AI ¿¡ÀÌÀüÆ® ½ÃÀå : ¿¡ÀÌÀüÆ® ½Ã½ºÅÛ, À¯Çü, ÀÎÅÍ·¢¼Ç ¸ðµå, ±â¼ú, Àü°³ ¹æ½Ä, ±â¾÷ ±Ô¸ð, »ê¾÷º° - ¼¼°è ¿¹Ãø(2025-2030³â)
AI Agents Market by Agent System, Type, Interaction Mode, Technology, Deployment Type, Enterprise Size, Industry - Global Forecast 2025-2030
»óǰÄÚµå : 1803445
¸®¼­Ä¡»ç : 360iResearch
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 192 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,939 £Ü 5,512,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF ¹× Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 4,249 £Ü 5,946,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿Àϱâ¾÷ ³» 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 5,759 £Ü 8,059,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ Áö¿ª »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 6,969 £Ü 9,752,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

AI ¿¡ÀÌÀüÆ® ½ÃÀåÀº 2024³â¿¡´Â 57¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 71¾ï 2,000¸¸ ´Þ·¯, CAGR 24.14%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 211¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 57¾ï 7,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 71¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 211¾ï 4,000¸¸ ´Þ·¯
CAGR(%) 24.14%

ÀÚÀ² ¹× ¹ÝÀÚÀ² AI ¿¡ÀÌÀüÆ®°¡ »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ±â¾÷ÀÇ ¿î¿µ, °Å¹ö³Í½º, Á¦Ç° ·Îµå¸ÊÀ» À籸¼ºÇÏ´Â ¹æ¹ý¿¡ ´ëÇÑ °£°áÇÑ Àü·« ÇÁ·¹ÀÓ¿öÅ©

ÀÚÀ² ¹× ¹ÝÀÚÀ² AI ¿¡ÀÌÀüÆ®ÀÇ ÃâÇöÀº Çй®Àû È£±â½É¿¡¼­ ¿©·¯ »ê¾÷ ºÐ¾ßÀÇ ÇÙ½É ¿î¿µ ¿ª·®À¸·Î ºü¸£°Ô ÀüȯµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ÁÖ¿ä ¿ä¾àÀº ½ÃÀå ¿ªÇÐ, ±â¼ú º¯°îÁ¡, ±ÔÁ¦ °í·Á »çÇ×, ±â¾÷ äÅà ÆÐÅÏÀ» ÅëÇÕÇÏ¿© °íÀ§ °æ¿µÁø¿¡°Ô °£°áÇϰí Á¾ÇÕÀûÀÎ °üÁ¡À» Á¦°øÇÕ´Ï´Ù. ÀÌ ºÐ¼®Àº ¿¡ÀÌÀüÆ®ÀÇ ¾ÆÅ°ÅØÃ³, »óÈ£ÀÛ¿ë ¸ðµå, µµÀÔ ÇüŰ¡ ±â¾÷ÀÇ °Å¹ö³Í½º, µ¥ÀÌÅÍ Àü·«, °í°´ °æÇèÀÇ Çʼö ¿ä°Ç°ú ¾î¶»°Ô »óÈ£ ÀÛ¿ëÇÏ´ÂÁö¸¦ °­Á¶ÇÕ´Ï´Ù.

°æÀï ȯ°æ, °üÂû °¡´É¼º, °Å¹ö³Í½º ÁÖµµÇü Á¶´ÞÀÌ AI ¿¡ÀÌÀüÆ®ÀÇ °æÀï ¿ìÀ§¸¦ ÀçÁ¤ÀÇÇÏ´Â ¹æ¹ý

