°¥·ý ½ÃÀå : ¼øµµ µî±Þº°, Á¦Ç° À¯Çüº°, Çüź°, ¿ëµµº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°, À¯Åë ä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)
Gallium Market by Purity Grade, Product Type, Form, Application, End-Use Industry, Distribution Channel - Global Forecast 2025-2030
»óǰÄÚµå : 1806391
¸®¼­Ä¡»ç : 360iResearch
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 191 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,939 £Ü 5,569,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF ¹× Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 4,249 £Ü 6,008,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿Àϱâ¾÷ ³» 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 5,759 £Ü 8,143,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ Áö¿ª »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 6,969 £Ü 9,854,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

°¥·ý ½ÃÀåÀº 2024³â¿¡´Â 4¾ï 6,373¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡´Â 4¾ï 9,665¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 7.27%·Î ¼ºÀåÇÏ¿© 2030³â±îÁö 7¾ï 679¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 4¾ï 6,373¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 4¾ï 9,665¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 7¾ï 679¸¸ ´Þ·¯
CAGR(%) 7.27%

°¥·ýÀ» ÷´Ü ÀüÀÚ, ±¤ÀüÀÚ, ½ÅÈï Àç»ý ¿¡³ÊÁö Çõ½ÅÀ» À§ÇÑ Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ÀÚ¸®¸Å±è

³·Àº À¶Á¡°ú ¶Ù¾î³­ ¹ÝµµÃ¼ Ư¼ºÀ¸·Î °¢±¤¹Þ´Â ÀüÀ̱ݼÓÀÎ °¥·ýÀº ´Ù¾çÇÑ Ã·´Ü ±â¼ú ºÐ¾ß¿¡¼­ ¾ø¾î¼­´Â ¾È µÉ Á¸Àç·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. °¡ÀüÁ¦Ç°¿¡¼­ °¥·ýºñ¼Ò(GaAs) ±âÆÇÀº °íÁÖÆÄ ÁõÆø°ú °í¼Ó ½ºÀ§ÄªÀ» °¡´ÉÇÏ°Ô Çϰí, ÁúÈ­°¥·ý(GaN) È­ÇÕ¹°Àº Â÷¼¼´ë Àü·ÂÀüÀÚ ¹× ±¤ÀüÀÚ ÀåÄ¡¸¦ Áö¿øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±âÁ¸ ¿µ¿ªÀ» ³Ñ¾î ¿¡³ÊÁö È¿À²°ú Àç»ý¿¡³ÊÁö ¹ßÀüÀ¸·ÎÀÇ »ê¾÷ Àü¹ÝÀÇ º¯È­·Î ÀÎÇØ žçÀüÁö¿Í Àڿܼ± ±¤ °ËÃâ±â¿¡¼­ °¥·ýÀÇ ¿ªÇÒÀº °è¼Ó È®´ëµÇ°í ÀÖ½À´Ï´Ù.

°¥·ýÀÇ ¼¼°è °ø±Þ¸Á º¯È­, ±â¼úÀû Çõ½Å, ½ÅÈï ½ÃÀå ¼ö¿ä µ¿Çâ ÆÄ¾Ç, °¥·ýÀÇ ¼¼°è °ø±Þ¸Á Çõ½ÅÀû º¯È­

°¥·ý ½ÃÀå »óȲÀº Àç·á °úÇÐÀÇ Çõ½Å, °ø±Þ¸Á ÇÁ·¹ÀÓ¿öÅ©ÀÇ ÁøÈ­, ÃÖÁ¾ ½ÃÀå ¼ö¿ä ±ÞÁõÀ¸·Î ÀÎÇØ º¯ÇõÀûÀÎ º¯È­¸¦ °Þ°í ÀÖ½À´Ï´Ù. ÃÖ±Ù ÁúÈ­°¥·ýÀÇ À¯±â±Ý¼Ó È­ÇÐ ±â»ó ¼ºÀå¹ýÀÇ ¹ßÀüÀ¸·Î ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ È¿À²ÀÌ Àü·Ê ¾øÀÌ Çâ»óµÇ¾î Àü±âÀÚµ¿Â÷¿ë ÀιöÅÍ¿Í Àç»ý¿¡³ÊÁö¿ë ÀιöÅÍ¿¡ ´ëÇÑ Ã¤¿ëÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ »õ·Î¿î ¿¡ÇÇÅÃ¼È ¼ºÀå ±â¼úÀº °¥·ýºñ¼Ò ¿þÀÌÆÛÀÇ Ç°ÁúÀ» Çâ»ó½ÃÄÑ 5G Åë½ÅÀÇ °íÁÖÆÄ ¹ÝµµÃ¼ ¼ÒÀÚÀÇ ¼º´É°ú ½Å·Ú¼ºÀ» Çâ»ó½ÃÄ×½À´Ï´Ù.

¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼ Á¶Ä¡°¡ °¥·ý °ø±Þ¸Á°ú ½ÃÀå Á¢±Ù¼º¿¡ ¹ÌÄ¡´Â ´©Àû ¿µÇâ Æò°¡ ¹«¿ª ¿ªÇÐ Æò°¡

2025³â¿¡ ½ÃÇàµÉ °ÍÀ¸·Î ¹ßÇ¥µÈ »õ·Î¿î °ü¼¼ Á¶Ä¡´Â °¥·ýÀÇ ¹«¿ª È帧, °¡°Ý ¿ªÇÐ, ´Ù¿î½ºÆ®¸² Á¦Á¶ ºñ¿ë¿¡ ´©Àû ¿µÇâÀ» ¹ÌÄ¥ °ÍÀÔ´Ï´Ù. ¹Ì±¹À¸·ÎÀÇ °¥·ý ¼öÀÔÀÌ °ü¼¼ ÀÎ»ó¿¡ Á÷¸éÇÑ °¡¿îµ¥, ±¹³» ÃÖÁ¾ »ç¿ëÀÚ´Â ¹æÀ§ ½Ã½ºÅÛ¿¡¼­ °¡ÀüÁ¦Ç°¿¡ À̸£±â±îÁö °¢ ºÐ¾ß¿¡ ÆÄ±ÞµÇ´Â Àç·á ºñ¿ë »ó½Â¿¡ ¸Â¼­ ½Î¿ö¾ß ÇÕ´Ï´Ù. ÀÌ¿¡ µû¶ó °Å·¡Ã³ »óÇ¥ Á¦Ç° Á¦Á¶¾÷üµéÀº Àα٠Áö¿ª¿¡¼­ ´ëü Á¶´Þ °æ·Î¸¦ ¸ð»öÇÏ´Â ÇÑÆí, Àü·«Àû ºñÃàÀÌ ´Ü±âÀûÀÎ ¿ÏÈ­Ã¥À¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù.

¼øµµ µî±Þ, Á¦Ç° À¯Çü, ÇüÅÂ, ¿ëµµ, ÃÖÁ¾ »ç¿ë »ê¾÷, À¯Åë ä³Î¿¡ °ÉÄ£ ÁÖ¿ä ¼¼ºÐÈ­¿¡ ´ëÇÑ ÅëÂû·Â

¿©·¯ ºÎ¹®À» µ¿½Ã¿¡ °í·ÁÇÏ¸é °¥·ý ¼ö¿ä ¹× °ø±Þ¿¡ ´ëÇÑ ¹Ì¹¦ÇÑ ÀÌÇØ¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. °í¼øµµ µî±Þ°ú Àú¼øµµ µî±ÞÀÇ ±¸ºÐÀº ÃÊ °í°¨µµ ±¤ÀüÀÚ ÀåÄ¡¿¡ ´ëÇÑ °¥·ýÀÇ ÀûÇÕ¼º°ú ÀϹÝÀûÀÎ ÇÕ±Ý ¹èÇÕ¿¡ ´ëÇÑ °¥·ýÀÇ ÀûÇÕ¼ºÀ» µÞ¹ÞħÇÕ´Ï´Ù. ÇÑÆí, °¥·ý ÇÕ±Ý, °¥·ý È­ÇÕ¹°, °¥·ý ±Ý¼Ó °£ÀÇ Â÷ÀÌ´Â ±â°èÀû °ß°í¼º, ¿­ ¾ÈÁ¤¼º, ÀüÀÚÀû ¼º´É¿¡ ´ëÇÑ ÃÖÁ¾ »ç¿ëÀÚÀÇ ¿ä±¸¸¦ ¹Ý¿µÇÕ´Ï´Ù. È­ÇÕ¹° Ä«Å×°í¸®¿¡¼­´Â °¥·ýºñ¼Ò°¡ °íÁÖÆÄ Åë½ÅÀ» °è¼Ó Áö¹èÇϰí ÀÖ´Â ¹Ý¸é, ÁúÈ­°¥·ýÀº Àü·Â ÀüÀÚ ¹× Â÷¼¼´ë LED ¾ÆÅ°ÅØÃ³¿¡¼­ ºü¸£°Ô ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

