ÀÛ¹° º¸È£¿ë RNAi ½ÃÀå : ÀÛ¹° À¯Çüº°, Àü´Þ ¹æ¹ýº°, ´ë»ó ÇØÃæº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)
RNAi in Crop Protection Market by Crop Type, Delivery Method, Target Pest, Application, End user - Global Forecast 2025-2030
»óǰÄÚµå : 1804389
¸®¼­Ä¡»ç : 360iResearch
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 192 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,939 £Ü 5,512,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF ¹× Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 4,249 £Ü 5,946,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿Àϱâ¾÷ ³» 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 5,759 £Ü 8,059,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ Áö¿ª »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 6,969 £Ü 9,752,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

ÀÛ¹° º¸È£¿ë RNAi ½ÃÀåÀº 2024³â¿¡ 26¾ï 5,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â CAGR 13.69%·Î 30¾ï ´Þ·¯·Î ¼ºÀåÇÏ¿© 2030³â±îÁö 57¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2024³â) 26¾ï 5,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ(2025³â) 30¾ï ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 57¾ï 3,000¸¸ ´Þ·¯
CAGR(%) 13.69%

ÀÛ¹° º¸È£¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í Àü ¼¼°è ³ó¾÷ÀÇ Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ´Â RNA °£¼·ÀÇ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ¹àÈü´Ï´Ù.

³ó¾÷ ºÐ¾ß´Â ÇØÃæ ÀúÇ×¼ºÀÇ ÁøÈ­¿Í ȯ°æ ¹®Á¦·Î ÀÎÇØ ÀüÅëÀûÀÎ ÀÛ¹° º¸È£ ¹æ¹ý¿¡ Àü·Ê ¾ø´Â ¾Ð¹ÚÀÌ °¡ÇØÁö¸é¼­ Á¡Á¡ ´õ ¸¹Àº µµÀü¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ ´ëÇØ ¿¬±¸ÀÚµé°ú ¾÷°è ¸®´õµéÀº »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸ鼭 ¼öÀ²ÀÇ ¾ÈÁ¤¼ºÀ» ³ôÀÏ ¼ö ÀÖ´Â Á¤¹Ð ±â¼ú¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù. RNA °£¼·Àº ÀÌ·¯ÇÑ »óȲ¿¡¼­ ¼±±¸ÀûÀÎ Á¢±Ù ¹æ½ÄÀ¸·Î, ƯÀ̼ºÀ» ³ôÀÌ°í ºñÇ¥Àû ¿µÇâÀ» ÁÙÀ̴ ǥÀû À¯ÀüÀÚ Ä§¹¬ ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù.

¼¼°è ÀÛ¹° º¸È£ ÆÐ·¯´ÙÀÓ¿¡¼­ RNA °£¼· ÀÀ¿ëÀ» Çü¼ºÇϰí, ±â¼ú ¹× ±ÔÁ¦ ÀüȯÀ» ¸ÅÇÎÇÏ´Â ±â¼ú ¹× ±ÔÁ¦ ÀüȯÀ» Çü¼ºÇÕ´Ï´Ù.

RNA °£¼·ÀÌ ½ÇÇè½Ç ¿¬±¸¿¡¼­ ÇöÀå Àû¿ëÀ¸·Î ÀüȯµÊ¿¡ µû¶ó ÀÛ¹° º¸È£ÀÇ È¯°æÀÌ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÃÖ±Ù ³ª³ëÀÔÀÚ¸¦ ÅëÇÑ Àü´Þ ¹× Á¾ÀÚ Ã³¸® Á¦Á¦ÀÇ È¹±âÀûÀÎ ¹ßÀüÀ¸·Î ÀÌÁß °¡´Ú RNA ºÐÀÚÀÇ ¾ÈÁ¤¼º°ú Èí¼öÀ²ÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. µ¿½Ã¿¡, ¿±¸é »ìÆ÷ ±â¼úÀÇ ¹ßÀüÀ¸·Î º¸´Ù ±ÕÀÏÇÑ »ìÆ÷¿Í Åõ¿©·® °¨¼Ò°¡ °¡´ÉÇÏ¿© È¿´É°ú ºñ¿ë È¿À²¼ºÀÌ ¸ðµÎ Çâ»óµÇ¾ú½À´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼Á¤Ã¥ÀÌ ³ó¾÷ ºÐ¾ßÀÇ RNA °£¼· ¼Ö·ç¼Ç äÅà ¹× °³¹ß¿¡ ¹ÌÄ¡´Â ´©ÀûÀû ¿µÇâ Æò°¡

