5G ºñÁö»óÆÄ ³×Æ®¿öÅ© ½ÃÀå : Á¦°ø, Àå¼Ò, Á֯ļö´ë¿ª, ÃÖÁ¾»ç¿ëÀÚ, ¿ëµµº° - ¼¼°è ¿¹Ãø(2025-2030³â)
5G Non-Terrestrial Network Market by Offering, Location, Frequency Band, End User, Application - Global Forecast 2025-2030
»óǰÄÚµå : 1808441
¸®¼­Ä¡»ç : 360iResearch
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 195 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,939 £Ü 5,522,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF ¹× Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 4,249 £Ü 5,956,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿Àϱâ¾÷ ³» 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 5,759 £Ü 8,073,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ Áö¿ª »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 6,969 £Ü 9,769,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

5G ºñÁö»óÆÄ ³×Æ®¿öÅ© ½ÃÀåÀº 2024³â¿¡´Â 74¾ï 1,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 94¾ï 2,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 28.08%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 327¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 74¾ï 1,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 94¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 327¾ï 4,000¸¸ ´Þ·¯
CAGR(%) 28.08%

5G ºñÁö»ó ³×Æ®¿öÅ© ½Ã´ëÀÇ °³¸·À» ¾Ë¸®´Â °úÁ¦°¡ ¸¹Àº ÁöÇü¿¡¼­ À¯ºñÄõÅͽº ¼¼°è Ä¿³ØÆ¼ºñƼ¸¦ °¡´ÉÇÏ°Ô Çϰí, ÀÎÇÁ¶óÀÇ ³»°áÇÔ¼ºÀ» ³ôÀÔ´Ï´Ù.

Áö»óÆÄ ÀÌ¿ÜÀÇ ³×Æ®¿öÅ© ¾ÆÅ°ÅØÃ³ÀÇ µîÀåÀº ¼¼°è Åë½Å ÁøÈ­¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ÀÌÁ¤Ç¥°¡ µÉ °ÍÀÔ´Ï´Ù. À§¼º º°ÀÚ¸®, °í°íµµ Ç÷§Æû, ¹«ÀÎ Ç×°ø±â¸¦ Ȱ¿ëÇÏ¿© 5G ºñÁö»ó ³×Æ®¿öÅ©´Â ±âÁ¸ÀÇ Áö»ó °æ°è¸¦ ÈξÀ ³Ñ¾î Ä¿¹ö¸®Áö¸¦ È®ÀåÇÕ´Ï´Ù. ÀÌ Çõ½ÅÀ» ÅëÇØ ³×Æ®¿öÅ© »ç¾÷ÀÚ´Â ¿ø°ÝÁö³ª ¼­ºñ½º Ãë¾à Áö¿ª¿¡¼­µµ ÀϰüµÈ ÀúÁö¿¬ ¿¬°áÀ» Á¦°øÇÒ ¼ö ÀÖ°Ô µÇ¾î Áö¿ª»çȸ¿Í »ê¾÷°è°¡ ¿øÈ°ÇÏ°Ô ¿¬°áµÉ ¼ö ÀÖµµ·Ï Áö¿øÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù.

5G ºñÁö»óÆÄ ³×Æ®¿öÅ©ÀÇ Àü¸Á°ú »ýŰè Çù¾÷À» ÀçÁ¤ÀÇÇÏ´Â ±â¼úÀû, Àü·«Àû ÀüȯÀ» ¸ð»öÇÕ´Ï´Ù.

