¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ ½ÃÀå : Á¦Ç° À¯Çü, ±â¼ú, »ç¿ëÀÚ À¯Çü, ÃÖÁ¾»ç¿ëÀÚ, ÆÇ¸Å ä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)
Wearable Glucose Biosensor Market by Product Type, Technology, User Type, End User, Sales Channel - Global Forecast 2025-2030
»óǰÄÚµå : 1804817
¸®¼­Ä¡»ç : 360iResearch
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 189 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,939 £Ü 5,527,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF ¹× Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 4,249 £Ü 5,963,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿Àϱâ¾÷ ³» 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 5,759 £Ü 8,082,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ Áö¿ª »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 6,969 £Ü 9,780,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ ½ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 16¾ï 1,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 17¾ï 2,000¸¸ ´Þ·¯, CAGR 7.59%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 25¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 16¾ï 1,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 17¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 25¾ï ´Þ·¯
CAGR(%) 7.59%

¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ÀÇ Ã¤ÅÃÀ» Çü¼ºÇÏ´Â ±â¼úÀû ÁøÈ­, ÀÓ»óÀû ¿ä±¸, »ó¾÷Àû ±â´ë¿¡ ´ëÇÑ °£°áÇÑ »óȲ ¼³Á¤ ¿ä¾à

¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ÀÇ Àü¸ÁÀº ±Þ¼ÓÇÑ ±â¼úÀû ¼º¼÷, º¸´Ù ±ä¹ÐÇÑ ÀÓ»ó ÅëÇÕ, ȯÀÚ¿Í ÀÇ·á ½Ã½ºÅÛ ¸ðµÎÀÇ ±â´ëÄ¡ »ó½ÂÀ¸·Î Á¤ÀÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÃÖ±Ù ¼¾¼­ ¼ÒÀç, ¼ÒÇüÈ­µÈ ÀüÀÚ ÀåÄ¡ ¹× µ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀüÀº ¿¬¼Ó Âø¿ëÀÌ ´õ Æí¾ÈÇϰí, ÀÏ»ó »ýȰ¿¡ ´ëÇÑ °£¼·ÀÌ ÀûÀ¸¸ç, ÀÓ»óÀûÀ¸·Î ½Ç¿ëÀûÀÎ Ç÷´ç ¼öÄ¡¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ ½Ç½Ã°£À¸·Î Á¦°øÇÒ ¼ö ÀÖ´Â ÀåÄ¡¸¦ ¸¸µå´Â µ¥ ÁýÁߵǰí ÀÖ½À´Ï´Ù. ¼¾¼­ ÀÚü»Ó¸¸ ¾Æ´Ï¶ó ¸ð¹ÙÀÏ ¾ÖÇø®ÄÉÀ̼Ç, Ŭ¶ó¿ìµå ºÐ¼®, ÀÓ»óÀÇ¿ë ´ë½Ãº¸µå·Î ±¸¼ºµÈ »óÈ£ ¿î¿ë °¡´ÉÇÑ ¿¡ÄڽýºÅÛÀº ÀÇ·á±â±â¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î Àνĵǰí ÀÖ½À´Ï´Ù.

¼¾¼­ ±â¼ú, ±ÔÁ¦ ¸íȮȭ, °æÀï ¿ìÀ§¸¦ ÀçÁ¤ÀÇÇÏ´Â µðÁöÅÐ ÇコÄÉ¾î »ýŰèÀÇ Áß¿äÇÑ º¯°îÁ¡ ¹× »ê¾÷ Àü¹ÝÀÇ º¯È­