2025³â ¹ßÈ¿ ¿¹Á¤ÀÎ ¹Ì±¹ÀÇ °ü¼¼ Á¤Ã¥Àº RNAi ±â¹Ý ÀÛ¹° º¸È£ ¼Ö·ç¼ÇÀÇ ¼¼°è Àü°³¿¡ º¹À⼺À» ¾ß±âÇϰí ÀÖ½À´Ï´Ù. ¿ª»çÀûÀ¸·Î Ư¼ö È­ÇÐÁ¦Ç°°ú »ý¹°³ó¾à ¼ººÐ¿¡ ´ëÇÑ ¼öÀÔ°ü¼¼´Â ÁöÁ¤ÇÐÀû °í·Á¿Í ±¹³» ³ó¾÷ÀÇ ¿ì¼±¼øÀ§¿¡ µû¶ó º¯µ¿ÇØ ¿Ô½À´Ï´Ù. À̹ø °ü¼¼ ºÎ°ú Á¶Ä¡´Â ƯÁ¤ »ý¸í°øÇÐ Á¦Ç° ¹× Áß°£Ã¼¸¦ ´ë»óÀ¸·Î Çϰí ÀÖÀ¸¸ç, ±¹°æ °£ °ø±Þ¸Á¿¡ ÀÇÁ¸ÇÏ´Â ±â¾÷ÀÇ ºñ¿ë ±¸Á¶¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

ÀÛ¹° À¯Çü, »ìÆ÷ ¹æ¹ý, ´ë»ó ÇØÃæ, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ µ¿ÇâÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ ¼¼ºÐÈ­ ÀλçÀÌÆ®¸¦ ½ÉÃþÀûÀ¸·Î ºÐ¼®ÇÕ´Ï´Ù.

¹Ì¹¦ÇÑ ¼¼ºÐÈ­ ÇÁ·¹ÀÓ¿öÅ©´Â RNAi ÀÛ¹°º¸È£Á¦ ½ÃÀåÀÇ ´Ù°¢ÀûÀÎ ÃËÁø¿äÀΰú ±âȸ¸¦ µå·¯³À´Ï´Ù. ÀÛ¹° À¯Çüº°·Î º¸¸é ÁÖ¿ä °î¹°°ú °î¹°, ´Ù¾çÇÑ °úÀÏ ÀÛ¹°, À¯ÁöÁ¾ÀÚ Ç°Á¾, È®´ëµÇ´Â ä¼Ò ǰÁ¾°ú ÇÔ²² ¸éÈ­, ´ã¹è¿Í °°Àº ȯ±Ý ÀÛ¹°¿¡ ´ëÇÑ °ü½ÉÀÌ µÎµå·¯Áý´Ï´Ù. °¢ ÀÛ¹° Ä«Å×°í¸®¿¡´Â °¢°¢ °íÀ¯ÇÑ ÇØÃæÀÇ ¾Ð·Â°ú Àü°³ Á¶°ÇÀÌ ÀÖÀ¸¸ç, ÀÌ´Â ¸ñÇ¥ Á¦Á¦ ¼³°è¿Í »ìÆ÷ ½Ã±â¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå¿¡¼­ ÀÛ¹° º¸È£¿¡ ÀÖ¾î RNA °£¼·ÀÇ Áö¿ªÀû ¿ªÇÐ ¹× ¼ºÀå ÃËÁø¿äÀÎ ±Ô¸í