5G ºñÁö»ó ³×Æ®¿öÅ©°¡ µ¥ÀÌÅÍ Àü¼Û, ¾×¼¼½º, º¸¾È ¼ö´ÜÀ» ÀçÁ¤ÀÇÇÏ´Â °¡¿îµ¥, ¼¼°è Åë½ÅÀº ±Ùº»ÀûÀÎ º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ À§¼º, À§»ó ¹è¿­ ¾ÈÅ׳ª, ÅëÇÕ ³×Æ®¿öÅ© ¿ÀÄɽºÆ®·¹ÀÌ¼Ç Ç÷§Æû°ú °°Àº ±â¼ú Çõ½ÅÀº ³×Æ®¿öÅ© ¿ë·®°ú À¯¿¬¼ºÀ» ÁõÆø½Ã۱â À§ÇØ ¼ö·ÅÇϰí ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ »ç¾÷ÀÚ´Â ½Ç½Ã°£ ¼º´É ÁöÇ¥¸¦ ±â¹ÝÀ¸·Î Áö»óÆÄ ¸µÅ©¿Í ºñÁö»óÆÄ ¸µÅ©¸¦ ¿øÈ°ÇÏ°Ô ÀüȯÇÒ ¼ö ÀÖ´Â ÇÏÀ̺긮µå ¼Ö·ç¼ÇÀ» ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼°¡ 5G ºñÁö»óÆÄ ³×Æ®¿öÅ© ±¸Ãà ºñ¿ë°ú °ø±Þ¸Á ¿ªÇп¡ ¹ÌÄ¡´Â ´©Àû ¿µÇâ¿¡ ´ëÇÑ Æò°¡

2025³â, ¹Ì±¹Àº ºñÁö»óÆÄ ³×Æ®¿öÅ© ±¸Ãà¿¡ ÇʼöÀûÀÎ ºÎǰÀ» Æ÷ÇÔÇÑ ¼öÀÔ Åë½Å Àåºñ¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ÀÏ·ÃÀÇ °ü¼¼¸¦ ºÎ°úÇÒ ¿¹Á¤ÀÔ´Ï´Ù. ÀÌ Á¶Ä¡·Î ÀÎÇØ ¿µÇâÀ» ¹Þ´Â Áö¿ª¿¡¼­ Á¶´ÞµÇ´Â °ÔÀÌÆ®¿þÀÌ ½ºÅ×À̼Ç, Áö»ó ¾ÈÅ׳ª, À§¼º Áß°è±â ºñ¿ëÀº ´Ü°èÀûÀ¸·Î »ó½ÂÇÒ °ÍÀÔ´Ï´Ù. ±× °á°ú, ³×Æ®¿öÅ© »ç¾÷ÀÚ¿Í ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚ´Â ¼öÀÔ ºñ¿ë »ó½Â¿¡ Á÷¸éÇÏ¿© Á¶´Þ Àü·«°ú °ø±Þ¾÷ü¿ÍÀÇ °ü°è¸¦ Àç°ËÅäÇÒ ¼ö¹Û¿¡ ¾ø½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¿¡ ´ëÇÑ Áß¿äÇÑ ÅëÂû·ÂÀ¸·Î Á¦°ø À§Ä¡, Á֯ļö ´ë¿ª, ÃÖÁ¾ »ç¿ëÀÚ, ¿ëµµ¿¡ ´ëÇÑ Àü·«Àû °èȹ ¼ö¸³À» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ÀÌÇØ´Â ºñÁî´Ï½º ±âȸÀÇ ¸ðµç ¿µ¿ªÀ» ¸ÅÇÎÇÏ°í ½ÃÀå ÁøÃâ Àü·«À» Á¶Á¤ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¼­ºñ½º Á¦°ø¿¡ µû¸¥ ¼¼ºÐÈ­´Â ¼¼ °¡Áö ÇÙ½É Ä«Å×°í¸®¸¦ µå·¯³À´Ï´Ù. °ÔÀÌÆ®¿þÀÌ ½ºÅ×À̼Ç, Áö»ó ¾ÈÅ׳ª, °í°íµµ Ç÷§Æû, À§¼º, ¹«ÀÎÇ×°ø±â, ÄÁ¼³ÆÃ ¹× ±³À°, °ü¸®Çü ³×Æ®¿öÅ© ¼­ºñ½º, Áö¿ø ¹× À¯Áöº¸¼ö, ½Ã½ºÅÛ ÅëÇÕ ¹× ±¸Ãà, ³×Æ®¿öÅ© ¿ÀÄɽºÆ®·¹À̼Ç, °¡»óÈ­, ºÐ¼® ¼Ö·ç¼ÇÀ» Æ÷ÇÔÇÑ 'ÄÄÆ÷³ÍÆ® ¹× Ç÷§Æû', '¼ÒÇÁÆ®¿þ¾î'. ¹èÆ÷¸¦ Æ÷ÇÔÇÑ '¼­ºñ½º', ³×Æ®¿öÅ© ¿ÀÄɽºÆ®·¹À̼Ç, °¡»óÈ­, ºÐ¼® ¼Ö·ç¼ÇÀ» Æ÷ÇÔÇÑ '¼ÒÇÁÆ®¿þ¾î'ÀÔ´Ï´Ù.