ÃÖ±Ù AI ¿¡ÀÌÀüÆ®ÀÇ °æÀï ȯ°æÀ» ÀçÆíÇÏ´Â Çõ½ÅÀûÀÎ º¯È­°¡ ÀÕµû¸£°í ÀÖ½À´Ï´Ù. ¾ÆÅ°ÅØÃ³ÀûÀ¸·Î´Â °í¸³µÈ ½ÇÇèÀû ÇÁ·ÎÅäŸÀÔ¿¡¼­ ¸ðµâÈ­µÈ ¼­ºñ½º, Ç¥ÁØÈ­µÈ ÀÎÅÍÆäÀ̽º, °üÂû °¡´ÉÇÑ µµ±¸¸¦ Áö¿øÇÏ´Â ÄÄÆ÷Àúºí ¿¡ÀÌÀüÆ® ¿¡ÄڽýºÅÛÀ¸·Î À̵¿Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀüȯÀº ÅëÇÕÀÇ ¸¶ÂûÀ» ÁÙÀ̰í, »ç³» »ç¿ë »ç·Ê ¹× °í°´ Á¦Ç° °¡Ä¡ ½ÇÇö ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ¸ðµ¨ ¿ÀÄɽºÆ®·¹À̼Ç, Áö¿¬À» °í·ÁÇÑ Ãß·Ð, ¸ðµ¨¿¡ ±¸¾Ö¹ÞÁö ¾Ê´Â ¿ÀÄɽºÆ®·¹ÀÌ¼Ç ·¹À̾îÀÇ ¹ßÀüÀ¸·Î µ¥ÀÌÅÍ ·ÎÄø®Æ¼¿Í ÄÄÇöóÀ̾𽺠¿ä±¸»çÇ׿¡ ¸Â´Â ÇÏÀ̺긮µå ¹èÆ÷°¡ °¡´ÉÇØÁ³½À´Ï´Ù.

2025³â °ü¼¼ Á¶Á¤ ¹× ¹«¿ª Á¶Ä¡·Î ÀÎÇØ AI ¿¡ÀÌÀüÆ®ÀÇ Àüü °¡Ä¡»ç½½¿¡¼­ Çϵå¿þ¾î Á¶´Þ, ¹èÆ÷ Àü·«, Á¶´Þ ¸®½ºÅ© °ü¸®°¡ ¾î¶»°Ô º¯È­Çߴ°¡?

2025³â¿¡ µµÀԵǰųª Á¶Á¤µÈ ¹«¿ª Á¤Ã¥ °³¹ß ¹× °ü¼¼ Á¶Ä¡´Â AI ¿¡ÀÌÀüÆ®ÀÇ ¹ë·ùüÀο¡ ´Ù°¢ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Çϵå¿þ¾î¿¡ ÀÇÁ¸ÇÏ´Â ºÎ¹®, ƯÈ÷ °í¼º´É °¡¼Ó±â ¹× Ư¼ö ½Ç¸®ÄÜÀº °ü¼¼°¡ ±¹°æ °£ ºÎǰ È帧¿¡ ¿µÇâÀ» ¹ÌÄ¡¸é¼­ °ø±Þ¸Á¿¡ ´ëÇÑ Á¶»ç¿Í ºñ¿ë ¾Ð¹ÚÀÌ Áõ°¡Çß½À´Ï´Ù. ÀÌ¿¡ µû¶ó ´Ù±¹Àû º¥´õµéÀº Á¶´Þ Àü·«À» Àç°ËÅäÇϰí, Á¶´Þ °æ·Î¸¦ ´Ù¾çÈ­Çϸç, °æÁ¦ÀûÀ¸·Î °¡´ÉÇÑ °æ¿ì Á¦Á¶ÀÇ ÇöÁöÈ­¸¦ °¡¼ÓÈ­ÇÏ°Ô µÇ¾ú½À´Ï´Ù. ±× °á°ú, ¼Ö·ç¼Ç ¼³°èÀÚ¿Í Á¶´ÞÆÀÀº Á¶´Þ ¸®µåŸÀÓ°ú ºñ»ó ´ëÀÀ °èȹ¿¡ ´õ Å« °ø±Þ º¯µ¿¼ºÀ» ¹Ý¿µÇØ¾ß Çß½À´Ï´Ù.