Áö¿ªº° ºÐ¼®À» ÅëÇØ RNAi ±â¹Ý ÀÛ¹°º¸È£Á¦ÀÇ ´Ù¾çÇÑ Ã¤Åà ÆÐÅϰú ¼ºÀå ±âȸ¸¦ È®ÀÎÇÒ ¼ö ÀÖ¾ú½À´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â ¿Á¼ö¼ö, ´ëµÎ, ¸éÈ­ µî °íºÎ°¡°¡Ä¡ ÀÛ¹°ÀÇ Àç¹è ¸éÀûÀÌ È®´ëµÇ°í ÀÖÀ¸¸ç, ±ÔÁ¦ ¸íȮȭ ¹× ¾÷°è¿ÍÀÇ °­·ÂÇÑ ÆÄÆ®³Ê½Ê¿¡ ÈûÀÔ¾î Á¶±â »ó¿ëÈ­°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì¿Í ºê¶óÁúÀÇ ÁÖ¿ä ¿¬±¸ °ÅÁ¡Àº ½ÃÀåÀÇ ½Å·Ú¸¦ µÞ¹ÞħÇÏ´Â Áß¿äÇÑ ÇöÀå °ËÁõ µ¥ÀÌÅÍ¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

ÀÛ¹° º¸È£ ºÐ¾ß¿¡¼­ RNA °£¼· Çõ½ÅÀ» ÁÖµµÇÏ´Â ÁÖ¿ä ¾÷°è Ç÷¹À̾îÀÇ Àü·«Àû Á¢±Ù ¹æ½Ä°ú °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ¾÷°è Âü¿©ÀÚµéÀº RNAi ÀÛ¹° º¸È£ ºÐ¾ßÀÇ ¸®´õ½ÊÀ» È®º¸Çϱâ À§ÇØ ´Ù¾çÇÑ Àü·«À» ÆîÄ¡°í ÀÖ½À´Ï´Ù. ±âÁ¸ ³ó¾àȸ»ç ¹× Á¾ÀÚȸ»çµéÀº µ¶ÀÚÀûÀÎ Àü´Þ Ç÷§Æû¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÇÕ¼º»ý¹°ÇÐ ±â¾÷µé°ú Á¦ÈÞÇÏ¿© ±â¼ú Æ÷Æ®Æú¸®¿À¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, Àü¹®È­µÈ »ý¸í°øÇÐ ½ºÅ¸Æ®¾÷µéÀº ¹ÎøÇÑ R&D ÆÄÀÌÇÁ¶óÀΰú ¸ÂÃãÇü Á¦Çü¿¡ ´ëÇÑ Àü¹®¼ºÀ» Ȱ¿ëÇÏ¿© °íºÎ°¡°¡Ä¡ ÀÛ¹° ¹× ´ë»ó ÇØÃæ¿¡ ÁýÁßÇÔÀ¸·Î½á Æ´»õ½ÃÀåÀ» °³Ã´Çϰí ÀÖ½À´Ï´Ù.

RNA °£¼·ÀÇ Áøº¸¸¦ Ȱ¿ëÇÏ¿© ÀÛ¹° º¸È£ Æ÷Æ®Æú¸®¿À¸¦ °­È­Çϱâ À§ÇÑ ¾÷°è ¸®´õµéÀ» À§ÇÑ Àü·«Àû Çൿ Á¦¾È

RNA °£¼· ±â¼úÀÇ ¸ð¸àÅÒÀ» Ȱ¿ëÇϱâ À§ÇØ ¾÷°è ¸®´õ´Â R&D, ¾à»ç, »ó¾÷ÀÇ °¢ ±â´ÉÀ» ¿¬°èÇÏ´Â ÅëÇÕÀû ÆÄÆ®³Ê½ÊÀ» ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù. °ø°ø ¿¬±¸±â°ü ¹× Àü¹® »ý¸í°øÇÐ ±â¾÷°ú Ãʱ⠴ܰèÀÇ Çù·Â °ü°è¸¦ ±¸ÃàÇÔÀ¸·Î½á ±â¾÷Àº ±â¼ú Çõ½Å Áֱ⸦ °¡¼ÓÈ­Çϰí Á¦Ç° °³¹ß °æ·ÎÀÇ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