¹Ì±¹, EMEA, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå¿¡¼­ 5G ºñÁö»óÆÄ ³×Æ®¿öÅ© µµÀÔ µ¿ÇâÀ» Çü¼ºÇÏ´Â Áö¿ª ¿ªÇп¡ ´ëÇÑ Æò°¡

Áö¿ª ¿ªÇÐÀº ±â¼ú µµÀÔ °î¼±°ú ±ÔÁ¦ »óȲ¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ±âÁ¸ À§¼º Åë½Å »ç¾÷ÀÚ¿Í Áö»ó Åë½Å »ç¾÷ÀÚ°¡ °øµ¿ »ç¾÷À» ½ÃÀÛÇÏ¿© ÇÏÀ̺긮µå ³×Æ®¿öÅ© ±¸ÃàÀ» °¡¼ÓÈ­ÇÏ´Â ÇÑÆí, ±ÔÁ¦ ´ç±¹Àº Á֯ļö ¸éÇ㸦 °£¼ÒÈ­Çϰí Áö¿ª ¿¬°á °³³äÀ» Àå·ÁÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ÅºÅºÇÑ ÀÎÇÁ¶ó ÅõÀÚ ÇÁ·Î±×·¥Àº ź·Â¼º°ú Â÷¼¼´ë ¿ë·®¿¡ ´ëÇÑ °­ÇÑ ÀÇÁö¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

5G ºñÁö»óÆÄ ³×Æ®¿öÅ© »ê¾÷ ¼ºÀåÀ» ÁÖµµÇÏ´Â ÁÖ¿ä ±â¾÷ÀÇ °æÀï ±¸µµ ¹× Çõ½Å Àü·« ºÐ¼®

ºñÁö»óÆÄ ³×Æ®¿öÅ©°æÀï ±¸µµ´Â ±âÁ¸ À§¼º Åë½Å »ç¾÷ÀÚ, ½Å»ý ÄÁ½ºÅÚ·¹ÀÌ¼Ç ½ºÅ¸Æ®¾÷, Áö»ó ÀÎÇÁ¶ó Á¦°ø¾÷ü, ¼ÒÇÁÆ®¿þ¾î Çõ½Å°¡µéÀÌ È¥ÀçµÇ¾î ÀÖ½À´Ï´Ù. ±âÁ¸ Ç×°ø¿ìÁÖ ±â¾÷µéÀº Á¦Á¶ Àü¹®¼ºÀ» Ȱ¿ëÇÏ¿© ź·ÂÀûÀÎ °í°íµµ Ç÷§Æû°ú ÷´Ü ¾ÈÅ׳ª¸¦ °³¹ßÇϰí, Åë½Å ¼­ºñ½º Á¦°ø¾÷ü¿Í Àü·«Àû Á¦ÈÞ¸¦ ¸Î¾î NTN ¼Ö·ç¼ÇÀ» ±âÁ¸ ³×Æ®¿öÅ© Æ÷Æ®Æú¸®¿À¿¡ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇÏ°í µÎ ºÐ¾ßÀÇ ±íÀº Áö½ÄÀ» °áÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù.