°èÃþ ±¸Á¶ÀÇ ¼¼ºÐÈ­ ÇÁ·¹ÀÓ¿öÅ©¸¦ ÅëÇØ ½Ã½ºÅÛ, Àü°³ ¸ðµ¨, »ê¾÷, ±â¾÷ ÇÁ·ÎÆÄÀϺ°, ä¿ë °æ·Î¿Í ±â¼ú ¿ì¼±¼øÀ§°¡ ´Ù¸£´Ù´Â °ÍÀ» È®ÀÎÇß½À´Ï´Ù.

¼¼ºÐÈ­ ºÐ¼®À» ÅëÇØ ¿©·¯ Ãà¿¡ °ÉÄ£ ¿ª·® ¼ö¿ä¿Í »ó¾÷È­ °æ·Î¿¡ ´ëÇÑ ¸íÈ®ÇÑ ÆÐÅÏÀÌ µå·¯³µ½À´Ï´Ù. ¿¡ÀÌÀüÆ® ½Ã½ºÅÛÀ» ±â¹ÝÀ¸·Î Çù¾÷ ¿¡ÀÌÀüÆ®°¡ ºÐ»êµÈ ±â´É °£ÀÇ º¹ÀâÇÑ ¿öÅ©Ç÷ο츦 Á¶Á¤ÇÏ´Â ¸ÖƼ ¿¡ÀÌÀüÆ® ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³¸¦ ¿ì¼±½ÃÇÏ´Â Á¶Á÷ÀÌ Àִ°¡ Çϸé, Çù¼ÒÇÏ°Ô Á¤ÀÇµÈ ÀÚµ¿È­ ÀÛ¾÷À» ´ë»óÀ¸·Î ÇÏ´Â ´ÜÀÏ ¿¡ÀÌÀüÆ® ½Ã½ºÅÛ ±¸Ãà¿¡ ÁßÁ¡À» µÎ´Â Á¶Á÷µµ ÀÖ½À´Ï´Ù. À¯Çü¿¡ µû¶ó ±â¼úÆÀÀº ¸ÂÃãÇü µ¿ÀÛ°ú ¼¼ºÎÀûÀÎ Ä¿½ºÅ͸¶ÀÌ¡ÀÌ °¡´ÉÇÑ Build-Your-Own Agent¿Í »çÀü ¼³Á¤µÈ ¿öÅ©Ç÷οì¿Í °ü¸®Çü ¾÷µ¥ÀÌÆ®¸¦ ÅëÇØ °¡Ä¡ ½ÇÇö ½Ã°£À» ´ÜÃàÇÏ´Â Ready-to-Deploy Agent Áß Çϳª¸¦ ¼±ÅÃÇØ¾ß ÇÕ´Ï´Ù. ¼±ÅÃÇØ¾ß ÇÕ´Ï´Ù. ÀÎÅÍ·¢¼Ç ¸ðµå¿¡¼­´Â ÀÚÀ²ÀûÀÌ°í ºñµ¿±âÀûÀÎ ÀÛ¾÷À» ¼öÇàÇÏ´Â ¹é±×¶ó¿îµå ¿¡ÀÌÀüÆ®¿Í »ç¿ëÀÚ¿ÍÀÇ Áö¼ÓÀûÀÎ »óÈ£ÀÛ¿ëÀ» À¯ÁöÇÏ¸ç º¸´Ù ¾ö°ÝÇÑ ´ë±â½Ã°£°ú ´ëÈ­ Á¦¾î°¡ ÇÊ¿äÇÑ Ç¥¸é ¿¡ÀÌÀüÆ®°¡ ºÐ¸®µÇ¾î ÀÖ½À´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­ÀÇ Àü°³ ¸ðµ¨, ÄÄÇöóÀ̾𽺠¿ì¼±¼øÀ§, °ø±Þ¸Á Àü·«À» Çü¼ºÇÏ´Â Áö¿ªÀû ¼ö¿ä¿Í ±ÔÁ¦ ´ëºñ

