인공강우(Cloud Seeding) 시장 : 기술 유형별, 용도별, 최종사용자별, 공급 메커니즘별 - 세계 예측(2025-2032년)
Cloud Seeding Market by Technology Type, Application, End User, Delivery Mechanism - Global Forecast 2025-2032
상품코드 : 1871042
리서치사 : 360iResearch
발행일 : 2025년 09월
페이지 정보 : 영문 199 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,850,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,310,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,553,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,350,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

인공강우 시장은 2032년까지 연평균 복합 성장률(CAGR) 10.35%로 12억 3,895만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 5억 6,329만 달러
추정 연도 : 2025년 6억 2,176만 달러
예측 연도 : 2032년 12억 3,895만 달러
CAGR(%) 10.35%

탄력성 향상을 위한 표적형 기후 변화에 대한 관심 증가를 주도하는 과학과 정책의 접점 및 운영상의 필요성에 대한 전략적 개요

인공강우는 실험적인 기술에서 기후 적응 및 수자원 관리 전략 포트폴리오에서 운영상 중요한 도구로 발전했습니다. 그 핵심은 구름 내부의 미세 물리 과정을 변경하고, 강수량에 영향을 미치고, 국지적 기상 재해를 완화하고, 물 안보 목표를 지원하는 데 있습니다. 기상 관측, 살포 플랫폼, 약제 배합의 발전으로 개입의 정확성과 예측 가능성은 높아졌지만, 윤리적, 법적, 환경적 문제는 여전히 도입 결정의 핵심 과제입니다.

기술적 진보, 환경적 스트레스 요인, 제도적 재편의 수렴이 기후 변화의 운영 방식과 거버넌스를 어떻게 재구성하고 있는가?

인공강우 정세는 기술적, 환경적, 제도적 요인의 수렴으로 인해 변혁적 변화를 겪고 있습니다. 원격 감지 및 수치 기상 예보의 발전으로 적절한 살포 시기의 식별 정확도가 향상되고 결과의 귀속 분석이 더욱 엄격해졌습니다. 이를 통해 최종 사용자와 자금 제공업체의 신뢰가 높아졌습니다. 동시에, 무인 항공 시스템과 같은 소형의 특정 임무에 특화된 낙하 플랫폼의 보급은 운영 장벽을 낮추고 개입의 잠재적인 지리적 범위를 넓혔습니다. 이러한 기술적 변화는 조달 우선순위와 운영 매뉴얼의 재구축을 촉진하고 있습니다.

최근 관세 조정이 이해관계자의 인공강우 프로그램 공급망, 조달 전략, 운영 탄력성을 어떻게 재구성하고 있는지 평가합니다.

최근 몇 년간의 정책 사이클에서 시행된 관세 변경은 인공강우 사업 및 공급망에 관련된 조직에 새로운 복잡성을 가져왔습니다. 특정 화학 약품 및 전문 장비에 대한 관세 인상은 기존 조달 경로에 혼란을 초래하여 조직이 조달 전략과 재고 관리 방법을 재평가하도록 유도하고 있습니다. 많은 경우, 조달팀은 현재 가격 압박과 프로그램의 성능과 안전에 필수적인 고순도 제제 및 정밀 부품을 확보해야 할 필요성과 균형을 맞추고 있습니다.

기술 유형, 응용 분야, 최종 사용자 요구, 제공 플랫폼이 상호 작용하고 운영 및 전략적 선택을 형성하는 과정을 밝혀내는 주요 세분화 분석

세분화 분석은 기술 개발, 운영 전개, 최종 사용자 참여에 대한 명확한 경로를 밝혀내고, 이는 업계 전반의 전략적 선택을 형성합니다. 기술 유형을 고려할 때, 드라이 아이스는 블록과 펠릿 형태로 고려되고, 흡습성 약물은 플레어와 소금 혼합물로 특징지어지며, 소금 플레어는 표적 핵생성을 위해 평가되고, 요오드화은은 플레이크 및 펠릿 형태로 제공됩니다. 각 양식은 운영 물류, 안전 프로토콜, 규제 승인에 영향을 미치는 각기 다른 취급, 보관, 유효성 프로파일을 나타냅니다. 따라서 프로그램 설계자는 대기 조건, 살포 제약, 환경적 고려사항에 따라 약제 선정에 우선순위를 두는 한편, 결과를 검증하기 위한 약제별 모니터링에 투자하고 있습니다.