ÀÛ¹° º¸È£ ½ÃÀå°ú ±â¼ú¿¡¼­ RNA °£¼·¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» µÞ¹ÞħÇÏ´Â ¾ö°ÝÇÑ ¿¬±¸ ¹æ¹ý·Ð.

ÀÌ ºÐ¼®Àº ÀÏÂ÷ Á¤º¸¿Í ÀÌÂ÷ Á¤º¸¸¦ °áÇÕÇÑ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ýÀ» ÅëÇØ µÞ¹ÞħµË´Ï´Ù. »ý¸í°øÇÐ ±â¾÷ ÀÓ¿ø, ±ÔÁ¦ Àü¹®°¡, ÇÐ°è ¿¬±¸ÀÚ, ³óÇÐÀÚ¿ÍÀÇ ½ÉÃþ ÀÎÅͺ並 ÅëÇØ ±â¼ú äÅÃ, ÇöÀå ¼º°ú, ½ÃÀå ¿ªÇп¡ ´ëÇÑ »ý»ýÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ÁúÀû Á¤º¸´Â Á¾ÇÕÀûÀÎ ¹üÀ§¸¦ º¸ÀåÇϱâ À§ÇØ ±¤¹üÀ§ÇÑ ¹®Çå, ƯÇã Ãâ¿ø ¹× Á¤Ã¥ °£Ç๰ °ËÅ並 ÅëÇØ »óÈ£ °ËÁõÀ» °ÅÃÆÀ¸¸ç, À̸¦ ÅëÇØ Á¾ÇÕÀûÀÎ Á¤º¸¸¦ È®º¸Çß½À´Ï´Ù.

RNA °£¼· ±â¼úÀÇ ¹ßÀüÀÌ ÇâÈÄ ÀÛ¹° º¸È£¿¡ ¹ÌÄ¡´Â Àü·«Àû ¿µÇâ°ú ÁÖ¿ä ¿¬±¸ °á°úÀÇ ÅëÇÕ

¿¬±¸ °á°ú¸¦ Á¾ÇÕÇϸé, RNA °£¼·ÀÌ ÀÛ¹° º¸È£ÀÇ »õ·Î¿î ½Ã´ëÀÇ ÃÖÀü¼±¿¡ ¼­¼­ ±âÁ¸ È­ÇÐÁ¦Ç°ÀÌ µû¶ó¿Ã ¼ö ¾ø´Â Á¤È®¼º, Áö¼Ó¼º ¹× ´Ù¿ëµµ¼ºÀ» Á¦°øÇÑ´Ù´Â °ÍÀº ºÐ¸íÇÕ´Ï´Ù. ±ÔÁ¦ »óȲ°ú ¹«¿ª Á¤Ã¥Àº °è¼Ó ÁøÈ­Çϰí ÀÖÁö¸¸, ±â¼ú Çõ½ÅÀÇ ±Ëµµ´Â ¿©ÀüÈ÷ °­·ÂÇϸç, ±â¼ú °³¼±°ú °øµ¿ ¿¬±¸ ³ë·Â¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ÀÛ¹° º¸È£¿ë RNAi ½ÃÀå : ÀÛ¹° À¯Çüº°

Á¦9Àå ÀÛ¹° º¸È£¿ë RNAi ½ÃÀå : Àü´Þ ¹æ¹ýº°

Á¦10Àå ÀÛ¹° º¸È£¿ë RNAi ½ÃÀå : ´ë»ó ÇØÃæº°

Á¦11Àå ÀÛ¹° º¸È£¿ë RNAi ½ÃÀå : ¿ëµµº°

Á¦12Àå ÀÛ¹° º¸È£¿ë RNAi ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ÀÛ¹° º¸È£¿ë RNAi ½ÃÀå