Áö³­ ¸î ³â µ¿¾È ¼¾¼­ÀÇ Á¡ÁøÀûÀÎ °³¼±À» ³Ñ¾î µ¥ÀÌÅÍ ¿ÀÄɽºÆ®·¹À̼Ç, °³ÀÎÈ­µÈ Ä¡·á, ¿£µåÅõ¿£µå ÄÉ¾î °æ·Î°¡ °¡Ä¡¸¦ ÀçÁ¤ÀÇÇÏ´Â »õ·Î¿î ´Ü°è°¡ µµ·¡Çϰí ÀÖ½À´Ï´Ù. ¼¾¼­ÀÇ È­ÇÐÀû Ư¼º°ú ±¤ÇÐ ÆÇµ¶ Á¢±Ù ¹æ½ÄÀº ħ½À¼º°ú Á¤È®¼ºÀÇ ÀýÃæÁ¡À» ÁÙÀ̰í, ´õ Æí¾ÈÇÑ ÆûÆÑÅÍ¿Í ´õ ±ä Âø¿ë Áֱ⸦ °¡´ÉÇÏ°Ô Çß½À´Ï´Ù. µ¿½Ã¿¡ ¿¹Ãø ºÐ¼®°ú ÀûÀÀÇü °æ°íÀÇ ÅëÇÕÀ¸·Î ÀÓ»óÀû ´ëÈ­°¡ ÀϽÃÀûÀÎ ÃøÁ¤¿¡¼­ »çÀü ¿¹¹æÀû Ç÷´ç °ü¸®·Î ÀüȯµÇ±â ½ÃÀÛÇßÀ¸¸ç, ÀÓ»óÀÇ¿Í È¯ÀÚÀÇ Ç÷´ç µ¥ÀÌÅÍ¿¡ ´ëÇÑ ÀÓ»óÀÇ¿Í È¯ÀÚ °£ÀÇ °ü°èµµ À籸¼ºµÇ°í ÀÖ½À´Ï´Ù.

2025³â °ü¼¼ Á¶Ä¡°¡ ¾î¶»°Ô ±¹°æ °£ Á¶´ÞÀ» ÁߴܽÃ۰í, Á¶´Þ, Á¦Á¶ ź·Â¼º, ºñ¿ë °ü¸®¿¡¼­ Àü·«Àû ÀüȯÀ» °­¿äÇÏ´ÂÁö¿¡ ´ëÇÑ Áõ°Å ±â¹Ý Æò°¡¸¦ ¼öÇàÇÕ´Ï´Ù.

2025³â °ü¼¼ ¹× ¹«¿ª °ü·Ã Á¤Ã¥ Á¶Ä¡´Â ¸¶ÀÌÅ©·ÎÀÏ·ºÆ®·Î´Ð½º ÆÇµ¶, Ư¼ö Æú¸®¸Ó, È¿¼Ò È­ÇÐÁ¦Ç°°ú °°Àº ¼¶¼¼ÇÑ ±¸¼º¿ä¼Ò¸¦ º¹ÀâÇÑ ±¹°æ °£ ¹ë·ùüÀο¡ ÀÇÁ¸ÇÏ´Â °ø±Þ¾÷ü¿¡ ½É°¢ÇÑ ¿ªÇ³À» °¡Á®¿Ô½À´Ï´Ù. ÀÌ·¯ÇÑ Á¶Ä¡·Î ÀÎÇØ ÀϺΠ¼öÀÔǰÀÇ »ó·ú ºñ¿ëÀÌ »ó½ÂÇϰí Á¦Á¶¾÷ü´Â Á¶´Þ Àü·«, °è¾à Á¶°Ç ¹× Àç°í ¹öÆÛ¸¦ ÀçÆò°¡ÇÏ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¸¹Àº ±â¾÷µéÀÌ °ø±Þ¾÷ü ´Ùº¯È­¸¦ °¡¼ÓÈ­ÇÏ°í °ü¼¼ º¯µ¿¿¡ ´ëÇÑ ³ëÃâÀ» ÁÙÀ̱â À§ÇØ ´Ï¾î¼î¾î¸µÀ» ¼±ÅÃÇß½À´Ï´Ù.

Á¦Ç°±º, ±¸Çö ±â¼ú, »ç¿ëÀÚÃþ, ÀÇ·á ȯ°æ, ½ÃÀå Ãâ½Ã ä³Î¿¡ °ÉÄ£ ´Ù°¢Àû ¼¼ºÐÈ­°¡ Â÷º°È­µÈ °¡Ä¡ Á¦¾ÈÀ» Á¤ÀÇÇÏ´Â ¹æ¹ý