지역별 역학 및 거버넌스 프레임워크는 세계 시장에서의 개발, 감독 및 파트너십에 대한 차별화된 접근 방식을 형성하고 있습니다.

지역적 역학은 프로그램 설계, 규제 프레임워크, 자금 조달 메커니즘에 강력한 영향을 미치고 있으며, 미주, 유럽-중동 및 아프리카, 아시아태평양에서는 각각 다른 촉진요인과 제약 요인이 존재합니다. 미국 대륙에서는 주정부 차원의 노력과 민간 부문과의 협력이 결합되어 초기 도입자의 접근 방식을 형성하고 있으며, 건조 및 반건조 지역의 수자원 안보와 교통량이 많은 회랑 부근의 항공 안전에 중점을 두고 있습니다. 이 지역의 정책 입안자들과 유틸리티 사업자들은 입증 가능한 성과, 독립적인 모니터링, 그리고 지역의 이익과 투자 의무를 조화시키는 비용 분담 모델에 점점 더 초점을 맞추었습니다.

화학제제 제조업체와 항공우주 통합사업자부터 분석 전문가, 검증기관에 이르기까지 다양한 기업의 역할이 경쟁과 가치 창출을 어떻게 형성하고 있는가?

이 분야에서 활동하는 기업들은 다양한 역할을 담당하고 있으며, 그 총합이 인공강우 기술의 성숙도를 결정하고 있습니다. 화학업체와 특수약제 조제업체는 고순도 약제 공급과 핵생성 효율 향상 및 환경 부하 저감을 위한 조제 연구에 대한 투자를 통해 기초적인 역할을 담당하고 있습니다. 항공우주 및 항공전자 기업은 살포 임무의 특정 요구 사항에 따라 살포 플랫폼, 항공전자 시스템, 페이로드 통합의 적응에 기여하고 있습니다. 한편, 원격 감지, 데이터 동화, 예측 분석을 전문으로 하는 기술 제공업체들은 개입의 목표 설정과 귀속 분석을 가능하게 하는 도구를 제공함으로써 점점 더 중심적인 역할을 하고 있습니다.

리더가 탄력적인 공급망을 구축하고, 모니터링과 이해관계자 참여를 강화하며, 책임감 있게 신뢰할 수 있는 도입을 확대할 수 있는 실행 가능한 전략 방안

업계 리더은 단기적인 운용 니즈와 역량 및 안정성에 대한 전략적 투자를 병행하는 포트폴리오 접근 방식을 채택해야 합니다. 첫째, 의약품 및 핵심 부품의 조달처를 다양화하고, 국내 생산 옵션을 평가하고, 무역 혼란 가능성을 고려한 유연한 계약 조건을 협상하여 공급망 복원력을 우선시해야 합니다. 동시에 약제 효율을 높이고 엄격한 영향 귀속을 가능하게 하는 정밀 살포 능력과 모니터링 시스템에 투자하여 프로그램 지속 자금의 근거를 강화합니다.

전문가 인터뷰, 관찰 데이터 세트, 공급망 매핑, 독립적 검증을 결합한 엄격한 혼합 연구 설계를 통해 확고한 조사 결과를 보장합니다.

