¸ðºô¸®Æ¼¿ë AI ½ÃÀå : ¸ðºô¸®Æ¼ À¯Çüº°, ±â¼úº°, ¹èÆ÷ ¸ðµåº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)
AI in Mobility Market by Mobility Type, Technology, Deployment Mode, Application, End User - Global Forecast 2025-2030
»óǰÄÚµå : 1809979
¸®¼­Ä¡»ç : 360iResearch
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 190 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,939 £Ü 5,548,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF ¹× Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 4,249 £Ü 5,984,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿Àϱâ¾÷ ³» 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 5,759 £Ü 8,111,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ Áö¿ª »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 6,969 £Ü 9,815,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¸ðºô¸®Æ¼¿ë AI ½ÃÀåÀº 2024³â¿¡ 99¾ï ´Þ·¯¿¡ ´ÞÇϸç, 2025³â¿¡´Â CAGR 15.60%·Î 114¾ï 1,000¸¸ ´Þ·¯·Î ¼ºÀåÇϸç, 2030³â±îÁö´Â 236¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ 2024 99¾ï ´Þ·¯
ÃßÁ¤¿¬µµ 2025 114¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ 2030 236¾ï 3,000¸¸ ´Þ·¯
CAGR(%) 15.60%

ÀΰøÁö´ÉÀÌ ¸ðºô¸®Æ¼ »ýŰ迡 ¾î¶² Çõ¸íÀ» °¡Á®¿À°í, ¸ðºô¸®Æ¼ ½Ã½ºÅÛÀÇ È¿À²¼º°ú ¾ÈÀü¼º, ½Å·Ú¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´ÂÁö¿¡ ´ëÇØ ¼Ò°³

¸ðºô¸®Æ¼¿¡ ÀΰøÁö´ÉÀ» ÅëÇÕÇϸé Àüü ±³Åë »ýŰèÀÇ ÆÐ·¯´ÙÀÓ ÀüȯÀ» ÃËÁøÇϰí Àü·Ê ¾ø´Â ¼öÁØÀÇ ¼º´É, ¾ÈÀü ¹× ¿î¿µ ¿ì¼ö¼ºÀ» ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. °í±Þ ¾Ë°í¸®Áò°ú ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© Á¶Á÷Àº ¼ö¿ä¸¦ ¿¹ÃøÇϰí, ¶ó¿ìÆÃÀ» ÃÖÀûÈ­Çϸç, ´Ù¿îŸÀÓÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. º» ¼­·Ð¿¡¼­´Â AI Çõ½ÅÀÌ Ç×°ø, À°»ó, ÇØ»ó ¸ðºô¸®Æ¼¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ±âÃÊÀûÀÎ ÀÌÇØ¸¦ Á¦°øÇϰí, º» Á¶»çÀÇ ¹üÀ§¿Í ¸ñÀûÀ» °ËÅäÇÕ´Ï´Ù.

±³Åë ¸ðµ¨À» ÆÄ±«ÇÏ°í ´õ ½º¸¶Æ®ÇÑ ¿©ÇàÀ» °¡´ÉÇÏ°Ô Çϱâ À§ÇØ ¸ðºô¸®Æ¼ ¾÷¹«¿Í À¶ÇÕÇϴ ÷´Ü AI ±â¼úº° º¯ÇõÀû º¯È­¸¦ ¹àÈü´Ï´Ù.

ÄÄÇ»ÅÍ ºñÀü, ¼¾¼­ À¶ÇÕ, ¸Ó½Å·¯´×ÀÇ ¹ßÀüÀº ¸ðºô¸®Æ¼ ¾÷¹«ÀÇ ±¸Á¶ ÀÚü¸¦ À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ¿¹Ãø ºÐ¼®Àº °íÀåÀÌ ¹ß»ýÇϱâ Àü¿¡ À¯Áöº¸¼ö Çʿ伺À» ¿¹ÃøÇϰí, ÀÚ¿¬ ¾ð¾î 󸮴 ¿îÀüÀÚ¿Í ½Â°´À» À§ÇÑ Á÷°üÀûÀÎ À½¼º ÀÎÅÍÆäÀ̽º¸¦ °­È­ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº Â÷·®ÀÌ È¯°æ ¹× ¿îÀüÀÚ¿Í »óÈ£ ÀÛ¿ëÇÏ´Â ¹æ½ÄÀ» ÀçÁ¤ÀÇÇϰí, ÇÏ´Ã, ¶¥, ¹Ù´Ù¿¡¼­ ¿øÈ°ÇÑ µ¥ÀÌÅÍ ±³È¯À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

