and two-phase dielectrics, which leverage boiling and condensation, present distinct design trade-offs in terms of heat flux capacity, fluid handling complexity, and component compatibility. Similarly, the choice of fluid chemistry-from fluorocarbon to mineral oil and engineered synthetic fluids-influences factors such as dielectric strength, environmental impact, and lifecycle management.

In parallel, diverse data center typologies-colocation providers, enterprise facilities, and hyperscale campuses-are each evaluating immersion strategies through different lenses of cost structure, uptime requirements, and scalability. End users across banking, government healthcare, and telecommunications are testing immersion for mission-critical workloads where thermal stability and energy efficiency are paramount. Components spanning hardware enclosures and rack architectures through services and software ecosystems are converging to enable deployable, maintainable immersion solutions. This framing establishes a foundation for deeper analysis of market dynamics, regulatory factors, and operational best practices that follow in subsequent sections.

How rapid advances in fluid chemistry, enclosure design, and service ecosystems are converging to accelerate immersion cooling adoption across data center types

The landscape around immersion cooling is undergoing transformative shifts driven by converging technological, regulatory, and operational forces. First, advances in component-level compatibility and enclosure design have reduced integration friction, enabling more rapid adoption among enterprise and colocation operators. Innovations in power-dense processor architectures and accelerator modules have magnified the benefits of direct liquid cooling, making immersion an increasingly attractive option for workloads with sustained high thermal loads.

Simultaneously, environmental imperatives and corporate sustainability commitments are intensifying scrutiny of coolant life cycle characteristics. Fluorocarbon alternatives and synthetic fluids are being evaluated not only for thermal performance but also for global warming potential, recyclability, and end-of-life handling. As a result, procurement criteria are broadening beyond upfront costs to encompass total operational impact. In addition, the services and software layers that accompany hardware deployments-ranging from integration and maintenance to real-time control and monitoring-are evolving to provide holistic management of fluid behavior, leak detection, and predictive maintenance.

Another notable shift is the maturation of standards and interoperability efforts. Industry consortia and suppliers are moving toward common electrical, mechanical, and safety interfaces that reduce vendor lock-in and simplify scaling. This trend is complemented by an increased emphasis on modularity: rack-level, enclosure, and fluid management subsystems are being designed for phased rollouts and retrofits in mixed infrastructure environments. Taken together, these advances are accelerating deployment readiness across different data center types, with implications for procurement strategies, operational staffing, and long-term asset management.

Examining the ripple effects of United States tariff actions in 2025 on sourcing strategies, supply-chain resilience, and procurement decisions for immersion cooling systems

In 2025, tariffs and trade measures in the United States have introduced a layer of complexity that affects procurement pathways, supplier selection, and supply chain resilience for immersion cooling components and fluids. Increased duties on certain imported materials and finished goods can alter sourcing economics, prompting buyers to reassess total landed cost and supplier diversification. As tariffs shift the comparative advantage among suppliers, organizations are responding by exploring regional supply partners, nearshoring options, and inventory buffering strategies to mitigate disruption.

These trade-driven dynamics also influence decisions at the component level. Hardware such as enclosures, racks, pumps, and heat-exchange elements may be sourced from vendors in different geographies; accordingly, tariff impacts cascade into integration timelines and service agreements. Fluid chemistry manufacturers facing import constraints have begun to expand production footprints closer to major demand centers, thereby reducing transit-related risk but potentially increasing local regulatory and compliance responsibilities. For software and monitoring solutions, which often rely on cloud-hosted services and cross-border data flows, contractual adjustments and data sovereignty considerations have become more prominent in vendor negotiations.

Consequently, procurement teams and technical leaders are adopting a more risk-aware posture. Rather than pursuing single-supplier strategies that optimized price alone, organizations now emphasize supplier continuity, compliance clarity, and logistics agility. While tariffs introduce short-term cost variability, they also catalyze supplier innovation and local investment in manufacturing capabilities, which can enhance long-term resiliency for the immersion cooling ecosystem.