ºÏ¹Ì, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Áö¿ªº° °¥·ý ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ¹× ¼ºÀå ±âȸ Æò°¡

Áö¿ªº° ºÐ¼®Àº ¹ÌÁÖ, À¯·´, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °¥·ý ½ÃÀå ¹ßÀüÀ» Çü¼ºÇÏ´Â ¸íÈ®ÇÑ ÃËÁø¿äÀΰú Á¦¾à ¿äÀÎÀ» ¹àÈü´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â źźÇÑ ´Ù¿î½ºÆ®¸² »ê¾÷°ú ÷´Ü Á¦Á¶¾÷¿¡ ´ëÇÑ Á¤ºÎ Àμ¾Æ¼ºê°¡ ÁúÈ­°¥·ý ¿¬±¸¼¾ÅÍ¿Í ÆÄÀÏ·µ »ý»ê ¶óÀο¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¿ªµ¿ÀûÀÎ ¿¡ÄڽýºÅÛÀº ºÏ¹ÌÀÇ È¸¶ûÀ» µû¶ó Àç·á Á¤Á¦¾÷ü¿Í ¹ÝµµÃ¼ ÁÖÁ¶°øÀåÀ» ¿¬°áÇÏ´Â ÅëÇÕ °ø±Þ¸ÁÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù.

½ÃÀå ¹ßÀü¸¦ ÁÖµµÇÏ´Â ÁÖ¿ä °¥·ý »ý»êÀÚ, °ø±Þ¾÷ü, Çõ½Å°¡µéÀÇ Àü·«Àû °æÀï ±¸µµ ¸ÅÇÎ

ÁÖ¿ä °¥·ý Á¦Á¶¾÷ü¿Í °ø±Þ¾÷üµé°æÀï ±¸µµ¸¦ »ìÆìº¸¸é, »ý»ê ´É·Â È®´ë, ±â¼ú Á¦ÈÞ, ¼öÁ÷ ÅëÇÕ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ÀÇÇØ Á¤ÀǵǴ °æÀï ±¸µµ¸¦ È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾÷°è ±âÁ¸ ±â¾÷µéÀº Â÷¼¼´ë Á¤Á¦ Àåºñ¿¡ ´ëÇÑ ÅõÀÚ¿Í Á¤Á¦ ÇÁ·ÎÅäÄÝ °­È­¸¦ ÅëÇØ °í¼øµµ °¥·ý »ý»ê È®´ë¸¦ ¿ì¼±¼øÀ§·Î »ï°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, Àü¹® È­ÇÐ Á¦Á¶¾÷ü´Â È­ÇÕ¹° Àü±¸Ã¼ ´É·ÂÀ» Çâ»ó½ÃÄÑ °¥·ý ºñ¼Ò ¹× ÁúÈ­ °¥·ý ÀåÄ¡ Á¦Á¶¾÷üÀÇ ºÎ»óÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù.

