AI 서버 시장 : 서버 유형, 프로세서 유형, 냉각 기술, 전개 형태, 용도, 최종사용자별 - 세계 예측(2025-2030년)
AI Server Market by Server Type, Processor Type, Cooling Technology, Deployment Mode, Application, End-User - Global Forecast 2025-2030
상품코드 : 1809798
리서치사 : 360iResearch
발행일 : 2025년 08월
페이지 정보 : 영문 193 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,641,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,085,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,248,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 9,981,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

AI 서버 시장은 2024년에 140억 7,000만 달러로 평가되었으며, 2025년에는 CAGR 18.68%로 166억 달러로 성장하여 2030년에는 393억 3,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 140억 7,000만 달러
추정 연도 2025년 166억 달러
예측 연도 2030년 393억 3,000만 달러
CAGR(%) 18.68%

AI 서버의 전망에 대한 종합적인 소개를 통해 기술 발전과 채택 동향을 형성하는 시장 동향을 살펴봅니다.

최근 인공지능 애플리케이션의 보급으로 AI 워크로드에 최적화된 서버가 최신 컴퓨팅의 최전선에 뛰어들었습니다. 점점 더 많은 데이터세트에서 인사이트를 얻고자 하는 기업들은 대량의 정보를 저 지연, 고효율로 처리할 수 있는 인프라를 요구하고 있습니다. 이러한 배경에서 AI 서버는 자율주행, 실시간 분석, 고급 시뮬레이션 등의 분야에서 획기적인 발전을 실현하는 중요한 존재로 부상하고 있습니다. 이러한 시스템은 더 이상 백엔드를 지원하는 역할에 그치지 않고, 산업 전반의 혁신을 위한 기반이 되는 촉매제 역할을 하고 있습니다.

진화하는 데이터 수요에 힘입어 AI 서버 생태계에 영향을 미치는 변혁적 변화를 밝혀 혁신 사이클의 가속화와 새로운 기술 패러다임

데이터 집약적인 워크로드의 등장으로 AI 서버 생태계에 일련의 혁신적인 변화가 일어나고 있습니다. 데이터의 양과 복잡성이 기존의 처리 능력을 계속 능가함에 따라, 공급자들은 특수 가속기와 범용 프로세서를 결합한 이기종 컴퓨팅 아키텍처를 모색하고 있습니다. 이러한 재편은 AI 파이프라인의 개별 단계에 맞는 맞춤형 하드웨어 솔루션으로 향하는 광범위한 추세를 반영합니다.

미국 관세가 AI 서버 공급망에 미치는 누적적 영향 세계 시장에서의 운영 비용과 경쟁 역학에 미치는 영향

반도체 부품 및 서버 수입에 대한 관세 부과는 세계 공급망에 큰 복잡성을 가져왔습니다. AI 워크로드를 위해 고급 프로세서에 의존하는 조직은 투입 비용 상승에 직면하여 조달 전략을 재평가하고 있습니다. 이에 따라 많은 이해관계자들은 공급업체 기반 다변화, 현지 생산능력에 대한 투자 등 대체 조달 옵션을 모색하기 시작했습니다.

AI 서버 시장에서 서버 유형별 프로세서 유형별 냉각 기술 전개 방식별 용도별 및 최종사용자 역학에 따른 주요 세분화 인사이트 추출.

AI 서버 시장을 세분화하면 서버 유형에 따라 명확한 역학이 드러납니다. 이러한 시스템은 종종 대규모 I/O 처리량과 용량을 우선시하며, 이기종 데이터세트의 통합을 가능하게 합니다. 반면, AI 추론 서버는 낮은 지연시간과 비용 효율적인 성능을 중시하며, 애플리케이션 전반의 실시간 의사결정을 지원합니다. 반면, 트레이닝 서버는 모델 개발 주기를 가속화하기 위해 최고의 계산 밀도와 메모리 대역폭을 제공하며, 종종 전용 가속기를 내장하고 있습니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양 AI 서버 시장의 지역 역학 및 성장 촉진요인을 맥락화합니다.

지역별로 AI 서버 시장을 분석하면 아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 다양한 시장 촉진요인과 성숙도를 확인할 수 있습니다. 아메리카에서는 하이퍼스케일 데이터센터에 대한 활발한 투자와 클라우드 서비스 제공업체들의 활발한 생태계가 확장 가능한 AI 서버 구축을 위한 비옥한 토양을 조성하고 있습니다. 실리콘밸리의 혁신가들과 기존 하드웨어 업체들은 특히 특수 가속기 통합 및 고급 냉각 솔루션의 관점에서 서버 아키텍처의 한계를 뛰어넘기 위해 협력하고 있습니다. 그 결과, 북미의 기업들은 최첨단 설계에 빠르게 접근할 수 있는 이점을 누리고 있지만, 데이터 주권 및 무역 규정 준수를 둘러싼 진화하는 정책 프레임워크를 탐색해야 하는 어려움도 있습니다.