5G ºñÁö»óÆÄ ³×Æ®¿öÅ©ÀÇ ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ°í µµÀÔ À§ÇèÀ» ÁÙÀ̱â À§ÇÑ ¾÷°è ¸®´õµéÀ» À§ÇÑ ½ÇÇà °¡´ÉÇÑ Àü·«Àû Á¦¾È

ÁøÈ­ÇÏ´Â Áö»óÆÄ ÀÌ¿ÜÀÇ ³×Æ®¿öÅ© ¿µ¿ª¿¡¼­ °æÀï ¿ìÀ§¸¦ È®º¸Çϱâ À§ÇØ ¾÷°è ¸®´õµéÀº ´Ù°¢ÀûÀÎ Àü·«Àû Á¢±Ù ¹æ½ÄÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ù°, À§¼º, Ç×°ø¿ìÁÖ, Åë½ÅÀÇ ¹ë·ùüÀÎÀ» °¡·ÎÁö¸£´Â ¿£µå Åõ ¿£µå ÆÄÆ®³Ê½ÊÀ» À°¼ºÇÏ¿© ¼Ö·ç¼Ç ¹èÆ÷¸¦ °¡¼ÓÈ­Çϰí ÅëÇÕÀÇ º¹À⼺À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÆÄÆ®³Ê¿Í Àμ¾Æ¼ºê¸¦ ¸ÅĪÇϰí, °³³ä Áõ¸í Å×½ºÆ®¿¡ °øµ¿ ÅõÀÚÇÔÀ¸·Î½á Á¶Á÷Àº ½ÇÁ¦ Á¶°Ç¿¡¼­ ½Å±â¼úÀ» °ËÁõÇÒ ¼ö ÀÖ½À´Ï´Ù.

5G ºñÁö»ó ³×Æ®¿öÅ© ºÐ¼®À» À§ÇÑ °­·ÂÇÑ µ¥ÀÌÅÍ ¹«°á¼º°ú À¯È¿ÇÑ ÅëÂû·ÂÀ» º¸ÀåÇÏ´Â ¾ö°ÝÇÑ ´ÙÁß ¹æ¹ý·Ð¿¡ ´ëÇØ ÀÚ¼¼È÷ ¾Ë¾Æº¸¼¼¿ä.

´ç»çÀÇ ºÐ¼®Àº °­·ÂÇÑ µ¥ÀÌÅÍ ¹«°á¼º°ú ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» º¸ÀåÇϱâ À§ÇØ ¼³°èµÈ ¾ö°ÝÇÑ ¸ÖƼ¸Þ¼Òµå Á¶»ç ¹æ¹ýÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù. ÀÌ ÇÁ·Î¼¼½º´Â ¾÷°è °£Ç๰, ±â¼ú Ç¥ÁØ, ±ÔÁ¦ ´ç±¹ ½Å°í, ±â¾÷ Á¤º¸ °ø°³¿¡ ´ëÇÑ Ã¶ÀúÇÑ °ËÅ並 ÅëÇØ ±âÃÊÀûÀÎ Áö½Ä ±â¹ÝÀ» ±¸ÃàÇÏ´Â °ÍÀ¸·Î ½ÃÀ۵Ǿú½À´Ï´Ù. º¸¿ÏÀûÀÎ ½ÃÀå Á¤º¸´Â Àü¹® µ¥ÀÌÅͺ£À̽º¿¡¼­ ÃßÃâÇÏ¿© ±â¼ú ·Îµå¸Ê ¹× ÆÄÆ®³Ê½Ê ¹ßÇ¥¸¦ °ËÁõÇϱâ À§ÇØ »óÈ£ ÂüÁ¶Çß½À´Ï´Ù.