°¥·ý ½ÃÀå º¯µ¿¿¡ ´ëÀÀÇÏ°í »õ·Î¿î ±â¼úÀû ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇÑ ¾÷°è ¸®´õµéÀÇ Àü·«Àû Çൿ Á¦¾È

½ÃÀåÀÇ º¯µ¿¼ºÀ» ±Øº¹ÇÏ°í °¥·ý ºÎ¹®ÀÇ »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇØ ¾÷°è ¸®´õµéÀº ´Ù°¢ÀûÀÎ Àü·«Àû Á¢±Ù ¹æ½ÄÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ù°, ºñ ÀüÅëÀû Á¤Á¦ ÆÄÆ®³Ê¿ÍÀÇ Á¦ÈÞ ¹× 2Â÷ ȸ¼ö °æ·Î °³Ã´À» ÅëÇÑ °ø±Þ¿ø ´Ùº¯È­¸¦ ÅëÇØ ÁöÁ¤ÇÐÀû ¸®½ºÅ©¿Í ¹°·ù ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. µÑ°, ƯÈ÷ ÁúÈ­°¥·ý°ú »õ·Î¿î ÇÕ±Ý ¹èÇÕÀÇ È­ÇÕ¹° °³¹ßÀ» ÃËÁøÇÏ´Â ¿¬±¸ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ÅõÀÚÇÔÀ¸·Î½á ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ¹× ±¤ÀüÀÚ ÀÀ¿ë ºÐ¾ß¿¡¼­ »õ·Î¿î ¼º´É ÀÓ°è°ªÀ» À̲ø¾î ³¾ ¼ö ÀÖ½À´Ï´Ù.

°¥·ý ½ÃÀå ÀλçÀÌÆ®ÀÇ µ¥ÀÌÅÍ ¼öÁý, °ËÁõ ÀýÂ÷, ºÐ¼® ÇÁ·¹ÀÓ¿öÅ©¸¦ »ó¼¼ÇÏ°Ô ¼³¸íÇÏ´Â Á¾ÇÕÀûÀÎ ¿¬±¸ ¹æ¹ý·Ð

º» ºÐ¼®À» µÞ¹ÞħÇÏ´Â Á¶»ç ¹æ¹ýÀº ¾ö°ÝÇÑ 1Â÷ Á¶»ç¿Í Á¾ÇÕÀûÀÎ 2Â÷ µ¥ÀÌÅÍ °ËÅ並 °áÇÕÇÏ¿© °ß°í¼º°ú ½Å·Ú¼ºÀ» º¸ÀåÇÕ´Ï´Ù. 1Â÷ Á¶»ç¿¡¼­´Â Àç·á Á¤Á¦¾÷ü, ÀåÄ¡ Á¦Á¶¾÷ü, ÃÖÁ¾ »ç¿ë °í°´À» Æ÷ÇÔÇÑ °¥·ý °¡Ä¡»ç½½ Àü¹ÝÀÇ ÀÌÇØ°ü°èÀÚµé°úÀÇ ±¸Á¶È­µÈ ÀÎÅͺ䰡 ÁøÇàµÇ¾ú½À´Ï´Ù. ÀÌ ÀÎÅͺ並 ÅëÇØ °¥·ý Á¶´ÞÀÇ °úÁ¦, ±â¼úÀû ¿ä±¸ »çÇ×, »õ·Î¿î ÀÀ¿ë µ¿Çâ¿¡ ´ëÇÑ Á÷Á¢ÀûÀÎ °ßÇØ¸¦ ¾òÀ» ¼ö ÀÖ¾ú½À´Ï´Ù. ÀÌ¿Í ÇÔ²², ÇÐ°è ¹× »ê¾÷°è ¿ÀÇǴϾ𠸮´õµé°úÀÇ Àü¹®°¡ ÇùÀǸ¦ ÅëÇØ °¡¼³À» °ËÁõÇϰí Á¶»ç °á°ú¸¦ º¸´Ù ±¤¹üÀ§ÇÑ ½ÃÀå ½Ã³ª¸®¿À ³»¿¡¼­ ¸Æ¶ôÈ­Çß½À´Ï´Ù.

°¥·ý °¡Ä¡»ç½½ÀÇ º¯È­¸¦ À§ÇÑ ÀÌÇØ°ü°èÀÚµéÀÇ ÁöħÀÌ µÉ ¼ö ÀÖµµ·Ï ÁÖ¿ä ¿¬±¸ °á°ú¿Í ¹Ì·¡ Àü¸ÁÀ» Á¤¸®Çß½À´Ï´Ù.