ÁøÈ­ÇÏ´Â ¹Ì±¹ ¹«¿ª °ü¼¼°¡ ¸ðºô¸®Æ¼ °ø±Þ¸Á Á¦Á¶ ºñ¿ë°ú ±¹°æ °£ ¿î¼Û ³×Æ®¿öÅ©¿¡ ¹ÌÄ¡´Â ¿µÇâ Æò°¡ Æò°¡

ÃÖ±Ù ¹Ì±¹ÀÇ ¹«¿ª °ü¼¼ Á¶Á¤À¸·Î ÀÎÇØ ¸ðºô¸®Æ¼ Á¦Á¶¾÷ü¿Í ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ¿¡ »õ·Î¿î ºñ¿ë ±¸Á¶¿Í ¹°·ùÀÇ º¹À⼺ÀÌ »ý°Ü³ª°í ÀÖ½À´Ï´Ù. ¿µÇâÀ» ¹Þ´Â Áö¿ª¿¡¼­ Á¶´ÞÇÑ ºÎǰ¿¡ ³ôÀº °ü¼¼°¡ ºÎ°úµÇ¸é¼­ °ø±Þ¸Á ÀçÆí°ú Á¶´Þó ´Ùº¯È­°¡ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú, ÇÁ·ÎÅäŸÀÔ °³¹ß ¹× ´ë±Ô¸ð ¹èÆ÷´Â ÁøÈ­ÇÏ´Â ¿¹»ê°ú ¿¬ÀåµÈ ¸®µå ŸÀÓ¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù.

¸ðºô¸®Æ¼ À¯Çü, ±â¼ú, ¹èÆ÷ ¸ðµå, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ Ä«Å×°í¸®º° ¼¼ºÐÈ­°¡ ¾î¶»°Ô ±â¼ú Çõ½Å°ú ÅõÀÚ ¼±ÅÃÀ» À¯µµÇÏ´ÂÁö¿¡ ´ëÇÑ ±íÀº ÀλçÀÌÆ®¸¦ Á¦°ø

½ÃÀå ¼¼ºÐÈ­ÀÇ Ã¹ ¹øÂ° ÃàÀº ¸ðºô¸®Æ¼ À¯ÇüÀ» °í·ÁÇÏ¿© öµµ¿Í µµ·Î ¿î¼ÛÀ» ÁÖ¿ä ÇÏÀ§ Ä«Å×°í¸®·Î, Ç×°ø, À°»ó, ÇØ»ó ÇÏÀ§ ½ÃÀåÀ» ±¸ºÐÇÏ´Â °ÍÀÔ´Ï´Ù. °¢ ºÎ¹®Àº °¢±â ´Ù¸¥ ¿î¿µ °úÁ¦¿Í ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¸¦ ³ªÅ¸³»¸ç, ÀÌ´Â AI ¼Ö·ç¼ÇÀÌ Æ¯Á¤ Â÷·® µî±Þ°ú ÀÎÇÁ¶ó ¿ä±¸ »çÇ׿¡ ¸Â°Ô Á¶Á¤µÇ´Â ¹æ½Ä¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Áö¿ªÀû ¿ªÇÐÀÌ AI ¸ðºô¸®Æ¼ µµÀÔ µ¿Çâ°ú ÅõÀÚ Àü·«À» ¾î¶»°Ô Çü¼ºÇϰí ÀÖ´ÂÁö »ìÆìº¾´Ï´Ù.