Áö¿ªÀû ¿ªµ¿¼ºÀº ¼ö¿ä ±¸Á¶¿Í ±ÔÁ¦Àû Á¦¾àÀ» ¸ðµÎ Çü¼ºÇϰí, ¸íÈ®ÇÑ Àü·«Àû ¾Ð·Â°ú ±âȸ¸¦ âÃâÇÕ´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â È®Àå °¡´ÉÇÑ Å¬¶ó¿ìµå ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ, °­·ÂÇÑ °³¹ßÀÚ »ýŰè, ´ë±â¾÷ÀÇ ¼ö¿ä°¡ ±ÝÀ¶ ¼­ºñ½º, ÇコÄɾî, ¼Ò¸Å¾÷ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ Ãʱ⠻ó¾÷Àû äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ±â¾÷ Á¶´ÞÀÇ ¼º¼÷µµ¿Í źźÇÑ º¥Ã³ »ýŰè´Â Çõ½ÅÀ» °è¼Ó °¡¼ÓÈ­Çϰí ÀÖÁö¸¸, °ø°ø Á¤Ã¥ ³íÀÇ¿Í °ø±Þ¸Á °ËÅä´Â ÇöÁöÈ­ ³ë·Â°ú °ø±Þ¾÷ü ¼±Á¤¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

±â¹Ý Ç÷§Æû, ¼öÁ÷Àû ÅëÇÕ¾÷ü, ºÎǰ °ø±Þ¾÷ü, Çõ½ÅÀû Àü¹®¾÷ü¿¡ °ÉÄ£ º¥´õÀÇ ¿ªÇÒ°ú ÆÄÆ®³Ê½Ê ¿ªÇÐ °ü°è ¸ÅÇÎ

°æÀï ¿ªÇÐÀº ±âº» Ç÷§Æû Á¦°ø¾÷ü, Àü¹® ¼öÁ÷ ÅëÇÕ ±â¾÷, ºÎǰ °ø±Þ¾÷ü, Æ´»õ ±â´É¿¡ ƯȭµÈ ½ºÅ¸Æ®¾÷ÀÇ »ýŰ踦 ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù. ±â¹Ý Ç÷§Æû º¥´õ´Â È®Àå °¡´ÉÇÑ ÄÄÇ»ÆÃ, ¸ðµ¨ È£½ºÆÃ, °³¹ßÀÚ µµ±¸¿¡ ÁýÁßÇÏ¿© °í±Þ ¿¡ÀÌÀüÆ®¸¦ ¹èÆ÷ÇÏ´Â ±â¾÷ ÆÀÀÇ ¸¶ÂûÀ» ÁÙÀ̰í ÀÖ½À´Ï´Ù. Àü¹® ÅëÇÕ¾÷ü¿Í ½Ã½ºÅÛ ÇϿ콺´Â µµ¸ÞÀΠƯȭ Ä¿³ØÅÍ, ¿öÅ©ÇÃ·Î¿ì ¿ÀÄɽºÆ®·¹À̼Ç, ÄÄÇöóÀ̾𽺠ÄÁÆ®·ÑÀ» Á¦°øÇÔÀ¸·Î½á ºÎ°¡°¡Ä¡¸¦ ³ôÀ̰í, ¿ø½ÃÀû ¿ª·®À» ¿î¿µ ¼º°ú·Î ÀüȯÇÕ´Ï´Ù. ºÎǰ °ø±Þ¾÷ü, ƯÈ÷ Ãß·Ð °¡¼Ó±â, ¼¾¼­ ¸ðµâ, ¼ÒÇÁÆ®¿þ¾î ¶óÀ̺귯¸®¸¦ Á¦°øÇÏ´Â ºÎǰ °ø±Þ¾÷ü´Â ¼º´É Áß½ÉÀÇ »ç¿ë »ç·Ê¿¡¼­ °è¼Ó Áß¿äÇÒ °ÍÀÔ´Ï´Ù.