5G ºñÁö»óÆÄ ³×Æ®¿öÅ© »ýŰ迡¼­ Çõ½Å°ú Çù¾÷¿¡ µû¸¥ Àü·«Àû Á߿伺 ¹× ¼ºÀå °æ·Î¿¡ ´ëÇÑ °á·ÐÀ» ³»¸³´Ï´Ù.

¿ä¾àÇϸé, 5G ºñÁö»óÆÄ ³×Æ®¿öÅ©´Â Àü ¼¼°è ¸ðµç °÷ÀÇ ¿¬°á¼ºÀ» ÀçÁ¤ÀÇÇÏ´Â ÆÐ·¯´ÙÀÓÀÇ ÀüȯÀ» ÀǹÌÇÕ´Ï´Ù. À§¼º º°ÀÚ¸®, °í°íµµ Ç÷§Æû, Áö»ó ÀÎÇÁ¶óÀÇ ±â¼ú ¹ßÀüÀº ź·ÂÀûÀÎ °í¼º´É Åë½Å »ýŰ踦 ±¸ÃàÇϱâ À§ÇØ ¼ö·ÅÇϰí ÀÖ½À´Ï´Ù. Àü·«Àû Á¦ÈÞ¿Í ¸ðµâÇü ¾ÆÅ°ÅØÃ³´Â ´ÙÀ½ ´Ü°èÀÇ Çõ½ÅÀ» Áö¿øÇÏ°í »ó¾÷Àû, »çȸÀû ÀÌÀÍÀ» ÃËÁøÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå 5G ºñÁö»óÆÄ ³×Æ®¿öÅ© ½ÃÀå : Á¦°øº°

Á¦9Àå 5G ºñÁö»óÆÄ ³×Æ®¿öÅ© ½ÃÀå : Àå¼Òº°

Á¦10Àå 5G ºñÁö»óÆÄ ³×Æ®¿öÅ© ½ÃÀå : Á֯ļö ´ë¿ªº°

Á¦11Àå 5G ºñÁö»óÆÄ ³×Æ®¿öÅ© ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦12Àå 5G ºñÁö»óÆÄ ³×Æ®¿öÅ© ½ÃÀå : ¿ëµµº°

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ 5G ºñÁö»óÆÄ ³×Æ®¿öÅ© ½ÃÀå

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ 5G ºñÁö»óÆÄ ³×Æ®¿öÅ© ½ÃÀå

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ 5G ºñÁö»óÆÄ ³×Æ®¿öÅ© ½ÃÀå

Á¦16Àå °æÀï ±¸µµ

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The 5G Non-Terrestrial Network Market was valued at USD 7.41 billion in 2024 and is projected to grow to USD 9.42 billion in 2025, with a CAGR of 28.08%, reaching USD 32.74 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 7.41 billion
Estimated Year [2025] USD 9.42 billion
Forecast Year [2030] USD 32.74 billion
CAGR (%) 28.08%

Launching the Era of 5G Non-Terrestrial Networks Enabling Ubiquitous Global Connectivity Across Challenging Terrains and Enhancing Infrastructure Resilience

The emergence of non-terrestrial network architectures marks a pivotal milestone in the evolution of global telecommunications. By leveraging satellite constellations, high-altitude platforms, and unmanned aerial vehicles, 5G non-terrestrial networks extend coverage far beyond traditional terrestrial boundaries. This innovation empowers network operators to deliver consistent, low-latency connectivity across remote and underserved regions, ensuring that communities and industries remain seamlessly connected.

As demand for ubiquitous broadband escalates, governments and enterprises alike recognize the strategic significance of resilient, borderless communication infrastructures. Non-terrestrial networks bridge gaps left by ground-based deployments, enhancing redundancy and enabling rapid restoration of critical services during natural disasters or infrastructure disruptions. The integration of satellite and airborne elements with terrestrial 5G cores fosters a unified ecosystem capable of supporting high data throughput, massive machine-type communications, and ultra-reliable low-latency applications.