Áö¿ª ¿ªÇÐÀº ¸ðºô¸®Æ¼ ½ÃÀå¿¡¼­ AI µµÀÔÀÇ ¼Óµµ¿Í ¼º°ÝÀ» Çü¼ºÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â źźÇÑ ÀÎÇÁ¶ó ÀÚ±Ý Á¶´Þ°ú ÀÚÀ²ÁÖÇàÂ÷ ÆÄÀÏ·µ¿¡ ´ëÇÑ °­ÇÑ ÁýÁßÀÌ ÅõÀÚ ¸ð¸àÅÒÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¹Ý¸é, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«¿¡¼­´Â ´ëÁß±³Åë ¹× ½º¸¶Æ® ½ÃƼ ±¸»ó¿¡ AI¸¦ µµÀÔÇÒ ¶§ ±ÔÁ¦ Áؼö ¹× µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã Ç¥ÁØÀ» Áß½ÃÇϰí ÀÖ½À´Ï´Ù.

Àü·«Àû Á¦ÈÞ¸¦ ÅëÇØ °æÀï ±¸µµ¸¦ Çü¼ºÇϰí AI ¸ðºô¸®Æ¼ ¼Ö·ç¼ÇÀÇ Çõ½ÅÀ» ÁÖµµÇÏ´Â ÁÖ¿ä ±â¾÷ ºÐ¼®

¼±µµÀûÀÎ ±â¼ú ÇÁ·Î¹ÙÀÌ´õ¿Í Tier1 ÀÚµ¿Â÷ OEMÀº AI ±â¹Ý ¸ðºô¸®Æ¼ Ç÷§ÆûÀ» ÃßÁøÇϱâ À§ÇØ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ü°áÇϰí ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î Çõ½Å°¡¿Í ºÎǰ Á¦Á¶¾÷üÀÇ Çù¾÷À¸·Î ¿£µåÅõ¿£µå ½Ã½ºÅÛ ÅëÇÕÀ» È¿À²È­ÇÏ¿© ADAS(÷´Ü¿îÀüÀÚÁö¿ø½Ã½ºÅÛ) ¸ðµâ°ú ÀÚÀ²ÁÖÇà ¸ðµâ ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇϰí ÀÖ½À´Ï´Ù.

»õ·Î¿î AI ¸ðºô¸®Æ¼ µ¿ÇâÀ» Ȱ¿ëÇϱâ À§ÇØ ¾÷°è ¸®´õ¸¦ À§ÇÑ ½ÇÇà °¡´ÉÇÑ Á¦¾ÈÀ¸·Î ±³Åë Çõ½ÅÀ» °¡¼ÓÈ­ÇÒ ¼ö ÀÖµµ·Ï ÅõÀÚ¸¦ ÃÖÀûÈ­

¾÷°è ¸®´õµéÀº Áö´ÉÇü ½Ã½ºÅÛÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» À§ÇØ AI Àü¹®°¡, Â÷·® ¿£Áö´Ï¾î, ¿î¿µÆÀ °£ÀÇ ºÎ¼­ °£ Çù¾÷À» ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù. ¸íÈ®ÇÑ ¼º°ú ÁöÇ¥¸¦ °®Ãá ÆÄÀÏ·µ ÇÁ·Î±×·¥À» ±¸ÃàÇÔÀ¸·Î½á ¿î¿µ ¸®½ºÅ©¸¦ ÃÖ¼ÒÈ­Çϸ鼭 ±â¼úÀÇ À¯È¿¼ºÀ» °ËÁõÇÒ ¼ö ÀÖ½À´Ï´Ù. È®Àå °¡´ÉÇÑ µ¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³¿Í ¿§Áö ÄÄÇ»ÆÃ ±â´É¿¡ ´ëÇÑ ÅõÀÚ´Â ½Ç½Ã°£ 󸮸¦ ÃËÁøÇϰí ÇâÈÄ ±â´É È®ÀåÀ» Áö¿øÇÕ´Ï´Ù.