AI ¿¡ÀÌÀüÆ®ÀÇ µµÀÔ°ú ÅëÇÕÀ» °¡¼ÓÈ­Çϸ鼭 À̽ļº, ½Å·Ú¼º, ¿î¿µ ź·Â¼ºÀ» º¸ÀåÇϱâ À§ÇØ °æ¿µÁøÀÌ ÃëÇØ¾ß ÇÒ ½ÇÁúÀûÀÎ Àü·«Àû Á¶Ä¡

AI ¿¡ÀÌÀüÆ®·ÎºÎÅÍ °¡Ä¡¸¦ âÃâÇÏ´Â µ¿½Ã¿¡ ¿î¿µ ¹× ±ÔÁ¦ ¸®½ºÅ©¸¦ °ü¸®Çϱâ À§ÇØ ¸®´õ´Â Àü·«Àû ¿ì¼±¼øÀ§¿Í ±¸Çö Çö½ÇÀ» ÀÏÄ¡½ÃÄÑ¾ß ÇÕ´Ï´Ù. ù°, ¸ðµâ½Ä ¾ÆÅ°ÅØÃ³¿Í º¥´õ Á߸³ÀûÀÎ ¿ÀÄɽºÆ®·¹À̼ǿ¡ ÅõÀÚÇÏ¿© À̽ļºÀ» À¯ÁöÇϰí, Á¤Ã¥ ¹× °ø±Þ ü°èÀÇ º¯È­¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ¹Ì·¡¿¡µµ È®ÀåÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. µÑ°, °üÂû°¡´É¼º, °èÅëÃßÀû, ¼³¸í°¡´É¼ºÀ» ÈÄÀåǰÀÌ ¾Æ´Ñ ÇʼöÀûÀÎ Á¦Ç° ±â´ÉÀ¸·Î¼­ ¿ì¼±¼øÀ§¸¦ µÓ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀ» °³¹ß ¹× ¿î¿µ ÆÄÀÌÇÁ¶óÀο¡ ÅëÇÕÇÔÀ¸·Î½á ³»ºÎ ÀÌÇØ°ü°èÀÚ ¹× ±ÔÁ¦ ´ç±¹°úÀÇ ½Å·Ú °ü°è¸¦ °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü¹®°¡ 1Â÷ ÀÎÅͺä, ±â¼ú ¹®Çå ÅëÇÕ, ½Ã³ª¸®¿À °ËÁõÀ» °áÇÕÇÑ ¾ö°ÝÇÑ È¥ÇÕ ¹æ¹ý·Ð Á¢±Ù ¹æ½ÄÀ» ÅëÇØ È®½ÇÇÏ°í ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ È®º¸ÇÕ´Ï´Ù.

º» Á¶»ç ¹æ¹ýÀº °ß°í¼º, ÀçÇö¼º, ½Ç¿ëÀû Ÿ´ç¼ºÀ» º¸ÀåÇϱâ À§ÇØ ¼³°èµÈ È¥ÇÕ ¹æ¹ý·Ð¿¡¼­ µµÃâµÈ Á¤¼ºÀû ¹× Á¤·®Àû Áõ°Å¸¦ ÅëÇÕÇÑ °ÍÀÔ´Ï´Ù. 1Â÷ Á¶»ç¿¡¼­´Â ¿©·¯ »ê¾÷ ºÐ¾ßÀÇ °íÀ§ ±â¼úÀÚ, Á¦Ç° ¸®´õ, Á¶´Þ Àü¹®°¡, ±ÔÁ¦ Àü¹®°¡¸¦ ´ë»óÀ¸·Î ±¸Á¶È­µÈ ÀÎÅͺ並 ÅëÇØ ¿¡ÀÌÀüÆ® µµÀÔ, º¥´õ ¼±Á¤ ±âÁØ, ¿î¿µ»óÀÇ Á¦¾à¿¡ ´ëÇÑ ½ÇÁ¦ °æÇèÀ» ÆÄ¾ÇÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëÈ­¸¦ ÅëÇØ ÁÖÁ¦º° ÄÚµù°ú ±³Â÷ °ËÁõÀ» ÅëÇØ ±â¾÷ µµÀÔ¿¡ ÀÖ¾î Áß¿äÇÑ À̽´, ¼º°ø¿äÀÎ, º¥´õÀÇ ¿ª·®À» ÆÄ¾ÇÇß½À´Ï´Ù.