주요 AI 서버 제조업체의 제품 포트폴리오, 혁신, 파트너십, 전략적 우선순위 프로파일링에 따른 경쟁 구도 분석

AI 서버 영역에서 주요 업체들은 다양한 제품 포트폴리오와 전략적 파트너십을 통해 차별화를 꾀하고 있습니다. 반도체 대기업은 전문성을 바탕으로 고밀도 컴퓨팅과 전용 가속기를 결합한 통합 솔루션을 제공하고 있습니다. 이 회사의 제품은 광범위한 워크로드에 최적화된 범용 인프라부터 특정 AI 애플리케이션을 위해 설계된 턴키 시스템까지 다양합니다. 특히, 칩 설계자와 시스템 통합업체의 협업으로 새로운 아키텍처의 시장 출시 시간을 단축하고, 최종사용자가 통합의 복잡성을 줄이면서 고급 기능을 도입할 수 있게 되었다는 점이 주목할 만합니다.

AI 서버 시장 공략을 위한 업계 리더를 위한 실행 가능한 권고사항 신흥 기술 활용, 경쟁사보다 유리한 포지셔닝 강화

AI 서버 시장의 복잡한 역학 속에서 성공하기 위해 업계 리더들은 몇 가지 전략적 이니셔티브를 우선시해야 합니다. 첫째, 맞춤형 가속기 설계에 투자하면 특히 고부가가치 트레이닝 워크로드의 에너지 효율을 개선하면서 성능을 크게 향상시킬 수 있습니다. 실리콘 파운드리와 협력하여 새로운 패키징 기술을 활용함으로써 기업은 특정 사용 사례에 맞게 컴퓨팅 아키텍처를 최적화할 수 있습니다.

AI 서버 시장 평가에서 종합적인 데이터 수집 및 분석의 엄밀성을 보장하기 위해 채택한 엄격한 조사 방법론에 대한 자세한 내용.

본 보고서를 뒷받침하는 조사 방법은 정성적 접근과 정량적 접근을 모두 통합하여 포괄적이고 편견 없는 인사이트를 확보하기 위해 노력했습니다. 1차 조사에서는 반도체 기업, 서버 OEM, 데이터센터 사업자, 최종사용자 조직의 고위 의사결정권자와의 구조화된 인터뷰와 심층적인 협의를 진행했습니다. 이러한 조사를 통해 기술 선호도, 조달 전략, 새로운 과제에 대한 직접적인 견해를 얻을 수 있었습니다.

진화하는 AI 서버 생태계의 이해관계자들의 새로운 동향과 장기적 전망에 대한 자료입니다.

요약하면, AI 서버 시장은 데이터 수요 증가, 기술 혁신, 진화하는 정책 환경에 힘입어 급격한 변화의 시기를 맞이하고 있습니다. 기업들은 특수 프로세서 아키텍처와 고도의 냉각 요구사항부터 국경 간 무역 고려사항과 지역 규제 프레임워크에 이르기까지 복잡한 문제를 해결해야 합니다. 하드웨어와 소프트웨어의 경계가 모호해지는 가운데, 모듈식, 에너지 효율적이고 워크로드에 최적화된 설계를 채택하는 이해관계자가 가장 큰 가치를 얻을 수 있을 것입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

제7장 미국 관세의 누적 영향 2025

제8장 AI 서버 시장 : 서버 유형별

제9장 AI 서버 시장 : 프로세서 유형별

제10장 AI 서버 시장 : 냉각 기술별

제11장 AI 서버 시장 : 전개 방식별

제12장 AI 서버 시장 : 용도별

제13장 AI 서버 시장 : 최종사용자별

제14장 아메리카의 AI 서버 시장

제15장 유럽, 중동 및 아프리카의 AI 서버 시장

제16장 아시아태평양의 AI 서버 시장

제17장 경쟁 구도

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

KSM
영문 목차

영문목차

The AI Server Market was valued at USD 14.07 billion in 2024 and is projected to grow to USD 16.60 billion in 2025, with a CAGR of 18.68%, reaching USD 39.33 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 14.07 billion
Estimated Year [2025] USD 16.60 billion
Forecast Year [2030] USD 39.33 billion
CAGR (%) 18.68%

Exploring the AI Server Landscape Through a Comprehensive Introduction Highlighting Market Forces Shaping Technological Advancements and Adoption Trends

In recent years, the proliferation of artificial intelligence applications has propelled servers optimized for AI workloads to the forefront of modern computing. As organizations strive to harness insights from ever-growing datasets, they seek infrastructure capable of processing massive volumes of information with low latency and high efficiency. Against this backdrop, AI servers have emerged as a critical enabler of breakthroughs in areas such as autonomous driving, real-time analytics, and advanced simulation. These systems no longer serve solely as back-end support; they function as foundational catalysts for innovation across industries.