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÀÛ¹° º¸È£¿ë RNAi ½ÃÀå

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÛ¹° º¸È£¿ë RNAi ½ÃÀå

Á¦16Àå °æÀï ±¸µµ

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The RNAi in Crop Protection Market was valued at USD 2.65 billion in 2024 and is projected to grow to USD 3.00 billion in 2025, with a CAGR of 13.69%, reaching USD 5.73 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 2.65 billion
Estimated Year [2025] USD 3.00 billion
Forecast Year [2030] USD 5.73 billion
CAGR (%) 13.69%

Unveiling the Pivotal Role of RNA Interference in Revolutionizing Crop Protection and Enhancing Agricultural Sustainability on a Global Scale

The agricultural sector is confronting mounting challenges as evolving pest resistance and environmental concerns place unprecedented pressure on traditional crop protection methods. In response, researchers and industry leaders are turning to precision technologies that can enhance yield stability while minimizing ecological impact. RNA interference presents itself as a pioneering approach in this context, offering targeted gene silencing capabilities that promise enhanced specificity and reduced non-target effects.

Against a backdrop of regulatory shifts and growing public demand for sustainable inputs, RNAi has emerged as a powerful mechanism to address insect pests, plant pathogens, and weed infestations. Drawing on decades of molecular biology research, this mechanism harnesses natural cellular pathways to disrupt key genetic processes in target organisms, thereby enabling highly efficient protection strategies.

This executive summary synthesizes the critical drivers and barriers shaping the adoption of RNAi in crop protection. It outlines transformative technological advances, regulatory and trade developments, detailed segmentation and regional insights, as well as competitive landscapes and actionable recommendations for industry leaders.

Mapping the Transformative Technological and Regulatory Shifts Reshaping RNA Interference Applications in Crop Protection Paradigms Worldwide

The landscape of crop protection is undergoing transformative shifts as RNA interference transitions from laboratory research to field applications. Recent breakthroughs in nanoparticle-mediated delivery and seed treatment formulations have significantly improved stability and uptake of double-stranded RNA molecules. Concurrently, advances in foliar spray technologies enable more uniform coverage and reduced dosages, driving both efficacy and cost efficiencies.

On the regulatory front, policy frameworks in key markets are evolving to accommodate RNAi-based products, reflecting a deeper understanding of their specificity and reduced environmental footprint compared to broad-spectrum pesticides. These developments have fostered greater collaboration between biotech firms, regulatory bodies, and academic institutions, accelerating the progression from proof of concept to commercial launch.

Moreover, digital agriculture platforms and precision crop monitoring tools are enhancing the ability to deploy RNAi solutions in a targeted manner, thereby maximizing impact while minimizing off-target effects. As a result, stakeholders across the value chain are rethinking integrated pest management strategies and recognizing RNA interference as a cornerstone technology for next-generation crop protection.

Assessing the Cumulative Impact of 2025 United States Tariff Policies on the Adoption and Development of RNA Interference Solutions in Agriculture

United States tariff policies scheduled to take effect in 2025 have introduced a layer of complexity to the global deployment of RNAi-based crop protection solutions. Historically, import duties on specialty chemicals and biopesticide ingredients have fluctuated in response to geopolitical considerations and domestic agricultural priorities. The latest round of tariffs specifically targets certain biotech commodities and intermediates, thereby affecting the cost structures of companies reliant on cross-border supply chains.

This cumulative impact has prompted both multinational corporations and smaller innovators to reassess manufacturing footprints, often favoring localized production hubs to mitigate tariff exposure. At the same time, research institutions have intensified efforts to develop platform technologies that reduce dependency on imported reagents, thereby enhancing resilience and ensuring continuity of field trials.

