야시장비 시장 : 제품 유형별, 플랫폼별, 세대별, 파장별, 기술별, 용도별, 유통 채널별 - 세계 예측(2025-2032년)
Night Vision Device Market by Product Type, Platform, Generation, Wavelength, Technology, Application, Distribution Channel - Global Forecast 2025-2032
상품코드 : 1828007
리서치사 : 360iResearch
발행일 : 2025년 09월
페이지 정보 : 영문 181 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,701,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,150,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,335,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,086,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

야시장비 시장은 2032년까지 CAGR 11.59%로 194억 1,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 80억 6,000만 달러
추정연도 2025 89억 5,000만 달러
예측연도 2032 194억 1,000만 달러
CAGR(%) 11.59%

시스템, 센서, 플랫폼 통합에 대한 전략적 평가의 무대, 현대의 암시 정세에 대한 간결한 방향성 제시

야시 기술은 광학 공학, 센서 혁신, 국방, 법 집행, 자동차 안전, 환경 관측 등 미션 크리티컬 용도의 고유한 교차점에 위치하고 있습니다. 지난 10년간 소형화, 센서 융합, 디지털 프로세싱의 발전으로 성능, 견고성, 시스템 통합을 중시하는 수요 프로파일을 촉진하면서 실행 가능한 이용 사례를 확대했습니다. 이 소개에서는 이러한 기술적, 운영적 진화 속에서 오늘날의 상황을 파악하고, 의사결정자가 제품 수준의 비교에 그치지 않고 플랫폼의 적합성, 수명주기 비용, 상호운용성을 고려해야 하는 이유를 밝힙니다.

최종사용자의 새로운 기대는 이제 단순한 저조도 가시성뿐만 아니라 작전 거리에서의 식별 가능성, 확장된 비전 오버레이와의 통합, 자율 내비게이션 스택과의 호환성 등의 기능까지 확장되고 있습니다. 그 결과, 조달팀과 제품 개발자들은 개별 구성 요소의 속성이 아닌 전체 시스템의 성능이라는 렌즈를 통해 야시 솔루션을 평가하게 되었습니다. 그 결과, 여러 이해관계자의 평가, 규제 준수 여부 확인, 운영 관련 조건에서의 현장 검증을 위해 조달 주기가 길어지고 있습니다.

과거 패러다임의 전환에 따라 시장에서는 프리미엄 기능은 더욱 전문화되는 반면, 기본적인 이미지 요소의 상품화가 가속화되고 있습니다. 따라서 조직은 단기적인 비용 압박과 단계적 업그레이드를 가능하게 하는 적응형 아키텍처에 대한 전략적 투자 사이에서 균형을 맞추어야 합니다. 다음 섹션에서는 기술 변화, 무역 정책의 영향, 세분화 역학, 지역 패턴, 그리고 오늘날 장교 수준, 사령관 수준, 제품 관리자의 의사결정을 형성하는 경쟁 행동에 대해 설명합니다.

야시장비를 둘러싼 환경은 센서 물리학, 계산 이미지 처리, 시스템 통합의 동시적인 발전에 힘입어 일련의 변화의 시기를 맞이하고 있습니다. 비냉각식 열 감지기와 향상된 근적외선 감도를 통해 기존 고비용 세대 디바이스와 보다 컴팩트한 새로운 아키텍처의 성능 차이가 좁혀지고 있습니다. 그 결과, 비용에 민감한 용도는 이전에는 고가의 냉각 시스템이 필요했던 기능을 사용할 수 있게 되었으며, 고성능 프로그램은 해상도, 감도, 폼팩터의 한계를 계속 넓혀가고 있습니다.

인공지능과 기계 인식은 자동화된 타겟 하이라이트, 위협 분류, 장면 맥락 확장 등의 작업을 가능하게 하여 최종사용자 경험을 재구성하고 있습니다. 이러한 계산 능력의 향상으로 작업자의 부담을 줄이고, 복잡하고 역동적인 환경에서 암시 장치의 유용성을 확대할 수 있습니다. 이와 함께 개발자들은 다중 스펙트럼 융합(열, 단파장 적외선, 이미지 강화 채널의 조합)을 우선시하여 다양한 환경 조건에서 감지 및 식별을 강화하고 있습니다.