¾÷°è µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®¿¡ »ç¿ëµÈ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ý¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ¼³¸íÀ¸·Î ÀλçÀÌÆ®ÀÇ Å¸´ç¼ºÀ» º¸ÀåÇϰí AI ¸ðºô¸®Æ¼ Á¶»ç °á°ú¸¦ Áö¿ø

2Â÷ Á¶»ç¿Í Àü¹®°¡ ÀÎÅͺäÀÇ Á¶ÇÕÀº ÀÌ º¸°í¼­ÀÇ Á¶»ç ¾ö¹Ð¼ºÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÏ¹Ý ´ëÁßÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¾÷°è °£Ç๰, ƯÇã Ãâ¿ø, ±ÔÁ¦ ¹®¼­°¡ ±âÃʰ¡ µÇ´Â Áö½Ä ±â¹ÝÀ» Á¦°øÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®´Â ±â¼ú º¥´õ, ÀÚµ¿Â÷ OEM, ¼­ºñ½º »ç¾÷ÀÚ ÀÓ¿ø, ¿£Áö´Ï¾î, ¾Ö³Î¸®½ºÆ®¿ÍÀÇ ÁÖ¿ä Åä·ÐÀ» ÅëÇØ º¸¿ÏµÇ¾ú½À´Ï´Ù.

AI ¸ðºô¸®Æ¼¿¡ ´ëÇÑ Áß¿äÇÑ Áö½ÄÀ» ÅëÇÕÇϰí, ¹Ì·¡ ±³Åë ÆÐ·¯´ÙÀÓ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» °­Á¶Çϸç, ÀÌÇØ°ü°èÀÚ¸¦ À§ÇÑ Àü·«Àû ¹ßÀü °æ·Î¸¦ Á¦½Ã

ÀÌ º¸°í¼­¿¡¼­ ¼Ò°³ÇÏ´Â ÀλçÀÌÆ®´Â ±³Åë »ýŰ迡¼­ ÁøÇà ÁßÀÎ Áß¿äÇÑ º¯È­¸¦ ¼³¸íÇϱâ À§ÇØ Á¤¸®µÈ °ÍÀÔ´Ï´Ù. ÀΰøÁö´ÉÀº »õ·Î¿î ¼öÁØÀÇ ÀÚµ¿È­, ¾ÈÀü¼º, È¿À²¼ºÀ» ÃËÁøÇÏ°í »ç¶÷°ú »ç¹°ÀÌ Àü ¼¼°è¸¦ À̵¿ÇÏ´Â ¹æ½ÄÀ» ±Ùº»ÀûÀ¸·Î ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÁøÀüÀ» ¹Þ¾ÆµéÀÌ´Â ÀÌÇØ°ü°èÀÚµéÀº »õ·Î¿î ¼öÀÔ¿ø°ú ¾÷¹« °³¼±ÀÇ ±âȸ¸¦ ¾òÀ» ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¸ðºô¸®Æ¼¿ë AI ½ÃÀå : ¸ðºô¸®Æ¼ À¯Çüº°

Á¦9Àå ¸ðºô¸®Æ¼¿ë AI ½ÃÀå : ±â¼úº°

Á¦10Àå ¸ðºô¸®Æ¼¿ë AI ½ÃÀå : ¹èÆ÷ ¸ðµåº°

Á¦11Àå ¸ðºô¸®Æ¼¿ë AI ½ÃÀå : ¿ëµµº°

Á¦12Àå ¸ðºô¸®Æ¼¿ë AI ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ¸ðºô¸®Æ¼¿ë AI ½ÃÀå

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¸ðºô¸®Æ¼¿ë AI ½ÃÀå

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¸ðºô¸®Æ¼¿ë AI ½ÃÀå

Á¦16Àå °æÀï ±¸µµ

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The AI in Mobility Market was valued at USD 9.90 billion in 2024 and is projected to grow to USD 11.41 billion in 2025, with a CAGR of 15.60%, reaching USD 23.63 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 9.90 billion
Estimated Year [2025] USD 11.41 billion
Forecast Year [2030] USD 23.63 billion
CAGR (%) 15.60%