This executive summary synthesizes the key drivers accelerating 5G non-terrestrial adoption, highlights transformative shifts shaping the competitive landscape, and evaluates the influence of impending tariff measures. It delves into segmentation and regional nuances to provide a granular view of market dynamics. Furthermore, it outlines strategic recommendations and elucidates the research methodology underpinning our analysis. Together, these insights equip decision-makers with the clarity and confidence needed to navigate this rapidly advancing frontier.

Exploring the Transformative Technological and Strategic Shifts Redefining the 5G Non-Terrestrial Network Landscape and Ecosystem Collaborations

Global telecommunications is undergoing a foundational transformation as 5G non-terrestrial networks redefine the means by which data is transmitted, accessed, and secured. Technological innovations such as software-defined satellites, phased-array antennas, and integrated network orchestration platforms are converging to amplify network capacity and flexibility. This convergence allows operators to deploy hybrid solutions that seamlessly switch between terrestrial and non-terrestrial links based on real-time performance metrics.

Moreover, strategic collaborations between satellite operators, aerospace manufacturers, and telecom carriers are fostering symbiotic ecosystems that expedite technology maturation and cost optimization. Commercial partnerships are expanding beyond traditional roles, as chipmakers and software providers collaborate on edge computing capabilities tailored for orbital and high-altitude environments. These alliances accelerate standardization efforts, ensuring interoperability across diverse hardware and network management systems.

Concurrently, the integration of artificial intelligence and machine learning into network orchestration is enhancing predictive maintenance and dynamic resource allocation. Providers can proactively manage congestion, optimize spectrum utilization, and anticipate service disruptions. As industry consortia advance regulatory frameworks and spectrum harmonization, the stage is set for a new era in which the boundary between terrestrial and non-terrestrial connectivity dissolves, enabling truly global, resilient, and intelligent communication networks.

Assessing the Cumulative Effects of United States Tariffs Enacted in 2025 on 5G Non-Terrestrial Network Deployment Costs and Supply Chain Dynamics

In 2025, the United States will enact a comprehensive set of tariffs aimed at imported telecommunications equipment, including components critical to non-terrestrial network deployments. These measures will incrementally increase costs for gateway stations, ground antennas, and satellite transponders sourced from affected regions. As a consequence, network operators and system integrators will face elevated import expenses, compelling them to reassess procurement strategies and supplier relationships.

Over time, tariffs will ripple through the supply chain, influencing negotiations with original equipment manufacturers and prompting a shift toward diversified sourcing. For instance, some providers may cultivate local manufacturing partnerships to mitigate exposure to import levies, thereby fostering domestic innovation hubs. Others will explore alternative frequency bands or modular designs to reduce dependency on high-tariff components. The aggregate effect will be a recalibration of project timelines and capital allocation as companies integrate tariff projections into financial planning models.

Despite these headwinds, the industry's long-term growth trajectory remains intact. Tariff-induced cost pressures will likely accelerate consolidation among suppliers and encourage vertical integration, as players seek to control more of the value chain. This dynamic environment will reward organizations that proactively adapt their sourcing frameworks, invest in in-house development, and leverage collaborative procurement alliances to sustain cost efficiency while maintaining aggressive deployment schedules.

Uncovering Critical Market Segmentation Insights to Enhance Strategic Planning Across Offerings Locations Frequency Bands End Users and Applications

A granular understanding of market segmentation is essential for mapping the full spectrum of opportunities and tailoring go-to-market strategies. The segmentation based on offering illuminates three core categories: Components & Platforms, which includes gateway stations, ground antennas, high-altitude platforms, satellites, and unmanned aerial vehicles; Services, spanning consulting & training, managed network services, support & maintenance, and system integration & deployment; and Software, encompassing network orchestration, virtualization, and analytics solutions.

Geographic segmentation reveals that remote and isolated regions continue to demand foundational connectivity solutions, while rural, suburban, and urban areas progressively integrate non-terrestrial links as a complement to terrestrial networks. Frequency band analysis highlights the strategic roles of C Band for broad coverage, Ka Band for high-throughput backhaul, Ku Band for broadcast and maritime applications, and S Band for resilient communication in emergency services and machine-type scenarios.