공급망과 제조 패턴도 진화하고 있습니다. 광학기기 및 전자기기의 컴포넌트 레벨의 상품화로 인해 업그레이드 주기 단축 및 수리 간소화를 지원하는 모듈형 제품 아키텍처가 추진되고 있습니다. 동시에 헬멧, 무기 시스템, 차량, 자율 플랫폼과의 긴밀한 통합에 대한 요구는 공급업체들이 표준화된 인터페이스와 검증된 통합 키트를 개발하도록 유도하고 있습니다. 그 결과, 비즈니스 모델은 수명주기 서비스 및 소프트웨어 업그레이드의 수입원으로 전환되어 전략적 가치 제안을 초기 하드웨어 판매 이상으로 확장할 수 있게 됩니다. 이러한 변화의 흐름은 조달 마인드를 변화시키고, 민첩한 공급업체에게 기회를 창출하며, 지속가능성과 인증에 대한 새로운 고려사항을 제기하고 있습니다.

운영 준비태세 및 공급업체 전략에 영향을 미치는 관세 조치별 조달 재편, 공급업체 다변화, 제조 전환에 따른 영향 분석

미국이 2025년에 도입한 관세 조치의 누적 효과는 암시 생태계 전반에 걸쳐 조달 계산, 공급업체 선택, 장기 조달 전략을 재구성했습니다. 주요 광학 부품, 반도체 이미지 센서, 일부 수입 조립품에 대한 관세 조치로 인해 외부에서 조달한 서브 어셈블리의 상륙 비용이 상승하여 많은 바이어들이 공급업체 포트폴리오를 재평가하게 되었습니다. 중요한 것은 이러한 정책 환경이 향후 무역 혼란에 대한 노출을 줄이기 위해 온쇼어링, 니어쇼어링, 적격 대체 공급업체 전략에 대한 논의를 가속화했다는 점입니다.

비용 구조의 변화에 대응하기 위해 각 제조업체들은 다양한 전술적, 전략적 수단을 강구했습니다. 산업별로는 관세의 영향을 받는 수입품에 대한 의존도를 낮추기 위해 수직계열화를 가속화하고, 광학 부품 및 센서 조립의 사내 역량을 확대했습니다. 또한 우호적인 무역 상대국에 공급업체 기반을 분산시켜 중요 부품의 재고 버퍼를 늘린 제조업체도 있습니다. 이러한 움직임은 리드타임, 자본 배분, 운영 케이던스에 영향을 미치며, 기업은 금형, 품질관리 인프라, 근로자 교육에 투자하여 기존에 외주하던 공정을 자체 시설로 전환합니다.

조달 기관, 특히 국방 및 법 집행 기관은 관세 관련 돌발 상황을 포함한 계약 문구를 조정하고, 국내 제조 내용 및 인증 경로를 중시하는 계약을 체결했습니다. 또한 관세 환경은 이해관계자들이 지정학적 위험과 임무 보장의 균형을 맞추기 위해 이중용도 공급망에 대한 조사를 강화하는 계기가 되었습니다. 가격 압박은 하위 범용 제품에 더 심각한 영향을 미쳤으나, 상위 기간계 시스템은 납품 지연과 인증 작업량 증가를 통해 프로그램적으로 영향을 받았습니다. 공급업체 리스크 평가와 제품 로드맵에 관세 시나리오 계획을 통합한 조직은 수명주기의 장기적인 관점에서 역량 타임라인을 유지하고 비용을 관리할 수 있는 유리한 위치에 있습니다.

다차원적 세분화 분석을 통해 제품군, 플랫폼, 세대, 파장, 채널이 어떻게 수렴하고 설계와 조달의 트레이드오프를 결정하는지를 파악할 수 있습니다.