Moreover, the dynamic interplay between hardware and software has driven unprecedented collaboration between chip designers, system integrators, and algorithm developers. This coevolution has fostered an ecosystem in which each advancement in processor architecture influences data center design, cooling solutions, and deployment strategies. Consequently, decision-makers evaluating AI infrastructure must consider not only raw computational performance but also energy consumption, scalability, and integration with existing IT environments. In this context, the following sections present a structured exploration of the transformative forces reshaping the AI server market, from emerging technological paradigms to geopolitical factors and strategic industry responses.

Furthermore, the accelerating demand for deep learning and machine learning training has underscored the need for specialized server configurations. With generative AI models requiring both high-throughput training and rapid inference capabilities, stakeholders must balance the trade-offs between training-specific accelerators and inference-optimized systems. This narrative sets the stage for a deeper analysis of the trends and strategic considerations that will define the AI server market in the coming years.

Unveiling Transformative Shifts Impacting AI Server Ecosystems Driven by Evolving Data Demands Accelerated Innovation Cycles and Emerging Technological Paradigms

Emerging data-intensive workloads have ignited a series of transformative shifts within AI server ecosystems. As the volume and complexity of data continue to outpace traditional processing capabilities, providers are exploring heterogeneous computing architectures that combine specialized accelerators with general-purpose processors. This realignment reflects a broader trend toward bespoke hardware solutions tailored to distinct phases of AI pipelines.

Additionally, the pursuit of energy-efficient designs has spurred innovations in cooling techniques and power management. Organizations grappling with rising operational expenses are increasingly drawn to hybrid and liquid cooling solutions that promise to reduce energy consumption while maintaining performance thresholds. These engineering innovations are complemented by advances in software orchestration layers, enabling more effective workload distribution and resource utilization.

Furthermore, the democratization of AI through open source frameworks and pre-trained models has reshaped the competitive landscape. New entrants can leverage modular hardware platforms to deploy customized servers, challenging incumbents to accelerate their roadmap. In parallel, collaborations between hyperscale cloud providers and semiconductor firms have accelerated the development of application-specific integrated circuits, underscoring the critical role of strategic alliances.

Collectively, these shifts signal a departure from one-size-fits-all server designs toward modular, adaptable, and energy-conscious architectures. The following analysis unpacks the cumulative effects of policy, technology, and market forces that together define the contemporary AI server domain.

Assessing the Cumulative Impact of United States Tariffs on AI Server Supply Chains Operational Costs and Competitive Dynamics Across Global Markets

The imposition of tariffs on semiconductor components and server imports has introduced significant complexity to global supply chains. Organizations reliant on advanced processors for AI workloads have encountered elevated input costs, prompting a reassessment of procurement strategies. In response, many stakeholders have begun exploring alternative sourcing options, including diversifying supplier bases and investing in localized manufacturing capabilities.

Moreover, heightened trade barriers have accelerated discussions around strategic stockpiling and just-in-time inventory adjustments. While these measures can mitigate short-term disruptions, they also raise concerns about capital allocation and storage overhead. Importantly, engineering teams must now factor potential duties into total cost of ownership models, balancing performance objectives against fiscal constraints.

Concurrently, the ripple effects of tariff policies have spurred innovation in component design and materials sourcing. Some vendors are experimenting with domestically produced chipsets and server subsystems to circumvent tariff exposure, albeit at the expense of scale efficiencies. Meanwhile, cloud operators and large enterprises are negotiating long-term contracts with major suppliers to secure predictable pricing and supply commitments.

In this evolving environment, long-term planning is critical as organizations recalibrate their budgets and strategic roadmaps. Risk assessments now incorporate tariff scenarios alongside traditional metrics, reinforcing the need for agile response plans.

In aggregate, the tariff environment has catalyzed a more resilient yet complex landscape for AI infrastructure provisioning. As a result, market participants are adopting nuanced strategies that integrate policy risk assessment with technology roadmap planning.