À̹ø Executive Summary´Â ¿©·¯ ÷´Ü ±â¼ú ºÐ¾ß¿¡¼­ °¥·ýÀÇ Àü·«Àû Á߿伺, °ø±Þ¸Á°ú ¿ëµµ¸¦ ÀçÁ¤ÀÇÇÏ´Â º¯ÇõÀû º¯È­, »õ·Î¿î ¹«¿ª Á¶Ä¡°¡ ½ÃÀå Á¢±Ù¼º¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇØ °­Á¶Çß½À´Ï´Ù. »ó¼¼ÇÑ ¼¼ºÐÈ­ ºÐ¼®À» ÅëÇØ Á¦Ç° À¯Çü, È­ÇÕ¹° À¯Çü, ÃÖÁ¾ ÀÌ¿ë »ê¾÷ÀÌ ¾î¶»°Ô ¿¬°èµÇ¾î ¼ö¿ä ¿ªÇÐÀ» Çü¼ºÇÏ´ÂÁö¸¦ ¹àÈ÷°í, Áö¿ª ºÐ¼®À» ÅëÇØ Á¤Ã¥ ÇÁ·¹ÀÓ¿öÅ©¿Í ÅõÀÚ ÆÐÅÏÀÇ Áö¿ªÀû ´µ¾Ó½º¸¦ °­Á¶Çß½À´Ï´Ù. ¶ÇÇÑ, °æÀï Àü·«¿¡ ´ëÇÑ Æò°¡¸¦ ÅëÇØ »ý»ê´É·Â È®´ë, ±â¼ú Á¦ÈÞ, µðÁöÅÐÈ­°¡ Áö¼Ó °¡´ÉÇÑ Â÷º°È­¿¡ ÀÖ¾î Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖÀ½À» È®ÀÎÇß½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå °¥·ý ½ÃÀå ¼øµµº°

Á¦9Àå °¥·ý ½ÃÀå : Á¦Ç° À¯Çüº°

Á¦10Àå °¥·ý ½ÃÀå : Çüź°

Á¦11Àå °¥·ý ½ÃÀå : ¿ëµµº°

Á¦12Àå °¥·ý ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

Á¦13Àå °¥·ý ½ÃÀå : À¯Åë ä³Îº°

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ °¥·ý ½ÃÀå

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ °¥·ý ½ÃÀå

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °¥·ý ½ÃÀå

Á¦17Àå °æÀï ±¸µµ

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Gallium Market was valued at USD 463.73 million in 2024 and is projected to grow to USD 496.65 million in 2025, with a CAGR of 7.27%, reaching USD 706.79 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 463.73 million
Estimated Year [2025] USD 496.65 million
Forecast Year [2030] USD 706.79 million
CAGR (%) 7.27%

Positioning Gallium as a Critical Enabler for Advanced Electronics, Optoelectronics, and Emerging Renewable Energy Innovations

Gallium, a post-transition metal prized for its low melting point and exceptional semiconducting properties, has become indispensable to a range of high-technology sectors. In consumer electronics, gallium arsenide (GaAs) substrates enable high-frequency amplification and fast switching, while gallium nitride (GaN) compounds power next-generation power electronics and optoelectronic devices. Beyond these established domains, gallium's role in photovoltaic cells and ultraviolet photodetectors continues to expand, driven by industry-wide shifts toward energy efficiency and renewable power generation.

Driven by evolving demand dynamics, the gallium supply chain has grown increasingly complex. Primary extraction from bauxite residues and secondary recovery from aluminum processing residues now coexist alongside emerging recycling initiatives that seek to capture gallium from end-of-life electronics. Consequently, the geographic concentration of production-historically centered in a handful of major refining hubs-faces pressure from both sustainability mandates and geopolitical considerations. As a result, stakeholders across the value chain are actively pursuing supply diversification strategies and forging partnerships to secure access to high-reliability sources.