Despite these challenges, industry participants are leveraging strategic partnerships and toll manufacturing agreements to navigate tariff barriers. By diversifying supplier networks and optimizing logistics, they aim to preserve access to critical raw materials while safeguarding product affordability for end users. In this evolving trade environment, adaptive strategies will be essential to sustain momentum in RNAi commercialization and to secure long-term investment in this promising crop protection frontier.

Deep Dive into Critical Segmentation Insights Highlighting Crop Types Delivery Methods Target Pests Applications and End User Dynamics

A nuanced segmentation framework reveals the multifaceted drivers and opportunities within the RNAi crop protection market. Based on crop type, there is pronounced interest in cash crops such as cotton and tobacco, alongside major cereals and grains, diverse fruit crops, oilseed varieties, and an expanding array of vegetable cultivars. Each crop category presents unique pest pressures and deployment conditions that inform targeted formulation design and application timing.

In terms of delivery method, foliar spray remains the predominant channel, offering flexibility and rapid deployment, while seed treatment approaches are gaining traction for early-season protection. Meanwhile, soil drench tactics and cutting-edge nanoparticle-mediated delivery systems are emerging as promising avenues to enhance systemic uptake and extend longevity under field conditions.

Target pest segmentation highlights the predominance of insect pests, particularly coleopteran and lepidopteran species, as well as significant activity against bacterial, fungal, and viral plant pathogens. In addition, RNAi-based weed management solutions are under development to address herbicide-resistant species. Application-driven insights underscore a robust pipeline for fungal disease control and insect pest suppression, complemented by innovations in viral disease mitigation and comprehensive weed management protocols.

End users encompass a wide spectrum of stakeholders, including biotechnology firms advancing product pipelines, government and regulatory bodies establishing guidelines, research institutions and academic organizations driving basic and applied studies, and seed companies integrating RNAi traits into elite germplasm lines.

Illuminating Regional Dynamics and Growth Drivers for RNA Interference in Crop Protection Across Americas EMEA and Asia-Pacific Markets

Regional analysis underscores the diverse adoption patterns and growth opportunities for RNAi-based crop protection. In the Americas, extensive acreage under high-value crops such as corn, soybean, and cotton has catalyzed early commercialization efforts, supported by favorable regulatory clarity and strong industry partnerships. Additionally, key research clusters in North America and Brazil are contributing significant field validation data that underpin market confidence.

Within Europe, the Middle East, and Africa, regulatory frameworks are evolving to accommodate the unique safety and environmental profiles of RNAi solutions. Several countries have instituted pilot programs and public-private consortia to explore RNAi efficacy under distinct climatic regimes and cropping systems. Meanwhile, demand drivers in the Middle East and Africa are closely tied to food security initiatives and sustainable intensification goals.

The Asia-Pacific region stands out for its potential scale, driven by population growth, rising food demand, and government investments in agricultural biotechnology. China, India, and Australia are leading national research agendas, with strategic emphasis on controlling resistant insect pests and fungal diseases in rice, wheat, and horticultural crops. Across these regions, local adaptation and stakeholder collaboration remain pivotal to translating laboratory breakthroughs into field success.

Uncovering Strategic Approaches and Competitive Positioning of Leading Industry Players Driving RNA Interference Innovations in Crop Protection

Key industry participants are deploying a range of strategies to secure leadership in the RNAi crop protection space. Established agrochemical and seed companies have invested heavily in proprietary delivery platforms and partnered with synthetic biology firms to broaden their technology portfolios. Concurrently, specialized biotech startups are carving out niches by focusing on high-value crops and targeted pest classes, leveraging agile R&D pipelines and tailored formulation expertise.

Strategic collaborations between multinational corporates and academic consortia have accelerated the translation of gene silencing research into scalable field solutions. Intellectual property portfolios are increasingly centered on novel dsRNA constructs, innovative encapsulation techniques, and data-driven application protocols. In parallel, contract research organizations and toll manufacturers are scaling up production capabilities, ensuring that supply chain bottlenecks do not impede market entry.