Deriving Key Segmentation Insights by Server Type Processor Type Cooling Technology Deployment Mode Application and End-User Dynamics in the AI Server Market

Segmenting the AI server market reveals distinct dynamics based on server type, with AI data servers serving as centralized hubs for raw information ingestion and storage. These systems often prioritize large-scale I/O throughput and capacity, enabling the consolidation of disparate datasets. In contrast, AI inference servers emphasize low latency and cost-efficient performance at scale, supporting real-time decision-making across applications. Training servers, on the other hand, deliver the highest compute density and memory bandwidth to accelerate model development cycles, often incorporating specialized accelerators.

Parallel distinctions emerge within processor type segmentation. Application-specific integrated circuits are gaining traction for tasks where performance per watt is paramount, while field programmable gate arrays offer on-the-fly reconfigurability that appeals to niche workloads. Graphics processing units maintain a dominant position in deep learning contexts, given their mature software ecosystems and robust parallel processing capabilities.

Cooling technology also constitutes a critical axis of differentiation. Traditional air cooling remains prevalent in many data center deployments, though hybrid systems that blend air and liquid modalities are attracting interest for moderate to high-density racks. Fully liquid-cooled configurations represent the apex of thermal management efficiency, enabling power envelopes that would be unattainable through air alone.

Deployment mode further shapes infrastructure considerations. Cloud-based implementations offer elasticity and rapid provisioning, whereas on-premises solutions afford greater control over security and data residency. Application-based segmentation underscores the spectrum of AI workloads, spanning computer vision tasks that demand high-throughput image processing, generative AI platforms that require both training and inference scalability, classical machine learning pipelines optimized for structured data, and natural language processing frameworks sensitive to model complexity.

Finally, end-user segmentation captures the varying priorities of cloud service providers, enterprises seeking to embed AI into operational workflows, and government organizations focused on mission-critical performance and regulatory compliance. By understanding these intersecting dimensions, stakeholders can tailor strategies that align with specific market niches and technology imperatives.

Contextualizing Regional Dynamics and Growth Drivers in the Americas Europe Middle East Africa and Asia Pacific AI Server Markets

Analyzing the AI server market through a regional lens highlights diverse drivers and maturity levels across the Americas, Europe Middle East and Africa, and Asia Pacific. In the Americas, robust investment in hyperscale data centers and a thriving ecosystem of cloud service providers have created fertile ground for scalable AI server deployments. Silicon Valley innovators and established hardware vendors alike are collaborating to push the boundaries of server architecture, particularly in the context of specialized accelerator integration and advanced cooling solutions. As a result, North American players benefit from early access to cutting-edge designs, though they must also navigate evolving policy frameworks around data sovereignty and trade compliance.

Shifting focus to Europe Middle East and Africa, the landscape is characterized by a blend of regulatory complexity and varied infrastructure investment. Western European markets exhibit a strong appetite for sustainable AI solutions, driving adoption of energy-efficient servers and green data center certifications. Meanwhile, emerging economies within the region are accelerating digital transformation initiatives, often in partnership with global technology providers. Regulatory emphasis on data privacy and cross-border data flows further influences deployment mode preferences, with many organizations opting for hybrid cloud architectures to balance agility with compliance.

In the Asia Pacific region, the convergence of rapid economic growth and national AI strategies has intensified demand for high-performance server platforms. Key markets such as China, Japan, South Korea, and India are investing heavily in domestic semiconductor capabilities, which in turn supports localized server manufacturing. These initiatives are complemented by government-sponsored AI research programs and incentives for edge computing projects. Consequently, Asia Pacific is emerging as both a major consumer and a burgeoning supplier of advanced AI server technologies.

Illuminating Competitive Landscapes by Profiling Leading AI Server Manufacturers Their Product Portfolios Innovations Partnerships and Strategic Priorities

In the realm of AI servers, leading manufacturers have distinguished themselves through diverse product portfolios and strategic partnerships. Semiconductor giants have leveraged their expertise to deliver integrated solutions that marry high-density compute with specialized accelerators. Their offerings span from general-purpose infrastructures optimized for broad workloads to turnkey systems designed for specific AI applications. Notably, collaborations between chip designers and system integrators have accelerated time-to-market for novel architectures, enabling end users to deploy advanced capabilities with reduced integration complexity.

Furthermore, cloud service providers have entered the hardware space by developing proprietary server designs that align with their unique workload requirements. By tailoring server configurations to support large-scale training and inference tasks, these providers can optimize resource utilization across their global data center footprints. Such vertically integrated approaches often lead to performance improvements and cost efficiencies that set industry benchmarks.

In parallel, original equipment manufacturers and value-added resellers are expanding their presence through partnerships with emerging accelerator developers. This trend underscores a shift toward modular server platforms where customers can select combinations of ASICs, FPGAs, and GPUs to match workload profiles. Additionally, investments in research and development initiatives focus on enhancing thermal management, power efficiency, and system interoperability.