An introduction to how artificial intelligence is revolutionizing mobility ecosystems to improve efficiency safety and reliability in mobility systems

The integration of artificial intelligence in mobility is driving a paradigm shift across transportation ecosystems, unlocking unprecedented levels of performance, safety, and operational excellence. By leveraging sophisticated algorithms and real-time data, organizations can anticipate demand, optimize routing, and reduce downtime. This introduction examines the scope and objectives of the study, providing a foundational understanding of how AI innovations are influencing air, land, and maritime mobility.

Through a methodical exploration of technological advancements, regulatory influences, and industry initiatives, this section lays the groundwork for the subsequent analysis. It outlines the core research questions, the key areas of focus, and the intended audience, ensuring that stakeholders gain clear insights into the evolving role of AI in transforming passenger experiences and freight movement globally.

Revealing transformative shifts driven by advanced AI technologies converging with mobility operations to disrupt transport models and enable smarter journeys

Advancements in computer vision, sensor fusion, and machine learning are reshaping the very fabric of mobility operations. Predictive analytics now forecast maintenance needs before failures occur, while natural language processing powers intuitive voice interfaces for drivers and passengers. These technologies converge to redefine the way vehicles interact with environments and operators, enabling seamless data exchange across air, land, and maritime domains.

As these tools mature, they facilitate real-time decision making in dynamic conditions, reducing human error and enhancing responsiveness. Moreover, the growing integration of AI with Internet of Things platforms and cloud infrastructures is fostering new models of cross-modal coordination. By examining these transformative shifts, stakeholders can better appreciate how AI is driving smarter, safer journeys and unlocking fresh opportunities in mobility ecosystems.

Assessing how evolving United States trade duties impact mobility supply chains manufacturing costs and cross border transportation networks

Recent adjustments in United States trade duties have introduced new cost structures and logistical complexities for mobility manufacturers and service providers. Components sourced from affected regions now incur higher tariffs, prompting supply chain realignments and sourcing diversification. As a result, prototype development and large-scale deployments face evolving budgetary considerations and extended lead times.

In response to these trade duty changes, manufacturers are exploring strategic partnerships and nearshoring options to mitigate cost pressures. This section assesses how these evolving trade duties ripple through production networks, influence material procurement decisions, and shape long-term planning for global transportation projects.

Deep insights revealing how segmentation by mobility type technology deployment mode application and end user category guides innovation and investment choices

The market's first axis of segmentation examines mobility types, distinguishing air, land, and maritime submarkets with rail and road transport as key subcategories. Each segment exhibits distinct operational challenges and regulatory frameworks, influencing how AI solutions are tailored for specific vehicle classes and infrastructure requirements.

A second segmentation layer focuses on core technologies, encompassing computer vision with image recognition, object detection, and video analytics; machine learning variants including supervised, unsupervised, and reinforcement learning; natural language processing with speech recognition and text analytics; and multi-level sensor fusion integrating data, feature, and decision insights. These frameworks form the technological foundation for innovation across deployment modes, which can be delivered via private or public cloud environments or on-premise architectures to meet diverse security and performance requirements.

Applications form the next segmentation domain, spanning advanced driver assistance systems with adaptive cruise control and blind spot detection, through autonomous driving, fleet management including driver behavior monitoring and fuel management, route optimization with dynamic routing capabilities, predictive maintenance, and telematics solutions. Finally, end user segmentation highlights commercial operators such as logistics companies and mobility service providers, governments and municipalities shaping public transit systems, and passenger use cases from individual ownership to ride-hailing services. Altogether, these multi-tiered perspectives guide stakeholders in prioritizing investment and innovation efforts.