¸íÈ®ÇÑ ¼¼ºÐÈ­ ·»Áî´Â ¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ÀÇ ´Ù¾çÇÑ Ã¤Åà ¿ªÇÐ ¹× Á¦Ç° ¼³°è ¿ì¼±¼øÀ§¸¦ ¼³¸íÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. Á¦Ç° À¯Çü¿¡ µû¶ó ¿¬¼Ó Æ÷µµ´ç ¸ð´ÏÅ͸µ°ú Ç÷¡½Ã Æ÷µµ´ç ¸ð´ÏÅ͸µÀº ÃøÁ¤ ºóµµ, °æ°í ±â´É, ÀÓ»ó ¿öÅ©Ç÷ο쿡 ´ëÇÑ ±â´ëÄ¡°¡ ´Ù¸£¸ç, ÀÌ´Â ±â±â ÀÎü°øÇÐ ¹× µ¥ÀÌÅÍ Ç÷§Æû¿¡ ´ëÇÑ ¿ä±¸»çÇ׿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. µû¶ó¼­ µð¹ÙÀ̽º °³¹ßÀÚ´Â »ç¿ë »ç·Ê °£ ÀϰüµÈ µ¥ÀÌÅÍ Ç°ÁúÀ» º¸ÀåÇϸ鼭 Á¤È®µµ ÁÖÀå°ú »ç¿ë »ç·Ê¸¦ ÀǵµÇÑ Á¦Ç°±º¿¡ ¸Â°Ô Á¶Á¤ÇØ¾ß ÇÕ´Ï´Ù.

Àü ¼¼°è °¢ Áö¿ªÀÇ ÁöºÒÀÚÀÇ ¿µÇâ·Â, ±ÔÁ¦ °æ·Î, ÀÎÇÁ¶ó Áß½ÉÀÇ ºñÁî´Ï½º ±âȸ, Áö¿ªº°·Î ´Ù¸¥ äÅà ¿ªÇп¡ ´ëÇÑ °ßÇØ

ÇコÄɾî ÀÎÇÁ¶ó, »óȯ °æ·Î, ±ÔÁ¦ ü°èÀÇ Áö¿ªÀû Â÷ÀÌ´Â ¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ÀÇ ¶Ñ·ÇÇÑ Ã¤Åà ÆÐÅÏÀ» ¸¸µé¾î³À´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â źźÇÑ ¹Î°£ ¹× °ø°ø ÁöºÒ ½Ã½ºÅÛ, ÀÓ»óÀÇÀÇ ³ôÀº ÀνÄ, ¼º¼÷ÇÑ ¿ø°ÝÀÇ·á Ç÷§ÆûÀÌ ¿Ü·¡ ȯÀÚ Ä¡·á °æ·Î¿¡ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µÀ» ½Å¼ÓÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇϰí ÀÖ½À´Ï´Ù. Çõ½ÅÀûÀÎ »óȯ ½Ã¹ü»ç¾÷°ú °¡Ä¡ ±â¹Ý Ä¡·á(Value-Based Care)´Â ¼øÀÀµµ¸¦ °³¼±ÇÏ°í ±Þ¼º±â ÀÇ·á ÀÌ¿ë·üÀ» ³·Ãâ ¼ö ÀÖ´Â ±âȸÀÇ ÆøÀ» ³ÐÈ÷°í ÀÖÀ¸¸ç, ƯÁ¤ Áö¿ªÀÇ ÇöÁö »ý»ê´É·ÂÀº ÀÓ»ó ¼ö¿ä¿Í °ø±ÞÀ» ÀÏÄ¡½Ãų ¼ö ÀÖ´Â ±â¾÷¿¡°Ô Àü·«Àû ¿ìÀ§¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù.

°æÀï ±¸µµ ºÐ¼®¿¡¼­´Â ÀÓ»ó °ËÁõ, Á¦Á¶ ¿ª·®, µðÁöÅÐ ÅëÇÕ, Àü·«Àû ÆÄÆ®³Ê½ÊÀÌ ¿þ¾î·¯ºí Ç÷´ç ¸ð´ÏÅ͸µ ºÐ¾ßÀÇ ¸®´õ½ÊÀ» ¾î¶»°Ô ÃËÁøÇϰí ÀÖ´ÂÁö¸¦ ¹àÈü´Ï´Ù.

¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ÀÇ °æÀï ±¸µµ´Â ÀÓ»ó °ËÁõ, Á¦Á¶ ±Ô¸ð, ¼ÒÇÁÆ®¿þ¾î Ç÷§Æû, ä³Î °ü°è¿¡¼­ Â÷º°È­µÈ °­Á¡À» ¹ÙÅÁÀ¸·Î Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. ÀÓ»ó½ÃÇè °æÇèÀÌ Ç³ºÎÇÏ°í ³»ºÐºñ ³×Æ®¿öÅ©¿ÍÀÇ °ü°è°¡ Àß ±¸ÃàµÈ ´ë±â¾÷Àº È®½ÇÇÑ °á°ú µ¥ÀÌÅÍ¿Í ½Ç¿ëÀûÀÎ ÅëÇÕ Àü·«À» Á¦½ÃÇÔÀ¸·Î½á ÀÓ»óÀÇÀÇ ¼ö¿ëÀ» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹Ý´ë·Î ¹ÎøÇÑ Çõ½Å°¡µéÀº »ç¿ëÀÚ °æÇè, »õ·Î¿î ÆûÆÑÅÍ ¶Ç´Â Àúºñ¿ë Á¦Á¶ ¹æ½Ä¿¡ ÁýÁßÇÔÀ¸·Î½á Æ´»õ ½ÃÀå¿¡¼­ Ãʱ⠽ÃÀå Á¡À¯À²À» È®º¸Çϰí, ¼Ò¿ÜµÈ ȯÀÚ Áý´ÜÀ» °ø·«ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù.

ÀÇ·á±â±â Á¦Á¶¾÷ü¿Í »ýÅÂ°è ÆÄÆ®³Ê°¡ ÀÓ»ó äÅÃÀ» °¡¼ÓÈ­Çϰí, °ø±Þ¸ÁÀ» È®º¸Çϸç, »ó¾÷Àû ¿î¿µÀ» È®´ëÇϱâ À§ÇØ ½ÇÇà °¡´ÉÇÏ°í ¿ì¼±¼øÀ§°¡ ³ôÀº Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¾÷°è ¸®´õµéÀº ±â¼úÀû °¡´É¼ºÀ» ÀÓ»óÀû äÅðú »ó¾÷Àû Áö¼Ó°¡´É¼ºÀ¸·Î ¿¬°áÇϱâ À§ÇØ ÀÏ·ÃÀÇ ½Ç¿ëÀûÀÎ ÇൿÀ» ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù. ù°, Á¦Ç° °³¹ßÀ» ÁöºÒÀÚ¿Í ÀÇ·áÁø¿¡°Ô ÀÇ¹Ì ÀÖ´Â °á°ú¸¦ ¸ñÇ¥·Î ÇÏ´Â ¾ö°ÝÇÑ ÀÓ»óÀû Áõ°Å âÃâ°ú ¿¬°èÇÏ¿© »óȯ °áÁ¤ Áֱ⸦ ´ÜÃàÇϰí, ÅëÇÕµÈ Àü´Þ ³×Æ®¿öÅ© ³»¿¡¼­ ÆÄÀÏ·µ ÇÁ·Î±×·¥À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. µÑ°, ´ëü °ø±Þ¾÷ü¸¦ ½Äº°ÇÏ°í °íÀ§Çè ºÎǰÀÇ °æ¿ì ´Ï¾î¼î¾î¸µÀ» °í·ÁÇÔÀ¸·Î½á Áߺ¹¼º°ú À¯¿¬¼ºÀ» °®Ãá °ø±Þ¸ÁÀ» ¼³°èÇÏ¿© °ü¼¼¿Í ¿î¼ÛÀÇ È¥¶õ¿¡ ³ëÃâµÉ ±âȸ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

1Â÷ ÀÌÇØ°ü°èÀÚ ÀÎÅͺä, ±ÔÁ¦ ¹× ±â¼ú °ËÅä, °ø±Þ¸Á °ËÁõÀ» °áÇÕÇÑ Åõ¸íÇϰí ÀçÇö °¡´ÉÇÑ Á¶»ç ¹æ¹ýÀ» ÅëÇØ ºÐ¼®À» Áö¿øÇÕ´Ï´Ù.