본 조사에서는 과학적 엄밀성과 실무적 연관성의 균형을 맞추기 위해 정성적, 정량적 증거를 혼합하여 통합하는 방식을 사용하였습니다. 주요 데이터 수집을 위해 전문가, 프로그램 관리자, 기술 공급업체를 대상으로 구조화된 인터뷰를 실시했으며, 방법론적 토대를 확보하기 위해 동료 검토 문헌과 규제 당국 제출 서류 검토를 보완적으로 수행했습니다. 기상 데이터 세트와 원격탐사 기록을 분석하여 과거 도입 현황을 파악하고, 대표적인 기후 환경에서의 귀속 방법을 검증하였습니다.

증거에 기반한 전개, 이해관계자의 신뢰, 강력한 운영 설계가 기후 변화 이니셔티브의 미래 정당성과 효과를 결정짓는 방법을 요약합니다.

인공강우 기술은 과학기술력, 운영상의 필요성, 거버넌스에 대한 기대가 교차하는 전환점에 서 있습니다. 잠재적 이익과 엄격한 증거의 필요성 사이의 균형이 개입이 책임감 있게 확대되고 대중의 수용을 얻을 수 있는지를 결정합니다. 센싱 기술, 모델링 및 공급 플랫폼의 발전으로 인해 표적화된 개입의 실현 가능성이 크게 향상되었지만, 성공적인 도입은 입증 가능하고 투명한 성과와 적응형 제도적 프레임워크에 달려있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 인공강우 시장 : 기술 유형별

제9장 인공강우 시장 : 용도별

제10장 인공강우 시장 : 최종사용자별

제11장 인공강우 시장 : 살포 방법별

제12장 인공강우 시장 : 지역별

제13장 인공강우 시장 : 그룹별

제14장 인공강우 시장 : 국가별

제15장 경쟁 구도

LSH
영문 목차

영문목차

The Cloud Seeding Market is projected to grow by USD 1,238.95 million at a CAGR of 10.35% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 563.29 million
Estimated Year [2025] USD 621.76 million
Forecast Year [2032] USD 1,238.95 million
CAGR (%) 10.35%

A strategic introduction to the science, policy intersections, and operational imperatives driving renewed interest in targeted weather modification for resilience

Cloud seeding has evolved from an experimental technique to an operationally relevant tool in the portfolio of climate adaptation and water-resource management strategies. At its core, cloud seeding seeks to modify microphysical processes within clouds to influence precipitation outcomes, mitigate localized weather hazards, and support water security objectives. Advances in meteorological observation, delivery platforms, and agent formulation have increased the precision and predictability of interventions, even as ethical, legal, and environmental questions remain central to deployment decisions.

Against a backdrop of increasing hydrological stress, competing water demands, and a heightened need for resilience in critical infrastructure, cloud seeding has attracted renewed attention from public agencies, agricultural stakeholders, and private technology providers. This introduction situates the practice within contemporary policy and operational priorities, outlining why practitioners and decision-makers are re-evaluating deployment criteria, investment priorities, and collaborative frameworks. Moreover, it emphasizes the interplay between scientific rigor, regulatory oversight, and community acceptance that will determine the pace and scale of future deployments.

Transitioning from historical experimentation toward measurable outcomes requires robust monitoring, transparent reporting, and rigorous impact assessment frameworks. As a result, stakeholders are placing greater value on standardized performance metrics, third-party evaluations, and cross-disciplinary partnerships that bridge atmospheric science, engineering, and public policy. This recalibration is central to understanding how cloud seeding can be responsibly integrated into broader climate adaptation and risk management portfolios.

How converging technological advances, environmental stressors, and institutional realignments are reshaping operational approaches and governance for weather modification

The landscape for cloud seeding is undergoing transformative shifts driven by a convergence of technological, environmental, and institutional forces. Advances in remote sensing and numerical weather prediction now enable more accurate identification of favorable seeding windows and more rigorous attribution of outcomes, which in turn has elevated confidence among end users and funders. Simultaneously, the proliferation of smaller, mission-specific delivery platforms such as unmanned aerial systems has lowered operational barriers and expanded the potential geographic footprint of interventions. These technological shifts are reshaping procurement priorities and operational playbooks.