Competitive positioning is further defined by geographic coverage, with some players emphasizing market access in the Americas and Asia-Pacific through local partnerships, while others focus on regulatory engagement in Europe, the Middle East, and Africa. Ultimately, agility in navigating cross-border regulations and speed in demonstrating field efficacy will be decisive factors in determining market leadership.

Strategic Actionable Recommendations for Industry Leaders to Leverage RNA Interference Advancements and Strengthen Crop Protection Portfolios

To capitalize on the growing momentum behind RNA interference technologies, industry leaders should prioritize integrated partnerships that align R&D, regulatory affairs, and commercial functions. By establishing early-stage collaborations with public research entities and specialized biotech firms, organizations can accelerate innovation cycles and de-risk product development pathways.

In addition, engaging proactively with policy makers and industry associations will help shape transparent regulatory frameworks, fostering stakeholder confidence and smoothing pathways to market authorization. Companies should also invest in scalable manufacturing platforms, exploring options for onshore production to mitigate trade-related uncertainties and ensure supply chain resilience.

Adoption of advanced digital agriculture tools, such as precision application systems and real-time crop monitoring, can enhance the efficacy of RNAi solutions and demonstrate clear value propositions to growers. Finally, ongoing education and outreach initiatives will be critical to building farmer awareness and acceptance, particularly in regions where RNAi represents a novel mode of action. Through these strategic actions, industry players can secure competitive advantage and contribute to a more sustainable agricultural future.

Rigorous Research Methodology Underpinning the Comprehensive Analysis of RNA Interference in Crop Protection Market and Technologies

This analysis is underpinned by a rigorous research methodology combining primary and secondary information sources. In-depth interviews with biotech executives, regulatory experts, academic researchers, and agronomists provided first-hand insights into technology adoption, field performance, and market dynamics. These qualitative inputs were cross-validated through extensive review of peer-reviewed literature, patent filings, and policy publications to ensure comprehensive coverage.

Secondary research drew upon scientific databases, industry white papers, and regulatory filings to map the evolution of RNAi technologies and to identify key legislative developments across major agricultural markets. Quantitative data points were triangulated against independent third-party reports and proprietary databases to verify trends and growth vectors.

Through iterative analysis and stakeholder validation, the research team distilled critical segmentation frameworks, regional priorities, and competitive landscapes. Case studies and real-world trial data were incorporated to illustrate practical applications and to highlight performance benchmarks. This multi-layered approach ensures that the findings reflect the latest industry advancements and provide actionable intelligence for decision makers.

Synthesizing Key Findings and Strategic Implications of RNA Interference Technology Advancements for Future Crop Protection Initiatives

In synthesizing the findings, it is clear that RNA interference stands at the forefront of a new era in crop protection, offering precision, sustainability, and versatility unrivaled by traditional chemistries. While regulatory landscapes and trade policies continue to evolve, the trajectory of innovation remains strong, driven by technological refinements and collaborative research efforts.

The segmentation and regional insights presented herein underscore the importance of tailoring RNAi solutions to specific crop types, delivery methods, and pest pressures across diverse geographies. Moreover, competitive analysis reveals that strategic partnerships and robust intellectual property strategies are key determinants of market leadership.

As growers and stakeholders seek to balance productivity gains with environmental stewardship, RNAi technologies will play a pivotal role in integrated pest management programs. By embracing the recommendations and leveraging the data contained in this report, decision makers can position their organizations to benefit from the transformative potential of gene-silencing approaches in agriculture.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. RNAi in Crop Protection Market, by Crop Type

9. RNAi in Crop Protection Market, by Delivery Method

10. RNAi in Crop Protection Market, by Target Pest

11. RNAi in Crop Protection Market, by Application

12. RNAi in Crop Protection Market, by End user

13. Americas RNAi in Crop Protection Market

14. Europe, Middle East & Africa RNAi in Crop Protection Market

15. Asia-Pacific RNAi in Crop Protection Market

16. Competitive Landscape

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â