º» ºÐ¼®ÀÇ ±âÃʰ¡ µÇ´Â Á¶»ç´Â ±¸Á¶È­µÈ 1Â÷ Á¶»ç, 2Â÷ Á¶»ç ¹× 2Â÷ ¹®Çå Á¶»ç, ±ÔÁ¦ °ü·Ã ¹®¼­ ºÐ¼®, ½ÅÈï ¼¾¼­¿¡ ´ëÇÑ ±â¼ú °ËÁõÀ» ÅëÇÕÇÑ °ÍÀÔ´Ï´Ù. 1Â÷ ÀÔ·ÂÀº ÀÓ»ó ÀÇ»ç, Á¶´Þ Ã¥ÀÓÀÚ, °ø±Þ¸Á °ü¸®ÀÚ, Á¦Ç° °³¹ß ÀÓ¿ø°úÀÇ ÁúÀû Åä·ÐÀ» ÅëÇØ ÀÓ»óÀû ¿ä±¸, »ó¾÷Àû ¿ä±¸, Á¦Á¶»óÀÇ Á¦¾àÁ¶°ÇÀ» »ï°¢Ãø·®ÇÒ ¼ö ÀÖµµ·Ï Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÎÅͺä´Â ±ÔÁ¦ Áöħ, ¹ßÇ¥µÈ ÀÓ»ó ¹®Çå, Àåºñ Á¦Á¶¾÷üÀÇ °ø½Ä ¼º¸í¼­ µîÀÇ Ã¼°èÀûÀÎ °ËÅ並 ÅëÇØ º¸¿ÏµÇ¾î ÁÖÁ¦¸¦ µÞ¹ÞħÇÏ°í ´Ù¾çÇÑ °üÇàÀ» °­Á¶Çß½À´Ï´Ù.

±â¼úÀû Áøº¸´Â Áõ°Å âÃâ, °ø±Þ ź·Â¼º, »óÈ£ ¿î¿ë °¡´ÉÇÑ Ä¡·á °æ·Î¿Í ÀÏÄ¡ÇÏÁö ¾ÊÀ¸¸é Áö¼ÓÀûÀÎ ÀÓ»óÀû, »ó¾÷Àû ¼º°øÀ» ´Þ¼ºÇÒ ¼ö ¾ø´Ù´Â Á¡À» °­Á¶ÇÏ´Â °£°áÇÑ ¿ä¾àÀÔ´Ï´Ù.

¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­´Â Àç·á°úÇÐ, ÀÓ»óÄ¡·á, µðÁöÅÐ °Ç°­ÀÇ ±³Â÷Á¡¿¡ À§Ä¡Çϸç, ±× ±ËÀûÀº ÀÌ·¯ÇÑ ¿µ¿ªÀ» Á¶È­½ÃŰ´Â ¾÷°èÀÇ ´É·Â¿¡ µû¶ó °áÁ¤µÉ °ÍÀÔ´Ï´Ù. ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ »ç¿ë ÆíÀǼº°ú µ¥ÀÌÅÍ Ãæ½Çµµ¿¡ ´ëÇÑ ¿ª»çÀû À庮ÀÌ ¿ÏÈ­µÇ°í, ±ÔÁ¦ ¸íȮȭ¿Í ¿ø°ÝÀÇ·á¿¡ ´ëÇÑ »óȯÀÇ ÁøÈ­·Î ÀÎÇØ º¸´Ù ±¤¹üÀ§ÇÑ ÀÓ»ó ÅëÇÕ¿¡ À¯¸®ÇÑ Á¶°ÇÀÌ Á¶¼ºµÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª »ó¾÷Àû ¼º°øÀº ¼¾¼­ÀÇ ¼º´É»Ó¸¸ ¾Æ´Ï¶ó °ø±Þ¸ÁÀÇ Åº·Â¼º, ¾ö°ÝÇÑ °á°ú Áõ°Å, ¼ÒÇÁÆ®¿þ¾îÀÇ »óÈ£¿î¿ë¼º ¶ÇÇÑ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ ½ÃÀå : Á¦Ç° À¯Çüº°

Á¦9Àå ¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ ½ÃÀå : ±â¼úº°

Á¦10Àå ¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ ½ÃÀå : »ç¿ëÀÚ À¯Çüº°

Á¦11Àå ¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦12Àå ¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ ½ÃÀå : ÆÇ¸Å ä³Îº°

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ ½ÃÀå

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ ½ÃÀå

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿þ¾î·¯ºí ±Û·çÄÚ½º ¹ÙÀÌ¿À¼¾¼­ ½ÃÀå

Á¦16Àå °æÀï ±¸µµ

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Wearable Glucose Biosensor Market was valued at USD 1.61 billion in 2024 and is projected to grow to USD 1.72 billion in 2025, with a CAGR of 7.59%, reaching USD 2.50 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 1.61 billion
Estimated Year [2025] USD 1.72 billion
Forecast Year [2030] USD 2.50 billion
CAGR (%) 7.59%

A concise scene-setting overview that frames technological evolution, clinical imperatives, and commercial expectations shaping wearable glucose biosensor adoption

The landscape for wearable glucose biosensors is defined by rapid technological maturation, tighter clinical integration, and heightened expectations from both patients and healthcare systems. Recent advancements in sensor materials, miniaturized electronics, and data analytics have converged to produce devices that are more comfortable for continuous wear, less intrusive to daily life, and capable of delivering clinically actionable glycemic insights in real time. Beyond the sensor itself, interoperable ecosystems-comprising mobile applications, cloud analytics, and clinician dashboards-are increasingly treated as integral components of the medical device offering.