심층 세분화 분석을 통해 제품 유형, 플랫폼, 세대, 파장, 기술, 용도, 유통 채널에 걸친 미묘한 수요 촉진요인을 파악하여 설계 우선순위와 시장 진출 전략에 영향을 미칠 수 있습니다. 제품 유형별로는 쌍안경, 단안경, 야시경, 야간 고글, 야간 조준기, 스코프 등 각기 다른 기능적 요구 사항을 충족하는 제품군이 있으며, 각 제품군은 무게, 시야, 장착 호환성의 트레이드 오프에 따라 정의됩니다. 플랫폼에 따라 솔루션은 핸드헬드, 헬멧 장착형, 차량 탑재형, 무기 탑재형 이용 사례에 대응해야 하며, 차량 탑재형 시스템은 항공기, 육상 차량, 선박 플랫폼으로 세분화되어 각각 고유한 환경과 인터페이스의 제약이 있습니다.

목차

제1장 서론

제2장 분석 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 야시장비 시장 : 제품 유형별

제9장 야시장비 시장 : 플랫폼별

제10장 야시장비 시장 : 세대별

제11장 야시장비 시장 : 파장별

제12장 야시장비 시장 : 기술별

제13장 야시장비 시장 : 용도별

제14장 야시장비 시장 : 유통 채널별

제15장 야시장비 시장 : 지역별

제16장 야시장비 시장 : 그룹별

제17장 야시장비 시장 : 국가별

제18장 경쟁 구도

KSA
영문 목차

영문목차

The Night Vision Device Market is projected to grow by USD 19.41 billion at a CAGR of 11.59% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 8.06 billion
Estimated Year [2025] USD 8.95 billion
Forecast Year [2032] USD 19.41 billion
CAGR (%) 11.59%

Concise orientation to the contemporary night vision landscape setting the stage for strategic evaluation of systems, sensors, and platform integration

Night vision technologies occupy a unique intersection of optical engineering, sensor innovation, and mission-critical applications across defense, law enforcement, automotive safety, and environmental observation. Over the past decade, advances in miniaturized thermal imaging, sensor fusion, and digital processing have expanded the set of viable use cases while driving a demand profile that values performance, ruggedization, and systems integration. This introduction situates the contemporary landscape within that technical and operational evolution, highlighting why decision-makers must move beyond product-level comparisons to consider platform fit, lifecycle costs, and interoperability.

Emerging end-user expectations now extend past simple low-light visibility to include capabilities such as identifiability at operational distances, integration with augmented vision overlays, and compatibility with autonomous navigation stacks. As a result, procurement teams and product developers are increasingly evaluating night vision solutions through the lens of total systems performance rather than isolated component attributes. Consequently, procurement cycles are lengthening to accommodate multi-stakeholder evaluation, regulatory compliance checks, and field validation under operationally relevant conditions.

Transitioning from historical paradigms, the market is also seeing an accelerated commodification of basic imaging elements even as premium capabilities become more specialized. In turn, organizations must balance short-term cost pressures with strategic investment in adaptable architectures that allow phased upgrades. The subsequent sections unpack the technological shifts, trade policy influences, segmentation dynamics, regional patterns, and competitive behaviors that shape officer-level, commander-level, and product-manager decisions today.

The night vision landscape is undergoing a set of transformative shifts driven by concurrent advances in sensor physics, computational imaging, and systems integration. Improvements in uncooled thermal detectors and near-infrared sensitivity are narrowing the performance gap between legacy, high-cost generation devices and newer, more compact architectures. Consequently, cost-sensitive applications can now access capabilities that previously required expensive cooled systems, while high-performance programs continue to push the boundaries of resolution, sensitivity, and form factor.

Artificial intelligence and machine perception are reshaping the end-user experience, enabling tasks such as automated target highlighting, threat classification, and scene context augmentation. This computational uplift reduces operator burden and expands the utility of night vision devices in complex, dynamic environments. In parallel, developers are prioritizing multispectral fusion-combining thermal, shortwave infrared, and image-intensified channels-to deliver enhanced detection and identification across diverse environmental conditions.