Environmental change is another primary driver of transformation. Increasing variability in precipitation regimes, more frequent extreme weather events, and growing competition for freshwater resources are prompting governments and utilities to revisit unconventional tools for supply augmentation and hazard mitigation. As a result, cloud seeding programs are increasingly evaluated not only for their hydrometeorological effects but also for their role within integrated water resource management strategies. This reframing elevates the importance of decision-support systems and stakeholder engagement processes that align interventions with broader resilience objectives.

Institutional dynamics are also shifting. Private-sector entrants and cross-sector consortia are bringing new financing models and operational capabilities to a field historically dominated by public agencies and research institutions. At the same time, regulators and environmental agencies are refining permitting processes and environmental review standards, which is creating a more predictable, albeit more stringent, operating environment. Taken together, these shifts are catalyzing a more professionalized industry characterized by evidence-based deployment, clearer accountability mechanisms, and stronger links between operational outcomes and policy goals.

Assessing how recent tariff adjustments are reshaping supply chains, procurement strategies, and operational resilience for seeding programs across stakeholders

Tariff changes enacted in recent policy cycles have introduced a new layer of complexity for organizations engaged in cloud seeding operations and supply chains. Increased duties on certain chemical agents and specialized equipment can disrupt established procurement channels, prompting organizations to reassess sourcing strategies and inventory management practices. In many cases, procurement teams are now balancing price pressures against the need to secure high-purity formulations and precision components that are critical to program performance and safety.

The cumulative effect extends beyond unit procurement costs to influence longer-term planning. For manufacturers of seeding agents and delivery systems, tariff-driven adjustments can incentivize nearshoring of production or vertical integration to stabilize margins and ensure supply continuity. For research institutions and public programs, the need for alternative suppliers or domestic substitutes can extend timelines for pilot programs and increase the complexity of compliance with environmental and safety standards. At the same time, supply constraints may accelerate innovation in agent efficiency and delivery precision, as end users seek to achieve comparable operational outcomes with reduced material inputs.

Policy responses and market adaptations are not uniform across stakeholders. Larger integrators and defense-oriented end users may absorb incremental costs more readily, while smaller agricultural operators and municipal water managers may be forced to defer projects or pursue cooperative procurement models. In addition, tariffs have ripple effects on global collaboration; international partners may recalibrate joint programs in response to higher transactional costs, thereby influencing research partnerships, technology transfer, and access to specialized components. Ultimately, the tariff environment is prompting a strategic reorientation toward supply chain resilience, localized production capacities, and contractual structures that can accommodate evolving trade policy risks.

Key segmentation insights revealing how technology types, application domains, end-user needs, and delivery platforms interact to shape operational and strategic choices

Segmentation analysis reveals discrete pathways for technical development, operational deployment, and end-user engagement that are shaping strategic choices across the sector. Consider technology types where Dry Ice is examined in both block and pellet form, Hygroscopic Agents are characterized by flares and salt mixtures, Salt Flares are evaluated for targeted nucleation, and Silver Iodide is available as flake and pellet formulations; each modality presents distinct handling, storage, and effectiveness profiles that influence operational logistics, safety protocols, and regulatory approvals. Consequently, program designers are prioritizing agent selection based on atmospheric conditions, delivery constraints, and environmental considerations, while also investing in agent-specific monitoring to validate outcomes.

Application-driven segmentation differentiates initiatives focused on cyclone mitigation, fog dissipation, hail suppression, and precipitation enhancement. Each application imposes unique technical and timing requirements; cyclone mitigation demands large-scale coordination and predictive lead times, fog dissipation prioritizes localized, rapid-response deployments near transport corridors, hail suppression targets convective dynamics with high temporal precision, and precipitation enhancement requires alignment with synoptic conditions and watershed delivery objectives. As a result, operational doctrines and funding models diverge by application, with implications for regulatory engagement and community outreach.