Transitioning from early adopters to mainstream use requires alignment across clinical, regulatory, reimbursement, and manufacturing vectors. Clinicians expect reliable accuracy across physiologic ranges and user cohorts, while payers and health systems demand evidence of improved outcomes and cost containment. Simultaneously, patient expectations emphasize convenience, battery life, and seamless data sharing with care teams. Taken together, these forces have elevated product development priorities toward robust validation studies, simplified user experiences, and secure data architectures that preserve privacy while enabling meaningful clinical decision support.

As adoption accelerates, the most successful organizations will be those that treat the wearable glucose biosensor as a systems problem rather than a standalone sensor, integrating human factors, supply chain resilience, and evidence generation into a single product strategy. This introductory context frames the critical themes explored throughout the analysis, highlighting why technical performance, clinical credibility, and commercial viability must advance in parallel for sustained market traction.

Critical inflection points and industry-wide shifts in sensor technology, regulatory clarity, and digital care ecosystems that are redefining competitive advantage

The past several years have seen transformative shifts that extend well beyond incremental sensor improvements, ushering in a new phase where data orchestration, personalized therapy, and end-to-end care pathways redefine value. Sensor chemistries and optical readout approaches have reduced the tradeoffs between invasiveness and accuracy, enabling more comfortable form factors and longer wear cycles. Concurrently, the integration of predictive analytics and adaptive alerts has begun to move the clinical conversation from episodic measurement to proactive glycemic management, reshaping how clinicians and patients interact with glucose data.

Regulatory frameworks have also evolved, with authorities clarifying pathways for clinical validation of continuous and flash monitoring systems and for software as a medical device. These clearer expectations have lowered barriers to market entry for well-prepared innovators and prompted incumbents to accelerate post-market evidence collection. Telehealth expansion and remote patient monitoring reimbursement policies have further catalyzed adoption, especially where managed care entities prioritize outcomes-driven interventions.

On the supply and manufacturing side, component sourcing, sensor packaging, and modular electronics are becoming differentiators. Strategic partnerships across the device, semiconductor, and cloud sectors are creating integrated propositions that combine sensor performance with data services and care management. As a result, the competitive landscape is shifting from device-only competition to ecosystem competition, where long-term commercial success depends on sustained investments in data integrity, clinical validation, and accessible patient engagement models.

An evidence-based assessment of how 2025 tariff actions disrupted cross-border sourcing and compelled strategic shifts in procurement, manufacturing resilience, and cost management

Policy actions related to tariffs and trade in 2025 introduced meaningful headwinds for suppliers that rely on complex, cross-border value chains for sensitive components such as microelectronic readouts, specialty polymers, and enzymatic chemistries. These measures raised landed costs for select imported inputs, prompting manufacturers to re-evaluate sourcing strategies, contract terms, and inventory buffers. In response, many organizations accelerated supplier diversification efforts and explored nearshoring options to mitigate exposure to tariff volatility.

The operational consequences included a renewed focus on cost-to-serve optimization and on design choices that reduce reliance on tariff-exposed components. Procurement teams prioritized multi-sourcing agreements and visibility into supplier tier two and tier three exposures. At the same time, quality and regulatory teams had to manage the implications of alternative suppliers, ensuring that substitutions did not compromise clinical performance or create additional validation burdens. Consequently, product roadmaps and time-to-market calculations shifted to incorporate longer qualification cycles for alternative parts.

From a strategic perspective, the tariff environment highlighted the importance of vertical integration and strategic inventory positioning for mission-critical components. Companies with established domestic manufacturing capabilities or robust local partnerships found themselves better insulated from near-term cost shocks, while others faced margin compression or were forced to pass through higher prices. Longer term, these pressures are likely to re-shape sourcing maps and prompt capital allocation toward more resilient manufacturing footprints, though the transition requires careful balancing of cost, capacity, and regulatory compliance.