In-depth segmentation reveals how dielectric choices, fluid chemistries, data center typologies, vertical demands, and component ecosystems dictate immersion cooling outcomes

Segmentation analysis reveals differentiated drivers and adoption patterns across dielectric configurations, fluid chemistries, data center typologies, end-user verticals, and component-level offerings. Dielectric type distinguishes between single-phase systems, favored for simpler fluid handling and predictable thermal transfer, and two-phase approaches that deliver higher heat flux removal at the expense of increased system control complexity. Fluid type choices-spanning fluorocarbon, mineral oil, and engineered synthetic fluids-introduce trade-offs around dielectric properties, environmental footprint, and maintenance regimes.

Data center type plays a pivotal role in solution selection: colocation providers weigh the economics of multi-tenant neutrality and service-level agreements; enterprise operators prioritize integration with legacy infrastructure and controlled deployment risk; hyperscale environments demand repeatable, high-density modules that scale aggressively. End-user segmentation reveals distinct value propositions as well. Banking, financial services, and insurance stakeholders emphasize redundancy, regulatory compliance, and long-term asset availability. Government healthcare systems focus on reliability, data privacy, and environmental stewardship. Information technology and telecommunications firms prioritize throughput, latency, and space efficiency.

Component segmentation highlights the interdependence of hardware, services, and software in successful immersion deployments. Hardware encompasses enclosure systems and rack systems engineered to manage fluid flow and component access. Services comprise consulting, integration, and ongoing maintenance and support, which are critical for commissioning and lifecycle reliability. Software layers include control and monitoring solutions that provide real-time visibility into fluid temperatures, pump health, and environmental alarms. Integrating these segments effectively ensures operational continuity and unlocks the full performance potential of immersion cooling installations.

Regional market dynamics and regulatory pressures shaping distinct adoption pathways and supplier strategies across the Americas, EMEA, and Asia-Pacific

Regional dynamics shape adoption velocity, supplier networks, and regulatory constraints across the immersion cooling landscape. In the Americas, a combination of aggressive sustainability targets, dense enterprise demand clusters, and accessible capital has fostered early pilot programs and production deployments. North American hyperscale and colocation players have driven innovation in enclosure design and operational monitoring, while utilities and grid considerations influence the economics of electrification and cooling strategies.

In Europe, the Middle East, and Africa, policy-driven emissions targets and stringent environmental regulations are steering fluid selection and lifecycle management practices. European centers of excellence have emphasized low-global-warming-potential fluids and robust recycling programs, whereas certain markets in the Middle East are prioritizing extreme-density solutions tailored to energy-rich environments. Across these regions, public-sector procurement and healthcare operators are important early adopters due to their focus on reliability and risk mitigation.

Asia-Pacific presents a diverse mosaic of demand signals, with hyperscale growth concentrated in major markets and enterprise modernization efforts underway across emerging economies. Supply-chain proximity to major component manufacturers has enabled faster iteration and localized production of fluids and enclosure hardware. Transitional considerations, such as local safety standards and skills development for operations teams, are central to successful rollouts. Understanding regional regulatory frameworks, energy pricing dynamics, and infrastructure constraints is essential for mapping deployment strategies and partner selection.

The competitive landscape for immersion cooling is characterized by a mix of specialized hardware manufacturers, fluid chemistry suppliers, systems integrators, and software providers. Established hardware vendors are investing in modular enclosure designs and standardized rack interfaces to reduce integration complexity for diverse data center environments. Fluid suppliers, meanwhile, are differentiating through formulations that balance dielectric performance with environmental and handling considerations, while also expanding regional manufacturing footprints to address supply-chain risks.

Systems integrators and service providers play a central role in deployment success, offering expertise in site assessment, retrofitting, commissioning, and maintenance. Their ability to coordinate across hardware, fluid, and software domains mitigates operational risk and accelerates time-to-stable operations. At the software layer, control and monitoring solutions are advancing to provide predictive analytics, anomaly detection, and remote diagnostics, thereby reducing reliance on manual intervention and improving mean time to repair.

Partnerships and alliances are increasingly important as vendors collaborate to deliver turnkey solutions that address the full stack of requirements-from enclosure engineering and fluid management to service-level commitments and software-driven operational assurance. This collaborative model supports customers seeking single-stop engagements, while also enabling specialization where organizations prefer to assemble best-of-breed components and manage integration internally.

Practical strategic steps and operational priorities for executives to pilot, procure, and scale immersion cooling deployments with resilience and sustainability in mind

Industry leaders should take decisive, actionable steps to capture the long-term operational and sustainability advantages offered by immersion cooling. First, organizations must conduct technical pilots that align enclosure and fluid selections with workload profiles and redundancy requirements. Pilots should be designed to validate integration workflows, fault management protocols, and service-level objectives under representative load patterns. Early experimentation will illuminate retrofit challenges and inform standardized deployment templates for broader rollouts.