End-user segmentation likewise influences program architecture. Agriculture, aviation, government, and water management stakeholders bring distinct performance targets, risk tolerances, and procurement constraints. Within governmental users, both defense-oriented agencies and environmental agencies maintain different operational imperatives: defense entities emphasize reliability and integration with broader mission systems, whereas environmental agencies prioritize ecological safeguards and public transparency. These differences shape contractual terms, data sharing expectations, and the nature of public-private collaboration.

Delivery mechanism segmentation spans aircraft platforms, ground-based systems, rocket-assisted delivery, and unmanned aerial vehicles, with aircraft further defined by fixed wing and rotorcraft types, and unmanned aerial vehicles subdivided into drones and unmanned planes. Platform selection affects operational tempo, geographic reach, and cost structures. Fixed-wing platforms offer extended range and payload capacity suited to wide-area precipitation enhancement, rotorcraft provide vertical flexibility for targeted releases, ground-based and rocket-assisted systems can serve niche terrains or rapid-response needs, and unmanned aerial options enable experimentation with lower-risk, scalable deployments. Taken together, these segmentation perspectives underscore how technical choices, operational constraints, and stakeholder objectives must be reconciled to design credible, ethically defensible, and cost-effective programs.

Regional dynamics and governance frameworks shaping differentiated approaches to deployment, oversight, and partnership across global markets

Regional dynamics exert a powerful influence on program design, regulatory frameworks, and funding mechanisms, with distinct drivers and constraints in the Americas, in Europe, Middle East & Africa, and in Asia-Pacific. In the Americas, a mix of state-level initiatives and private-sector partnerships is shaping early adopters' approaches, with emphasis on water security in arid and semi-arid regions and on aviation safety near high-traffic corridors. Policymakers and utilities in this region are increasingly focused on demonstrable outcomes, independent monitoring, and cost-sharing models that align local benefits with investment obligations.

Across Europe, Middle East & Africa, regulatory complexity and diverse climatic regimes create a mosaic of approaches, from highly regulated pilot programs to opportunistic deployments in water-stressed locales. Environmental review standards and cross-border water governance issues often demand elevated stakeholder consultation, which can extend timelines but also enhance social license when managed proactively. In addition, defense-related applications and international scientific collaborations influence program design in specific jurisdictions.

In Asia-Pacific, rapid urbanization, agricultural pressures, and varying levels of institutional capacity produce both urgency and heterogeneity in responses. Some nations are investing in national-level programs that integrate cloud seeding with broader water resource planning, while others are experimenting with localized, technology-driven pilots. Across the region, partnerships between national meteorological services, research institutions, and private technology providers are becoming more common, reflecting a pragmatic approach that seeks to balance operational needs with environmental oversight. As a result, regional strategies are increasingly tailored to hydrological regimes, governance structures, and the maturity of domestic capabilities, underscoring the need for adaptive program design.

How diverse corporate roles-from chemical formulators and aerospace integrators to analytics specialists and verification bodies-are shaping competitive dynamics and value creation

Companies active in this space occupy diverse roles that collectively determine the maturation trajectory of cloud seeding capabilities. Chemical manufacturers and specialty formulators play a foundational role by supplying high-purity agents and by investing in formulation research to improve nucleation efficiency and reduce environmental footprint. Aerospace and avionics firms are contributing by adapting delivery platforms, avionics systems, and payload integration to the specific demands of seeding missions. Meanwhile, technology providers specializing in remote sensing, data assimilation, and predictive analytics are increasingly central, as their tools enable better targeting and attribution of interventions.

Service integrators and program operators are emerging as critical intermediaries that package agent supply, delivery services, monitoring, and regulatory compliance into turnkey offerings. These firms are often the primary point of contact for government agencies and utilities, translating scientific findings into operational procedures and contractual terms. Research institutions and independent verification bodies also exert substantial influence, offering third-party evaluation, impact assessment methodologies, and peer-reviewed evidence that informs public perceptions and regulatory decisions. Collectively, these actors are forging a more professionalized value chain in which technical competence, data transparency, and regulatory literacy determine competitive advantage.