How multi-dimensional segmentation across product family, enabling technology, user cohorts, care settings, and go-to-market channels defines differentiated value propositions

A clear segmentation lens helps explain divergent adoption dynamics and product design priorities across the wearable glucose biosensor landscape. Based on Product Type, the distinction between Continuous Glucose Monitoring and Flash Glucose Monitoring drives differing expectations for measurement frequency, alerting capabilities, and clinical workflows, which in turn influence device ergonomics and data platform requirements. Device developers must therefore tailor accuracy claims and usability narratives to the intended product family while ensuring consistent data quality across use cases.

Based on Technology, the choice between Electrochemical and Optical approaches underpins tradeoffs in sensitivity, susceptibility to environmental interference, and manufacturing complexity. These technical pathways also influence regulatory strategies and post-market surveillance priorities because sensor failure modes and calibration requirements vary substantially between chemistries and optical systems. Based on User Type, design and evidence requirements diverge across Adult, Geriatric, and Pediatric cohorts, each presenting unique physiologic and behavioral considerations that affect sensor adhesion, calibration algorithms, and human factors testing.

Based on End User, the distribution of use cases across Diabetic Clinics, Home Care, and Hospitals shapes the service model and reimbursement discussions; clinical settings demand integration with electronic health records and clinician-facing analytics, whereas home care emphasizes ease of use and remote monitoring workflows. Based on Sales Channel, the operational implications of Offline and Online channels influence pricing strategy, fulfillment logistics, and patient onboarding processes. Synthesizing these segmentation dimensions enables firms to prioritize development resources and to align clinical evidence generation with the most commercially viable use cases.

A geographically nuanced view of adoption dynamics that contrasts payer influence, regulatory pathways, and infrastructure-driven opportunities across global regions

Regional variation in healthcare infrastructure, reimbursement pathways, and regulatory regimes produces distinct adoption patterns for wearable glucose biosensors. In the Americas, robust private and public payer systems, high awareness among clinicians, and mature telehealth platforms favor rapid integration of continuous monitoring into outpatient care pathways. Innovative reimbursement pilots and value-based care initiatives are expanding opportunities for devices that demonstrably improve adherence and reduce acute care utilization, while local manufacturing capabilities in certain locales create strategic advantages for firms able to align supply with clinical demand.

Europe, Middle East & Africa presents a heterogeneous landscape where regulatory harmonization across key European markets facilitates cross-border product entry but where reimbursement and clinical adoption timelines can vary widely. National reimbursement decisions and health technology assessment processes play a central role in determining the commercial viability of new monitoring solutions, and partnerships with regional distributors and integrated care networks remain essential. In contrast, markets in the Middle East and Africa are often characterized by concentrated procurement channels and by opportunities to leapfrog traditional care models through telemedicine-enabled deployments.

Asia-Pacific encompasses diverse trajectories that range from highly advanced digital health ecosystems in some markets to rapidly developing healthcare infrastructures in others. Local manufacturing capacity and strategic government initiatives to promote domestic medtech production have created fertile conditions for both multinational and regional players. Across the region, differences in payer models and patient expectations necessitate tailored go-to-market strategies that account for local clinical guidelines, supply chain constraints, and preferred channels of care delivery.

Competitive landscape analysis highlighting how clinical validation, manufacturing capacity, digital integration, and strategic partnerships drive leadership in wearable glucose monitoring

Competitive dynamics in wearable glucose biosensors are shaped by differentiated strengths in clinical validation, manufacturing scale, software platforms, and channel relationships. Leading organizations with deep clinical trial experience and established relationships with endocrinology networks can accelerate clinician acceptance by presenting robust outcome data and pragmatic integration strategies. Conversely, nimble innovators often capture early share in niche segments by focusing on user experience, novel form factors, or lower-cost manufacturing approaches that unlock underserved patient cohorts.

Strategic partnerships and licensing agreements are increasingly common as device makers seek to combine core sensor capabilities with advanced analytics, interoperable health platforms, and supply chain partners. Intellectual property around sensor chemistries, calibration algorithms, and adhesive systems remains a critical barrier to entry for late-stage competitors, while strong regulatory dossiers and post-market surveillance programs preserve clinician trust. Additionally, companies that invest in scalable manufacturing and quality systems gain a distinct advantage when transitioning from pilot deployments to broad commercial distribution.

Sustained differentiation will depend not only on device performance but on the ability to deliver integrated solutions that address clinician workflow, payer evidence requirements, and patient adherence. Firms that align R&D investments with real-world evidence generation and that maintain flexible manufacturing strategies are better positioned to convert clinical credibility into durable commercial relationships.