Next, procurement and supply-chain teams need to incorporate resiliency criteria into vendor evaluation, prioritizing manufacturers with demonstrated multi-region supply capabilities and clear regulatory compliance histories. In light of recent trade dynamics, diversifying sourcing lanes and establishing contingency inventory plans can protect project timelines. Concurrently, upskilling operations teams through targeted training in fluid handling, leak detection, and software-driven monitoring reduces operational risk and preserves uptime.

Finally, executives should formalize decision frameworks that incorporate environmental lifecycle metrics, total cost of ownership considerations beyond initial capital outlay, and interoperability standards. Engaging with integrators and software vendors early in the procurement cycle ensures that control and monitoring solutions are embedded from design through commissioning, creating a seamless path to scalable, repeatable deployments. These recommendations help organizations transform proof-of-concept insights into operationally reliable, energy-efficient infrastructure.

Transparent and reproducible methodology synthesizing expert interviews, technical specifications, and practitioner case studies to inform actionable deployment guidance

The research methodology underpinning this analysis combines technical literature synthesis, expert interviews across vendor and end-user communities, and structured comparative assessment of component and service capabilities. Primary qualitative inputs include conversations with hardware engineers, fluid chemists, systems integrators, and data center operations leaders, which provide real-world perspectives on deployment barriers, performance trade-offs, and maintenance imperatives. These insights are triangulated with manufacturer technical specifications and regulatory guidance documents to ensure robust technical fidelity.

Additionally, case studies of early adopter deployments were examined to extract lessons around commissioning procedures, failure modes, and long-term operational considerations. Comparative analyses focused on dielectric behaviors, enclosure design trade-offs, and integration approaches for both retrofit and greenfield scenarios. Attention was given to supply-chain dynamics, including manufacturing footprints and distribution pathways, to contextualize procurement strategy recommendations.

Throughout the methodology, emphasis was placed on reproducibility and transparency. Assumptions were documented for technical comparisons, interview protocols followed consistent question sets, and validation checks were applied to reconcile divergent viewpoints. This approach yields a practical, evidence-based perspective designed to inform technical decision-making, procurement planning, and operational readiness for immersion coolant deployments.

Synthesis of technical, regulatory, and operational insights underscoring the practical pathways for adopting immersion cooling across varied data center environments

In conclusion, immersion cooling represents a maturing suite of technologies that address pressing thermal and sustainability challenges for modern data centers. Advances in dielectric approaches, fluid chemistries, enclosure engineering, and software-driven operational controls have collectively reduced barriers to adoption, enabling pilots and production deployments across colocation, enterprise, and hyperscale environments. End-user requirements across banking, government healthcare, and telecommunications continue to shape solution priorities, particularly around reliability, compliance, and environmental impact.

Trade dynamics and regional regulatory pressures introduce important considerations for sourcing and deployment strategies, encouraging organizations to prioritize supplier resilience and localized capabilities. Integration of hardware, services, and software remains critical to achieving predictable operations and unlocking the full benefits of immersion cooling. When guided by deliberate pilots, risk-aware procurement, and investments in operational skills, these systems can deliver robust thermal management while aligning with broader energy and sustainability goals.

Collectively, these insights should empower technical leaders, procurement teams, and executives to make informed decisions about when and how to adopt immersion cooling technologies, balancing innovation with operational continuity and regulatory compliance.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Data Center Immersion Cooling Coolant Market, by Coolant Chemistry

9. Data Center Immersion Cooling Coolant Market, by Dielectric Type

10. Data Center Immersion Cooling Coolant Market, by Fluid Type

11. Data Center Immersion Cooling Coolant Market, by Data Center Type

12. Data Center Immersion Cooling Coolant Market, by Application

13. Data Center Immersion Cooling Coolant Market, by End User Industry

14. Data Center Immersion Cooling Coolant Market, by Region

15. Data Center Immersion Cooling Coolant Market, by Group

16. Data Center Immersion Cooling Coolant Market, by Country

17. United States Data Center Immersion Cooling Coolant Market

18. China Data Center Immersion Cooling Coolant Market

19. Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기