Supply chain and manufacturing patterns are also evolving. Component-level commoditization of optics and electronics is driving modular product architectures that support faster upgrade cycles and simplified repairability. At the same time, demands for tighter integration with helmets, weapon systems, vehicles, and autonomous platforms are prompting suppliers to develop standardized interfaces and validated integration kits. As a result, business models are shifting toward lifecycle services and software-upgrade revenue streams, extending the strategic value proposition beyond the initial hardware sale. Together, these shifts are transforming procurement mindsets, creating opportunities for agile suppliers and raising new considerations for sustainment and certification.

Analysis of tariff-induced procurement realignment, supplier diversification, and manufacturing shifts influencing operational readiness and supplier strategies

The cumulative effects of tariff actions introduced by the United States in 2025 have reshaped procurement calculus, supplier selection, and long-term sourcing strategies across the night vision ecosystem. Tariff measures that targeted key optical components, semiconductor imaging sensors, and select imported assemblies increased landed costs for externally sourced subassemblies, prompting many buyers to reassess supplier portfolios. Importantly, the policy environment accelerated conversations around onshoring, nearshoring, and qualified alternate-supplier strategies to mitigate exposure to future trade disruptions.

In response to the changed cost structure, manufacturers have taken a range of tactical and strategic measures. Some accelerated vertical integration, expanding in-house capabilities for optics and sensor assembly to reduce reliance on tariff-affected imports. Others diversified supplier bases across friendly trade partners and increased inventory buffers for critical components. These moves have implications for lead times, capital allocation, and operational cadence, as firms invest in tooling, quality-control infrastructure, and workforce training to transition previously outsourced processes into their facilities.

Procurement agencies, particularly within defense and law enforcement, adapted contracting language to include tariff-related contingencies and awarded contracts that emphasized domestic manufacturing content and certification pathways. Moreover, the tariff environment incentivized greater scrutiny of dual-use supply chains, as stakeholders sought to balance geopolitical risk with mission assurance. While price pressures affected lower-tier commodity products more acutely, higher-tier, mission-critical systems experienced programmatic impacts through delayed deliveries and increased certification workloads. Going forward, trade policy remains a factor in strategic planning; organizations that integrate tariff scenario planning into supplier risk assessments and product roadmaps are better positioned to preserve capability timelines and manage costs over lifecycle horizons.

Multidimensional segmentation analysis revealing how product classes, platforms, generations, wavelengths, and channels converge to dictate design and procurement tradeoffs

Deep segmentation analysis reveals nuanced demand drivers across product types, platforms, generations, wavelengths, technologies, applications, and distribution channels that influence design priorities and go-to-market tactics. Based on Product Type, market participants address distinct functional requirements across Binoculars, Monoculars, Night Vision Goggles, Night Vision Sights, and Scopes, with each product class defined by tradeoffs in weight, field of view, and mounting compatibility. Based on Platform, solutions must accommodate Handheld, Helmet Mounted, Vehicle Mounted, and Weapon Mounted use cases, where Vehicle Mounted systems further subdivide into Aircraft, Land Vehicles, and Marine platforms, each imposing unique environmental and interface constraints.

Based on Generation, procurement decision-makers differentiate between Gen I, Gen II, Gen III, and Gen IV devices to balance cost, sensitivity, and lifecycle expectations, recognizing that generational distinctions often reflect underlying tube and detector technology rather than user-facing features alone. Based on Wavelength, system selection navigates between Longwave Infrared, Midwave Infrared, Near Infrared, and Shortwave Infrared bands, with wavelength choice dictating detection ranges, atmospheric sensitivity, and passive versus active illumination strategies. Based on Technology, design teams choose among Active Illumination, Image Intensifier, and Thermal Imaging approaches; Active Illumination further splits into Laser and LED options, Image Intensifier bifurcates into Green Phosphor and White Phosphor variants, and Thermal Imaging requires decisions between Cooled and Uncooled detectors, each with implications for power, maintenance, and performance.

Based on Application, the diverse end-use set-Automotive, Law Enforcement, Military & Defense, Search & Rescue, and Wildlife Observation-drives variant specifications related to durability, form factor, interface standards, and certification. Based on Distribution Channel, the final-mile considerations hinge on Offline and Online pathways, where Online selling further differentiates between Brand Websites and eCommerce Platform presences that affect warranty administration, customer education, and returns management. Taken together, these segmentation dimensions create a multidimensional decision matrix: device architects and procurement officers must stitch together tradeoffs across optical chain, electronics, user ergonomics, and after-sales commitments to align offerings with mission needs and purchasing preferences.