¼º°øÀûÀÎ AI ¿¡ÀÌÀüÆ® µµÀÔÀ» À§ÇÑ ÇÙ½É Á¶»ç °á°ú ÅëÇÕ, ¸ðµâÇü ¾ÆÅ°ÅØÃ³, °Å¹ö³Í½º, °ø±Þ¸Á °­°Ç¼ºÀ» °­Á¶ÇÏ´Â ÇÙ½É Á¶»ç °á°ú ¹ßÇ¥

¿ä¾àÇϸé, AI ¿¡ÀÌÀüÆ®ÀÇ »óȲÀº ±â¼úÀû ¿ª·®, °Å¹ö³Í½º ¼º¼÷µµ, °ø±Þ¸Á °ß°í¼º, Áö¿ª ±ÔÁ¦°¡ »ó¾÷Àû ¼º°ú¸¦ °øµ¿À¸·Î °áÁ¤ÇÏ´Â º¹ÀâÇÑ »ýŰè·Î ¼º¼÷ÇØ °¡°í ÀÖ½À´Ï´Ù. ¸ðµâÈ­µÇ°í °üÂû °¡´ÉÇÑ ¾ÆÅ°ÅØÃ³¸¦ äÅÃÇϰí, ¸ÂÃãÇü°ú ±â¼ºÇ°ÀÇ ±ÕÇüÀ» ¸ÂÃß´Â Á¶Á÷Àº Àå±âÀûÀÎ À§ÇèÀ» °ü¸®Çϸ鼭 ´Ü±âÀûÀÎ È¿À²¼º Çâ»óÀ» Ȱ¿ëÇÒ ¼ö ÀÖ´Â À¯¸®ÇÑ ÀÔÀå¿¡ ¼­°Ô µÉ °ÍÀÔ´Ï´Ù. 2025³â ±ÔÁ¦¿Í ¹«¿ªÀÇ ¹ßÀüÀº °ø±Þ¸Á Åõ¸í¼º, À¯¿¬ÇÑ Àü°³ ¸ðµ¨, Áö¿ªÀû ÄÄÇöóÀ̾𽺠Àü·«ÀÇ Á߿伺À» ºÎ°¢½Ã۰í, Á¶´Þ ¿ì¼±¼øÀ§¿Í ÆÄÆ®³Ê½ÊÀÇ Çü¼ºÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå AI ¿¡ÀÌÀüÆ® ½ÃÀå : ¿¡ÀÌÀüÆ® ½Ã½ºÅÛº°