Actionable strategic moves for leaders to build resilient supply chains, strengthen monitoring and stakeholder engagement, and scale credible deployments responsibly

Industry leaders should adopt a portfolio approach that balances near-term operational needs with strategic investments in capability and credibility. First, prioritize supply chain resilience by diversifying sources of agents and critical components, evaluating domestic production options, and negotiating flexible contractual terms that account for potential trade disruptions. Concurrently, invest in precision delivery capabilities and monitoring systems that increase agent efficiency and enable rigorous impact attribution, thereby strengthening the evidentiary basis for continued program funding.

Second, deepen regulatory and community engagement by proactively sharing monitoring protocols, environmental risk assessments, and independent evaluation plans. Establishing transparent metrics and open data channels helps build public trust and reduces the likelihood of contentious regulatory interventions. Third, pursue targeted partnerships across the innovation ecosystem: collaborate with research institutions to validate emerging agent formulations, align with aerospace firms to refine platform integration, and coordinate with water utilities and agricultural stakeholders to design outcome-oriented pilot projects. These cross-sector alliances accelerate learning while distributing operational risk.

Finally, embed robust governance and risk-management practices into program design, including clear liability arrangements, insurance coverages, and contingency plans for unintended outcomes. By institutionalizing these safeguards and prioritizing adaptive management, leaders can reduce operational uncertainty and create the conditions for scalable, ethically defensible deployment of cloud seeding technologies.

A rigorous mixed-methods research design combining expert interviews, observational datasets, supply-chain mapping, and independent validation to ensure robust findings

This research synthesized qualitative and quantitative evidence through a mixed-methods approach designed to balance scientific rigor with practical relevance. Primary data collection included structured interviews with subject-matter experts, program managers, and technical suppliers, complemented by a review of peer-reviewed literature and regulatory filings to ensure methodological grounding. Meteorological datasets and remote-sensing records were analyzed to understand historical deployment contexts and to test attribution methodologies in representative climatic settings.

Scenario analysis and supply chain mapping were used to evaluate the operational implications of policy shifts and trade interventions. Validation steps included cross-referencing vendor technical specifications with independent testing reports and consulting with legal and environmental specialists to interpret regulatory requirements across jurisdictions. Finally, draft findings underwent expert review to refine assumptions, ensure clarity of interpretation, and highlight areas where further empirical study is warranted. This layered methodology supports robust conclusions while acknowledging the need for ongoing monitoring and independent evaluation to strengthen causal attribution between interventions and hydrological outcomes.

Summarizing how evidence-based deployment, stakeholder trust, and resilient operational design will determine the future legitimacy and effectiveness of weather modification initiatives

Cloud seeding stands at an inflection point where scientific capability, operational need, and governance expectations converge. The balance between potential benefits and the need for rigorous evidence will determine whether interventions scale responsibly and gain broad public acceptance. Advances in sensing, modeling, and delivery platforms have materially improved the feasibility of targeted interventions, yet successful adoption will hinge on demonstrable, transparent outcomes and adaptive institutional arrangements.

Looking ahead, the most successful programs are likely to be those that pair technological innovation with strong stakeholder engagement, resilient procurement strategies, and rigorous environmental oversight. By focusing on incremental gains in efficiency, investing in independent evaluation, and aligning interventions with broader water management goals, practitioners can create accountable pathways for weather modification to contribute to resilience objectives. In doing so, they will need to remain attentive to ethical considerations, regulatory developments, and evolving public expectations, all of which will shape the trajectory of this field.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Cloud Seeding Market, by Technology Type

9. Cloud Seeding Market, by Application

10. Cloud Seeding Market, by End User

11. Cloud Seeding Market, by Delivery Mechanism

12. Cloud Seeding Market, by Region

13. Cloud Seeding Market, by Group

14. Cloud Seeding Market, by Country

15. Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기