End users present distinct requirements, from aerospace & defense with stringent reliability standards to government agencies seeking secure communications, maritime operators prioritizing vessel tracking, and mining enterprises requiring remote monitoring. Application-driven segmentation underscores the diverse use cases, such as backhaul & tower connectivity, broadcasting services, emergency response networks, enhanced mobile broadband, massive machine-type communications, ultra-reliable low-latency communications, and specialized solutions like vessel tracking. By weaving these segmentation dimensions into strategic planning, stakeholders can craft precise value propositions and allocate resources to the most promising market niches.

Evaluating Distinct Regional Dynamics Shaping 5G Non-Terrestrial Network Adoption Trends Across the Americas EMEA and Asia-Pacific Markets

Regional dynamics exert a profound influence on technology adoption curves and regulatory landscapes. In the Americas, established satellite operators and terrestrial carriers are forging joint ventures to accelerate hybrid network rollouts, while regulators work to streamline spectrum licensing and incentivize rural connectivity initiatives. The region's robust infrastructure investment programs underscore a strong appetite for resilience and next-generation capacity.

Europe, the Middle East & Africa presents a mosaic of deployment priorities. In Western Europe, operators emphasize urban densification and enterprise solutions, leveraging non-terrestrial links for business continuity and private network extensions. The Middle East is witnessing aggressive satellite launches and the development of high-altitude platforms to support both commercial and governmental communication needs. Africa's remote regions rely on innovative funding models and public-private partnerships to deploy cost-effective NTN solutions, addressing education, healthcare, and agricultural monitoring.

Asia-Pacific stands at the forefront of large-scale satellite constellation deployments, driven by ambitious digital inclusion policies in countries with vast rural territories. Regional collaborations aim to harmonize spectrum regulations and foster interoperable technology platforms. Meanwhile, established economies are piloting ultra-reliable low-latency applications in sectors such as autonomous logistics and disaster management. Understanding these regional nuances enables companies to tailor strategies, align with local regulatory frameworks, and harness the unique growth drivers present in each market.

Analyzing Competitive Positioning and Innovation Strategies of Leading Companies Driving Growth in the 5G Non-Terrestrial Network Industry

The competitive landscape in non-terrestrial networks features a blend of legacy satellite operators, emerging constellation startups, ground infrastructure providers, and software innovators. Established aerospace firms have leveraged their manufacturing expertise to develop resilient high-altitude platforms and advanced antennas, forging strategic alliances with telecom service providers to integrate NTN solutions into existing network portfolios. These partnerships accelerate time to market and combine deep domain knowledge from both sectors.

Simultaneously, constellation-focused companies are securing multi-launch agreements and refining satellite bus designs to optimize payload capacity. Their iterative approach to LEO and MEO deployments reduces latency and enhances throughput, drawing interest from enterprises seeking global IoT connectivity and emergency response applications. On the ground segment, specialized antenna manufacturers are driving the development of electronically steerable arrays and compact gateway stations, addressing the need for rapid, scalable deployments in austere environments.

Complementing hardware advances, software firms are innovating network orchestration platforms that unify terrestrial and non-terrestrial assets under cohesive management frameworks. These solutions employ artificial intelligence to predict traffic patterns, automate handovers between access layers, and ensure stringent quality-of-service compliance. The synergy created by cross-industry collaborations and integrated offerings positions certain competitors as frontrunners, yet the dynamic nature of technological breakthroughs means early-movers must continually evolve to maintain leadership.

Proposing Actionable Strategic Recommendations for Industry Leaders to Capitalize on 5G Non-Terrestrial Network Opportunities While Mitigating Deployment Risks

To secure a competitive advantage in the evolving non-terrestrial network domain, industry leaders must adopt a multi-pronged strategic approach. First, fostering end-to-end partnerships across the satellite, aerospace, and telecommunications value chains will accelerate solution deployment and reduce integration complexity. By aligning incentives with partners and co-investing in proof-of-concept trials, organizations can validate new technologies under real-world conditions.