Moving forward, market participants must reconcile growth ambitions with resource stewardship. In this context, gallium's criticality underscores the need for transparent sourcing practices, robust innovation pipelines for compound development, and an agile approach to shifting regulatory landscapes. Together, these factors position gallium not merely as a specialty metal but as a strategic enabler of broader digitalization and decarbonization trends.

Identifying Transformative Shifts in Gallium's Global Supply Chain, Technological Breakthroughs, and Emerging Market Demand Trajectories

The gallium market landscape has undergone transformative shifts driven by breakthroughs in material science, evolving supply chain frameworks, and surging end-market demand. Over recent years, advancements in metal-organic chemical vapor deposition for gallium nitride have unlocked unprecedented efficiencies in power electronics, catalyzing adoption across electric vehicle inverters and renewable energy inverters. Simultaneously, novel epitaxial growth techniques have refined the quality of gallium arsenide wafers, enhancing the performance and reliability of high-frequency semiconductor devices in 5G communications.

Moreover, non-traditional sources such as recycled gallium from electronic waste are gaining traction, supported by stringent sustainability mandates. This movement toward circular economy approaches has prompted original equipment manufacturers and material suppliers to explore closed-loop partnerships, ensuring traceability and reducing environmental impact. Consequently, traditional refining hubs are reassessing capital allocation to incorporate green recovery facilities and advanced purification platforms.

Furthermore, strategic collaborations between technology incumbents and materials innovators are redefining competition. Joint ventures focused on GaN-on-diamond substrates and hybrid composite alloys are emerging, blending the unique thermal conductivity of novel backing materials with gallium's semiconducting advantages. As a result, the market is evolving from a supply-driven environment to a more integrated ecosystem where research institutions, equipment makers, and device integrators play interdependent roles. Looking ahead, these transformative forces will continue to reshape cost structures, accelerate product development cycles, and expand application horizons for gallium.

Assessing the Cumulative Impact of New United States Tariff Measures on Gallium Supply Chains and Market Accessibility Trade Dynamics

New tariff measures announced for implementation in 2025 are set to exert a cumulative impact on gallium trade flows, pricing dynamics, and downstream manufacturing costs. As gallium imports into the United States face incremental duties, domestic end-users must contend with elevated material costs that ripple across sectors from defense systems to consumer electronics. Consequently, original equipment manufacturers are exploring alternative sourcing corridors in neighboring regions, while strategic stockpiling has emerged as a short-term mitigation tactic.

Transitional adjustments in contractual terms are already observable, with procurement teams negotiating flexible terms that incorporate price-adjustment clauses and destination-based duties. However, these adaptations are not without their challenges. Supply chain fragmentation introduces lead-time volatility, prompting device assemblers to adopt modular production approaches that can withstand material shortages. In parallel, some chemical producers are evaluating vertical integration scenarios to alleviate import dependencies and gain greater control over critical purification workflows.

In addition, the imposition of duties has spurred advancements in domestic value-added processes. Firms are investing in enhanced refining technologies that improve yield and reduce contamination risks, thereby offsetting some tariff burdens. Yet, the overall landscape remains fluid, shaped by ongoing trade negotiations and reciprocal measures from exporting economies. As a result, stakeholders must continuously update scenario analyses and maintain agile procurement frameworks to navigate the evolving tariff environment and its implications for gallium market accessibility and competitiveness.

Uncovering Key Segmentation Insights Across Purity Grades, Product Types, Forms, Applications, End-Use Industries, and Distribution Channels

A nuanced understanding of gallium demand and supply emerges when examining multiple segmentation dimensions simultaneously. The distinction between high purity and low purity grades underpins the suitability of gallium for ultra-sensitive optoelectronic devices versus more generalized alloy formulations. Meanwhile, divergences between gallium alloys, gallium compounds, and gallium metal reflect end-user requirements for mechanical robustness, thermal stability, or electronic performance. Within the compounds category, gallium arsenide continues to dominate high-frequency communications, whereas gallium nitride is rapidly gaining ground in power electronics and next-generation LED architecture.