Regional demand, procurement practices, and industrial strengths shaping divergent adoption pathways and supplier advantage across major global territories

Regional dynamics exert a powerful influence on technology adoption rates, procurement practices, and supplier strategies, driven by differing defense priorities, regulatory regimes, and industrial bases. In the Americas, demand is underpinned by extensive defense procurement cycles, an active law enforcement modernization agenda, and growing commercial interest in automotive night-sensing technologies. Local manufacturing capacity and certification ecosystems support higher domestic content requirements, and procurement entities often prioritize interoperability with legacy platforms and established standards to streamline integration and sustainment.

Europe, Middle East & Africa presents a heterogeneous picture where legacy defense partnerships, regional security concerns, and diverse procurement mechanisms coexist. NATO-aligned buyers emphasize compatibility and alliance-level standardization, whereas countries with distinct operational theaters place premium value on environmental ruggedness and multispectral performance. The region's supplier base includes specialized optics firms and integrators that cater to both tactical and maritime applications, and regulatory regimes shape export controls and end-user verification processes.

Asia-Pacific demonstrates vigorous uptake driven by modernization programs, border surveillance imperatives, and civilian safety initiatives, and it benefits from an expanding regional manufacturing footprint. Nations in this region pursue a mix of indigenous development and international procurement, often leveraging local partnerships to accelerate certification and production lines. As a result, suppliers that can offer flexible transfer arrangements, co-development pathways, and local support infrastructure gain a competitive edge. Across regions, interoperability, sustainment affordability, and regulatory compliance remain stable cross-cutting concerns, even as tactical priorities and procurement rhythms differ markedly.

Competitive landscape characterized by specialization, integration partnerships, and software-driven differentiation that determine supplier positioning and customer value

Competitive behavior in the night vision sector reflects a spectrum of business models that range from specialized component suppliers to vertically integrated systems houses. Some companies concentrate on detector innovation and imaging cores, investing heavily in sensor physics and fabrication techniques to maintain a technological lead. Others focus on optics, ruggedized housings, and mechanical subsystems that enable platform integration and field survivability. Meanwhile, integrators assemble these elements into turnkey solutions that meet strict certification and interoperability standards for defense and OEM customers.

Strategic differentiation increasingly relies on software and services that extend the value proposition beyond hardware. Firms that provide upgradeable firmware, AI-enabled analytics, and secure data backplanes can shift the conversation from one-time product sales to recurring revenue models that encompass maintenance, calibration, and lifecycle upgrades. Partnerships between sensor specialists and systems integrators are common, forming ecosystems where rapid prototyping and joint qualification accelerate time-to-field for new capabilities.

Mergers, strategic alliances, and targeted investments in manufacturing capacity are shaping competitive dynamics, with players aiming to consolidate supply chain control and capture more of the total-system value. At the same time, nimble smaller firms are carving niches by offering highly specialized modules or customer-tailored solutions. Ultimately, competitive success depends on the ability to combine reliable supply chains, certified integration paths, and software-rich feature sets that meet increasingly specific operational requirements while maintaining attractive lifecycle economics.

Practical strategic moves for resilient supply chains, modular architectures, and software-enabled differentiation to secure competitive advantage and sustainment outcomes

Industry leaders can translate market dynamics into advantage by implementing a triage of strategic moves that balance near-term resilience with long-term capability growth. First, diversify supplier bases and establish qualified second-sources for critical detectors, optics, and electronic components to mitigate tariffs and geopolitical risk while preserving program timelines. Second, invest in modular architectures and standardized interfaces to enable incremental upgrades, reduce field downtime, and increase cross-platform compatibility; this reduces total lifecycle friction and facilitates aftermarket revenue.