Second, investing in modular, software-defined architectures enhances adaptability to shifting spectrum policies and tariff environments. Companies should prioritize open interfaces and adhere to emerging standards, enabling seamless interoperability between legacy terrestrial components and next-generation NTN platforms. This agility will minimize vendor lock-in and reduce time-to-revenue for new service offerings.

Lastly, dedicating resources to talent development and cross-disciplinary training ensures that technical teams possess the expertise needed to manage hybrid networks. Leaders should establish centers of excellence focused on NTN integration, NOC automation, and regulatory compliance. By blending commercial acumen with engineering proficiency, organizations will be well-positioned to navigate supply chain challenges, exploit tariff mitigation strategies, and deliver resilient connectivity experiences across diverse market segments.

Detailing a Rigorous Multi-Method Research Methodology Ensuring Robust Data Integrity and Valid Insights for the 5G Non-Terrestrial Network Analysis

Our analysis is grounded in a rigorous multi-method research methodology designed to ensure robust data integrity and actionable insights. The process commenced with an exhaustive review of industry publications, technical standards, regulatory filings, and corporate disclosures to assemble a foundational knowledge base. Complementary market intelligence was derived from specialized databases and cross-referenced to validate technology roadmaps and partnership announcements.

Subsequently, we conducted in-depth interviews with a spectrum of stakeholders, including network operators, satellite manufacturers, platform integrators, software developers, and end-user representatives. These conversations elucidated practical deployment challenges, procurement considerations, and innovation priorities. We integrated these qualitative insights with quantitative data to construct scenario-based analyses, evaluating the potential impacts of tariff changes, spectrum allocations, and emerging use cases.

Finally, data triangulation techniques were applied to reconcile discrepancies and reinforce the reliability of our findings. Sensitivity analyses tested assumptions related to cost structures, deployment timelines, and regional adoption rates. The resulting framework provides decision-makers with transparency around underlying methodologies and confidence in the strategic recommendations derived from this comprehensive research exercise.

Concluding Strategic Imperatives and Growth Pathways Defined by Innovations and Collaboration in the 5G Non-Terrestrial Network Ecosystem

In summary, 5G non-terrestrial networks represent a paradigm shift poised to redefine connectivity across every corner of the globe. Technological advancements in satellite constellations, high-altitude platforms, and ground infrastructure are converging to create resilient, high-performance communication ecosystems. Strategic alliances and modular architectures will underpin the next wave of innovation, driving both commercial and societal benefits.

While the introduction of United States tariffs in 2025 introduces cost pressures, it also stimulates supply chain diversification and domestic manufacturing capabilities. Companies that proactively integrate tariff planning into their procurement models will reinforce their competitive positions. Concurrently, deep segmentation insights across offerings, geographies, frequency bands, end users, and applications empower stakeholders to tailor solutions to distinct market needs.

Looking ahead, the organizations that thrive will be those that embrace collaborative development, adhere to open standards, and cultivate the specialized talent required to manage hybrid network environments. By balancing short-term agility with long-term strategic investment, industry participants can unlock the full potential of 5G non-terrestrial networks and drive sustained growth in the digital age.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. 5G Non-Terrestrial Network Market, by Offering

9. 5G Non-Terrestrial Network Market, by Location

10. 5G Non-Terrestrial Network Market, by Frequency Band

11. 5G Non-Terrestrial Network Market, by End User

12. 5G Non-Terrestrial Network Market, by Application

13. Americas 5G Non-Terrestrial Network Market

14. Europe, Middle East & Africa 5G Non-Terrestrial Network Market

15. Asia-Pacific 5G Non-Terrestrial Network Market

16. Competitive Landscape

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â