Beyond product classifications, the choice between liquid and solid forms of gallium influences handling protocols, transportation logistics, and processing methods. Liquid gallium is prized in additive manufacturing and advanced solder applications, while solid ingots and pellets are preferred for wafer growth and metallurgical blending. Furthermore, application categories reveal distinct growth patterns: LED lighting demonstrates steady expansion driven by energy regulations; optoelectronics-including laser diodes, optical sensors, and photodetectors-experiences accelerating uptake in biomedical instrumentation and industrial automation; photovoltaic cells, such as concentrator and thin-film variants, benefit from gallium's bandgap tuning; and semiconductors-ranging from discrete devices and integrated circuits to power electronics comprised of power transistors and RF devices-leverage tailored gallium substrates for enhanced efficiency.

End-use industries further refine this landscape. Aerospace & defense demands gallium alloys for radar and communication systems; automotive relies on gallium nitride for electric vehicle inverters; consumer electronics incorporates gallium arsenide in smartphone components; healthcare & medical utilizes optoelectronic modules in imaging and diagnostics; and telecommunications infrastructure increasingly depends on gallium-based transceivers for high-speed data links. The distribution channel mix between offline networks and online portals dictates procurement responsiveness and inventory strategies, shaping how manufacturers and distributors align their go-to-market models.

Evaluating Regional Gallium Market Drivers and Growth Opportunities Across Americas, Europe, Middle East & Africa, and Asia-Pacific Trends

Regional analysis highlights distinct drivers and constraints shaping gallium market evolution across the Americas, Europe, Middle East & Africa, and Asia-Pacific territories. In the Americas, robust downstream industries and government incentives for advanced manufacturing have catalyzed investments in gallium nitride research centers and pilot production lines. This dynamic ecosystem benefits from integrated supply chains that link material refiners with semiconductor foundries along the North American corridor.

By contrast, Europe, Middle East & Africa exhibits a dual character: established optoelectronics hubs in Western Europe coexist with rapid deployment of renewable energy projects in the Gulf region. Policy frameworks emphasizing critical raw material resilience have driven public-private initiatives to secure localized gallium refining capacity and to foster cooperation among research institutes. At the same time, geopolitical tensions and logistical complexities introduce variables that companies must rigorously model.

Meanwhile, Asia-Pacific remains the epicenter of gallium demand, propelled by large-scale LED lighting manufacturing, semiconductor wafer fabrication, and solar cell production clusters. Southeast Asian nations are emerging as secondary processing centers, leveraging lower labor costs and favorable trade agreements, whereas East Asia continues to innovate in compound and device integration. Across all regions, harmonizing regulatory compliance, environmental stewardship, and supply chain visibility remains paramount to sustain growth and foster resilience.

Mapping the Strategic Competitive Landscape of Leading Gallium Producers, Suppliers, and Innovators Driving Market Evolution

A competitive examination of leading gallium producers and suppliers reveals a landscape defined by capacity expansions, technology partnerships, and vertical integration initiatives. Industry incumbents have prioritized scaling high-purity gallium production through investments in next-generation refining units and enhanced purification protocols. At the same time, specialist chemical manufacturers have advanced their capabilities in compound precursors, supporting the rise of gallium arsenide and gallium nitride device fabricators.

Strategic alliances with semiconductor foundries and equipment vendors are another hallmark of this segment. Collaborative research agreements focus on developing innovative substrate materials, composite structures, and additive synthesis routes, thereby accelerating time-to-market for new device architectures. Meanwhile, supply chain transparency programs have become a differentiator, as buyers increasingly assess providers on traceability metrics, environmental impact, and regulatory compliance standards.

In addition, select players are deploying digital transformation efforts-leveraging predictive analytics, blockchain-based tracking, and AI-driven yield optimization-to enhance operational efficiency and reduce downtime. These forward-looking strategies underscore how competition extends beyond raw material supply to encompass integrated service offerings, technical support frameworks, and tailored financing models. As such, companies that can demonstrate end-to-end value propositions are best positioned to capture market share and foster long-term customer loyalty.