Actionable, prioritized measures that device manufacturers and ecosystem partners can implement to accelerate clinical adoption, secure supply chains, and scale commercial operations

Industry leaders should prioritize a set of practical actions to translate technical promise into clinical adoption and commercial sustainability. First, align product development with rigorous clinical evidence generation that targets outcomes meaningful to payers and care teams, thereby shortening reimbursement decision cycles and enabling pilot programs within integrated delivery networks. Second, design supply chains with redundancy and flexibility by qualifying alternate suppliers and considering nearshoring for high-risk components to reduce exposure to tariff and transport disruptions.

Third, invest in interoperable software architectures and in user-centered design to ensure data from biosensors integrates seamlessly into clinician workflows and patient mobile experiences. Fourth, pursue targeted partnerships that complement internal capabilities, whether those are analytics firms that can enhance predictive algorithms or regional distributors that provide deep market access. Lastly, deploy phased commercialization strategies that match product complexity to channel readiness, starting with controlled clinical settings before expanding into home-care and direct-to-consumer environments.

Taken together, these recommendations emphasize a systems-level approach: synchronizing clinical evidence, supply resiliency, software interoperability, and channel strategy to accelerate adoption while protecting margins and brand reputation.

A transparent and reproducible methodology combining primary stakeholder interviews, regulatory and technical review, and supply chain validation to underpin the analysis

The research underpinning this analysis integrates structured primary interviews, secondary literature review, regulatory document analysis, and technical validation of emerging sensor modalities. Primary inputs consisted of qualitative discussions with clinicians, procurement leaders, supply chain managers, and product development executives, enabling triangulation of clinical needs, commercial imperatives, and manufacturing constraints. These interviews were supplemented by systematic review of regulatory guidance, published clinical literature, and public statements from device makers to corroborate themes and to surface divergent practices.

Technical validation involved assessing published sensor performance metrics, materials science developments, and data interoperability standards to evaluate robustness and scalability of leading approaches. Supply chain analysis mapped component dependencies and potential tariff exposures, and scenario testing examined the operational implications of sourcing shifts. Throughout the methodology, emphasis was placed on reproducible, evidence-based claims, and on distinguishing observable industry behavior from aspirational strategy.

Limitations of the methodology include reliance on available public documentation for certain proprietary processes and the evolving nature of clinical evidence for novel sensor technologies. To mitigate these constraints, the analysis favors conservative interpretation of technical claims and documents provenance for all primary assertions, ensuring that conclusions are grounded in verifiable inputs.

A concise synthesis emphasizing that technical progress must be matched by evidence generation, supply resilience, and interoperable care pathways to achieve enduring clinical and commercial success

Wearable glucose biosensors sit at the intersection of materials science, clinical care, and digital health, and their trajectory will be determined by the industry's ability to harmonize these domains. Technical progress has reduced historical barriers related to comfort and data fidelity, while evolving regulatory clarity and telehealth reimbursement create favorable conditions for broader clinical integration. However, commercial success will hinge on more than sensor performance: supply chain resilience, rigorous outcome evidence, and software interoperability are equally important.

Market entrants and incumbents face a common challenge: converting promising prototypes into clinically trusted, widely adopted solutions that satisfy clinicians, payers, and patients. Those that succeed will be the organizations that adopt a systems view, investing simultaneously in clinical trials, modular manufacturing, and platform-level interoperability. Conversely, firms that focus narrowly on sensor improvements without addressing the broader ecosystem risks slower uptake and limited commercial returns.

The conclusion is that wearable glucose biosensors are poised to become integral components of chronic care pathways, provided that stakeholders commit to evidence-driven deployment, resilient operations, and user-centric product design. Strategic coordination across these dimensions will determine which solutions realize sustained clinical and commercial impact.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. Wearable Glucose Biosensor Market, by Product Type

9. Wearable Glucose Biosensor Market, by Technology

10. Wearable Glucose Biosensor Market, by User Type

11. Wearable Glucose Biosensor Market, by End User

12. Wearable Glucose Biosensor Market, by Sales Channel

13. Americas Wearable Glucose Biosensor Market

14. Europe, Middle East & Africa Wearable Glucose Biosensor Market

15. Asia-Pacific Wearable Glucose Biosensor Market

16. Competitive Landscape

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â