Third, prioritize software-enabled features, including robust firmware update mechanisms, edge AI for automated target recognition, and secure data telemetry that supports remote diagnostics and predictive maintenance. These capabilities heighten product differentiation and create recurring touchpoints with end users. Fourth, cultivate strategic partnerships with vehicle OEMs, defense integrators, and academic research centers to co-develop tailored solutions that meet domain-specific performance benchmarks and expedite certification pathways. Fifth, incorporate tariff and trade-scenario planning into procurement and pricing models to proactively manage cost impacts while maintaining market access. By aligning R&D investments with platform integration priorities and sustainment economics, organizations can optimize capital allocation and accelerate capability delivery.

Finally, leaders should strengthen after-sales support and training offerings to increase system uptime and user proficiency, particularly for high-stakes applications such as search and rescue or tactical operations. Enhanced field training, modular repair kits, and digital knowledge bases reduce operational risk and foster customer loyalty. Implementing these actions in concert will improve resilience, shorten decision cycles, and secure a clearer path to market leadership amid shifting technological and policy conditions.

Rigorous, multi-method research approach integrating primary interviews, technical scans, supply chain mapping, and scenario validation to ensure practical and credible insights

The research methodology underpinning this analysis combined multiple evidence streams to ensure rigorous, defensible insight while avoiding reliance on a single source of truth. Primary research included structured interviews with system integrators, procurement officers, design engineers, and field operators to capture experiential knowledge about operational constraints, integration challenges, and maintenance realities. These qualitative inputs were complemented by technical literature reviews and patent landscape scans to identify emergent sensor technologies, cooling strategies, and signal-processing innovations that inform product roadmaps.

Quantitative validation used component-level supply chain mapping, tariff schedule analysis, and time-series procurement signals to understand sourcing trends and lead-time sensitivities. Scenario planning exercises were applied to assess tariff and trade policy contingencies, exploring supplier responses such as nearshoring, stockpiling, and vertical integration. Triangulation ensured that anecdotal insights from field interviews aligned with observable changes in supplier certifications, manufacturing investments, and contract language trends.

Finally, findings were peer-reviewed by subject-matter experts across optics, thermal imaging, and defense acquisition to validate assumptions, refine technical descriptions, and confirm that recommendations were practical and executable. This layered methodology balances technical depth with operational realism, producing insights that are both actionable for product teams and credible for procurement authorities seeking to align capability delivery with strategic objectives.

Concise synthesis emphasizing the convergence of technological advances and policy shifts that mandate systems thinking, supply resilience, and tailored regional strategies

In summary, the night vision domain is at an inflection point where sensor advances, computational capabilities, and policy shifts converge to reshape procurement priorities and product strategies. Technical improvements in thermal and near-infrared detection, together with multispectral fusion and AI-assisted processing, are expanding the scope of feasible applications while raising expectations for integration and sustainment. Concurrently, trade policy changes have prompted re-evaluation of sourcing strategies and accelerated investments in local capabilities and supplier diversification.

For decision-makers, the imperative is to adopt a systems perspective that accounts for platform requirements, lifecycle economics, and geopolitical risk. Organisations that align modular product architectures with robust software roadmaps and diversified supply chains will better navigate cost pressures and certification workloads while delivering field-ready capabilities. Moreover, regional differences in procurement practices and industrial capacity require tailored approaches: what succeeds in one geography may not translate directly to another without adjustments for standards, environmental conditions, and end-user training needs.

Ultimately, the combination of strategic procurement planning, targeted R&D investment, and strengthened after-sales support will determine which suppliers and programs achieve sustained success. By integrating the analytical themes articulated in this report into decision processes, stakeholders can convert market insight into operational advantage and ensure that night vision capabilities remain fit for purpose in increasingly complex mission environments.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Night Vision Device Market, by Product Type

9. Night Vision Device Market, by Platform

10. Night Vision Device Market, by Generation

11. Night Vision Device Market, by Wavelength

12. Night Vision Device Market, by Technology

13. Night Vision Device Market, by Application

14. Night Vision Device Market, by Distribution Channel

15. Night Vision Device Market, by Region

16. Night Vision Device Market, by Group

17. Night Vision Device Market, by Country

18. Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기