Strategic Actionable Recommendations for Industry Leaders to Navigate Gallium Market Volatility and Capitalize on Emerging Technological Opportunities

To navigate market volatility and harness emerging opportunities in the gallium sector, industry leaders should adopt a multi-pronged strategic approach. First, diversifying supply sources by forging alliances with non-traditional refining partners and exploring secondary recovery channels can mitigate geopolitical and logistical risks. Second, investing in research initiatives that advance compound development-particularly in gallium nitride and novel alloy formulations-will unlock new performance thresholds for power electronics and optoelectronic applications.

Moreover, establishing flexible procurement frameworks with adaptive pricing clauses and buffer inventory mechanisms will enable organizations to respond nimbly to tariff fluctuations and raw material shortages. Concurrently, pursuing collaborative ventures with equipment manufacturers and design houses can accelerate co-development of custom substrates and turnkey solutions, reinforcing competitive moats. In parallel, digitalization of the value chain through supply chain analytics, real-time traceability, and predictive yield modeling will enhance decision-making and reduce operational costs.

Finally, embedding sustainability principles in gallium sourcing-including closed-loop recycling partnerships, lifecycle assessment protocols, and environmental management systems-will not only satisfy regulatory requirements but also bolster corporate reputation among end-users. By integrating these actionable levers into strategic roadmaps, industry leaders can position themselves to capitalize on gallium's pivotal role in electrification, digitalization, and decarbonization transitions.

Comprehensive Research Methodology Detailing Data Collection, Validation Procedures, and Analytical Framework for Gallium Market Insights

The research methodology underpinning this analysis combines rigorous primary research with comprehensive secondary data review to ensure robustness and reliability. Primary research involved structured interviews with stakeholders across the gallium value chain, including material refiners, device manufacturers, and end-use customers. These engagements provided firsthand perspectives on sourcing challenges, technological requirements, and emerging application trends. In parallel, expert consultations with academic and industry thought leaders validated assumptions and contextualized findings within broader market narratives.

Secondary research encompassed a systematic examination of publicly available data sources, regulatory filings, patents databases, technical journals, and industry white papers. Quantitative triangulation techniques were applied to reconcile disparate data points-such as trade statistics, capacity utilization rates, and end-market production volumes-thereby enhancing the precision of segmentation analyses. Additionally, proprietary modeling tools facilitated scenario simulations that reflect evolving tariff regimes, geopolitical developments, and technology adoption curves.

Quality assurance processes included cross-verification of interview inputs, iterative hypothesis testing, and peer reviews by subject-matter experts. This layered approach ensures that insights presented herein are underpinned by verifiable evidence, robust analytical frameworks, and transparent documentation of data sources. The result is a comprehensive methodological foundation that supports actionable strategic decision-making in the gallium market.

Synthesizing Key Findings and Forward-Looking Perspectives to Guide Stakeholders in the Gallium Value Chain Transformation

This executive summary has highlighted the strategic importance of gallium across multiple high-technology sectors, the transformative shifts redefining its supply chain and applications, and the implications of new trade measures on market accessibility. Detailed segmentation analysis has illuminated how product forms, compound types, and end-use industries interlink to shape demand dynamics, while regional insights have underscored geographic nuances in policy frameworks and investment patterns. Furthermore, an assessment of competitive strategies reveals the critical role of capacity expansion, technology partnerships, and digitalization in forging sustainable differentiation.

Looking forward, stakeholders must adopt an agile posture-balancing near-term operational resilience with long-term innovation pipelines. As gallium continues to underpin advancements in renewable energy, electrification, and next-generation communications, industry actors that integrate sustainability, strategic diversification, and collaborative development into their core roadmaps will secure competitive advantages. Ultimately, the evolving gallium landscape demands a holistic view-one that aligns material supply, technology progress, and regulatory trajectories to drive value creation across the entire ecosystem.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. Gallium Market, by Purity Grade

9. Gallium Market, by Product Type

10. Gallium Market, by Form

11. Gallium Market, by Application

12. Gallium Market, by End-Use Industry

13. Gallium Market, by Distribution Channel

14. Americas Gallium Market

15. Europe, Middle East & Africa Gallium Market

16. Asia-Pacific Gallium Market

17. Competitive Landscape

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â