Illuminating how regional dynamics across Americas Europe Middle East Africa and Asia Pacific shape adoption trends and investment strategies in AI mobility

Regional dynamics play a pivotal role in shaping the pace and nature of AI adoption within mobility markets. In the Americas, investment momentum is driven by robust infrastructure funding and a strong focus on autonomous vehicle pilots. Meanwhile, Europe, Middle East, and Africa regions emphasize regulatory compliance and data privacy standards as they integrate AI into public transit and smart city initiatives.

Across Asia Pacific, rapid urbanization and government-led innovation programs are accelerating deployments of AI enabled solutions in both passenger and freight segments. Divergent regulatory landscapes and infrastructure readiness levels in each region influence strategic partnerships, public-private collaborations, and adoption curves. Recognizing these nuances allows industry participants to tailor market entry strategies and leverage regional strengths effectively.

Analysis of leading companies shaping the competitive landscape through strategic collaborations and driving innovation in AI mobility solutions

Leading technology providers and tier-one automotive OEMs are forging strategic partnerships to advance AI driven mobility platforms. Collaborations between software innovators and component manufacturers are streamlining end-to-end system integration, accelerating time to market for advanced driver assistance and autonomous driving modules.

Startups specializing in sensor fusion and computer vision are securing funding from venture capital and corporate investors, challenging incumbents to bolster in-house R&D and pursue targeted acquisitions. This competitive interplay fosters an ecosystem where agility and scale converge, driving continuous refinement of AI algorithms and deployment frameworks across global mobility networks.

Actionable recommendations for industry leaders to harness emerging AI mobility trends optimize investments and accelerate transportation innovation

Industry leaders should prioritize cross-functional collaboration between AI specialists, vehicle engineers, and operations teams to ensure seamless integration of intelligent systems. Establishing pilot programs with clear performance metrics can validate technology efficacy while minimizing operational risks. Investing in scalable data architectures and edge computing capabilities will facilitate real-time processing and support future feature expansions.

Engaging proactively with regulatory bodies and standard-setting organizations is essential to influence policy frameworks and ensure compliance. Cultivating talent through partnerships with academic institutions and specialized training programs will address skill gaps and foster a culture of continuous innovation. By executing these strategic recommendations, organizations can capitalize on emerging trends and secure competitive advantage in the evolving mobility landscape.

A detailed explanation of the rigorous research methodology used to collect and analyze industry data ensure insight validity and underpin AI mobility findings

A combination of secondary research and expert interviews underpins the report's investigative rigor. Publicly available industry publications, patent filings, and regulatory documents provided a foundational knowledge base. These insights were complemented by primary discussions with executives, engineers, and analysts across technology vendors, vehicle OEMs, and service operators.

Quantitative data sets were meticulously validated through triangulation, correlating multiple sources to ensure consistency and accuracy. Qualitative findings underwent peer review by subject matter experts, further enhancing insight credibility. This robust methodology guarantees that the resulting market intelligence reflects the latest developments and supports informed decision making.

Synthesizing critical AI mobility insights underscoring the impact on future transportation paradigms and charting a strategic path forward for stakeholders

The insights presented in this report converge to illustrate the profound transformation underway in transportation ecosystems. Artificial intelligence is catalyzing new levels of automation, safety, and efficiency, fundamentally redefining how people and goods move around the globe. Stakeholders who embrace these advancements will unlock fresh revenue streams and operational improvements.

As mobility markets continue to evolve, collaboration across technology developers, infrastructure providers, and regulatory authorities will be essential. By synthesizing the critical findings and charting a clear strategic path, this conclusion equips decision makers with the perspective needed to navigate future challenges and seize emerging opportunities in AI driven mobility.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. AI in Mobility Market, by Mobility Type

9. AI in Mobility Market, by Technology

10. AI in Mobility Market, by Deployment Mode

11. AI in Mobility Market, by Application

12. AI in Mobility Market, by End User

13. Americas AI in Mobility Market

14. Europe, Middle East & Africa AI in Mobility Market

15. Asia-Pacific AI in Mobility Market

16. Competitive Landscape

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â