Collectively, these competitive dynamics reflect an ecosystem where differentiation hinges on the ability to deliver scalable, energy-conscious, and workload-specific solutions. As end users demand ever-greater performance density and reliability, leading companies are prioritizing strategic alliances and continuous innovation to capture market share in an increasingly contested environment.

Actionable Recommendations for Industry Leaders to Navigate the AI Server Market Capitalize on Emerging Technologies and Strengthen Competitive Positioning

To thrive amid the complex dynamics of the AI server market, industry leaders should prioritize several strategic initiatives. First, investing in custom accelerator design can yield significant performance gains while improving energy efficiency, particularly for high-value training workloads. By collaborating with silicon foundries and leveraging emerging packaging techniques, organizations can optimize compute architectures for specific use cases.

Additionally, optimizing power and thermal management through advanced cooling solutions not only reduces operational expenses but also extends system lifespan. Companies should therefore evaluate hybrid and liquid cooling technologies to support high-density deployments.

Strengthening supply chain resilience is equally critical. Diversifying component sourcing and fostering relationships with domestic suppliers can help mitigate risks associated with geopolitical tensions and trade policy shifts. Furthermore, embracing a modular design philosophy allows for greater flexibility in upgrading or reconfiguring server assets in response to evolving workload demands.

Lastly, forging strategic partnerships with software stack providers and open source communities can accelerate innovation cycles and reduce integration complexity. By aligning hardware roadmaps with leading AI frameworks and tools, organizations can deliver turnkey solutions that resonate with both enterprise customers and research institutions. These combined actions will position market participants to capitalize on emerging opportunities and maintain a competitive edge.

Detailing Rigorous Research Methodology Employed to Ensure Unbiased Insights Comprehensive Data Collection and Analytical Rigor in AI Server Market Evaluation

The research methodology underpinning this report integrates both qualitative and quantitative approaches to ensure comprehensive and unbiased insights. Primary research involved structured interviews and in-depth consultations with senior decision makers across semiconductor firms, server OEMs, data center operators, and end-user organizations. These engagements provided firsthand perspectives on technology preferences, procurement strategies, and emerging challenges.

Complementing this qualitative foundation, secondary research entailed rigorous analysis of public filings, technical white papers, regulatory documents, and industry conference proceedings. By triangulating data from multiple reputable sources, the study validated key findings and minimized reliance on any single information stream. Moreover, quantitative data points were subjected to cross-verification through proprietary databases and third-party datasets to ensure accuracy.

Analytical frameworks such as SWOT analysis and technology adoption models were employed to contextualize the competitive landscape and forecast potential trajectories. Additionally, expert panels comprising academics, system architects, and policy specialists reviewed preliminary conclusions, further reinforcing the credibility of the results.

The research process was iterative, with continuous refinement of assumptions and data parameters as new information emerged. This approach ensured that the final deliverable reflects real-time market dynamics and offers relevant guidance for strategic planning.

Concluding Synthesis Emphasizing Strategic Imperatives Emerging Trends and Long-Term Outlook for Stakeholders in the Evolving AI Server Ecosystem

In summary, the AI server market is undergoing a period of rapid transformation driven by escalating data demands, technological innovation, and evolving policy landscapes. Organizations must navigate complexities ranging from specialized processor architectures and advanced cooling requirements to cross-border trade considerations and regional regulatory frameworks. As the lines between hardware and software continue to blur, stakeholders that embrace modular, energy-efficient, and workload-optimized designs will capture the most significant value.

Looking ahead, the interplay between emerging applications such as generative AI, edge computing, and real-time analytics will further shape server configurations and procurement strategies. Proactive investments in custom accelerators, strategic supply chain partnerships, and open source integration are poised to become key differentiators.

Moreover, as AI workloads diversify, interoperability standards and data governance frameworks will play an increasingly critical role. Stakeholders that proactively engage in standardization efforts and invest in robust security protocols will mitigate emerging risks while fostering broader industry adoption. Ultimately, a holistic approach that aligns technology roadmaps with sustainability goals and compliance mandates will be essential for long-term success in this dynamic environment.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. AI Server Market, by Server Type

9. AI Server Market, by Processor Type

10. AI Server Market, by Cooling Technology

11. AI Server Market, by Deployment Mode

12. AI Server Market, by Application

13. AI Server Market, by End-User

14. Americas AI Server Market

15. Europe, Middle East & Africa AI Server Market

16. Asia-Pacific AI Server Market

17. Competitive Landscape

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기