Á¦9Àå AI ¿¡ÀÌÀüÆ® ½ÃÀå : À¯Çüº°

Á¦10Àå AI ¿¡ÀÌÀüÆ® ½ÃÀå : ÀÎÅÍ·¢¼Ç ¸ðµåº°

Á¦11Àå AI ¿¡ÀÌÀüÆ® ½ÃÀå : ±â¼úº°

Á¦12Àå AI ¿¡ÀÌÀüÆ® ½ÃÀå : Àü°³ ¹æ½Äº°

Á¦13Àå AI ¿¡ÀÌÀüÆ® ½ÃÀå : ±â¾÷ ±Ô¸ðº°

Á¦14Àå AI ¿¡ÀÌÀüÆ® ½ÃÀå : »ê¾÷º°

Á¦15Àå ¾Æ¸Þ¸®Ä«ÀÇ AI ¿¡ÀÌÀüÆ® ½ÃÀå

Á¦16Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ AI ¿¡ÀÌÀüÆ® ½ÃÀå

Á¦17Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ AI ¿¡ÀÌÀüÆ® ½ÃÀå

Á¦18Àå °æÀï ±¸µµ

Á¦19Àå ¸®¼­Ä¡ AI

Á¦20Àå ¸®¼­Ä¡ Åë°è

Á¦21Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦22Àå ¸®¼­Ä¡ ±â»ç

Á¦23Àå ºÎ·Ï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The AI Agents Market was valued at USD 5.77 billion in 2024 and is projected to grow to USD 7.12 billion in 2025, with a CAGR of 24.14%, reaching USD 21.14 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 5.77 billion
Estimated Year [2025] USD 7.12 billion
Forecast Year [2030] USD 21.14 billion
CAGR (%) 24.14%

A concise strategic framing of how autonomous and semi-autonomous AI agents reshape enterprise operations, governance, and product roadmaps across industries

The emergence of autonomous and semi-autonomous AI agents has rapidly shifted from academic curiosity to core operational capability across multiple industries. This executive summary synthesizes market dynamics, technology inflection points, regulatory considerations, and enterprise adoption patterns to equip senior leaders with a concise yet comprehensive vantage point. The analysis emphasizes how agent architectures, interaction modes, and deployment modalities interact with enterprise governance, data strategy, and customer experience imperatives.

Throughout the document, attention centers on the interplay between technical maturation and commercial viability. The narrative highlights practical implications for product roadmaps, procurement cycles, and partner ecosystems while underscoring interoperability, observability, and risk management as critical enablers. By distilling complex technological pathways into strategic takeaways, this introduction sets the stage for deeper insights on transformational shifts, tariff impacts, segmentation nuances, regional dynamics, company behavior, and recommended actions that follow.

How composable ecosystems, observability, and governance-driven procurement are redefining competitive advantage in the AI agents landscape

Recent years have seen a cluster of transformative shifts that together reconfigure the competitive terrain for AI agents. Architecturally, there is a movement from isolated experimental prototypes toward composable agent ecosystems that favor modular services, standardized interfaces, and observability tooling. This transition reduces integration friction and shortens time-to-value for internal use cases and customer-facing products. At the same time, advances in model orchestration, latency-aware inference, and model-agnostic orchestration layers enable hybrid deployments that better align with data locality and compliance requirements.

On the demand side, organizations increasingly prioritize use cases that balance productivity gains with governance and auditability. Enterprises are adopting more rigorous evaluation metrics that extend beyond raw accuracy to include safety, explainability, and economic impact. Regulatory momentum and supply chain resilience concerns have combined to alter procurement patterns, prompting vendor consolidation in some layers and a flourishing of specialized providers in others. As a result, firms that can demonstrate transparent model lineage, proven integration pathways, and clear operational controls capture disproportionate attention from enterprise buyers.

How 2025 tariff adjustments and trade measures reshaped hardware sourcing, deployment strategies, and procurement risk management across the AI agents value chain

Trade policy developments and tariff measures introduced or adjusted in 2025 have produced multifaceted effects on the AI agents value chain. Hardware-dependent segments, particularly high-performance accelerators and specialized silicon, experienced elevated supply chain scrutiny and cost pressure as tariffs influenced cross-border component flows. This has prompted multinational vendors to reassess sourcing strategies, diversify procurement corridors, and accelerate localization of manufacturing where economically viable. Consequently, solution architects and procurement teams must now factor greater supply variance into procurement lead times and contingency planning.

Beyond hardware, tariffs and related trade restrictions have influenced commercial considerations for software and services in ways that matter operationally. Cloud providers and system integrators adjusted contractual terms and regional capacity planning to mitigate risk exposure tied to import costs and export controls. For enterprises, the net effect is a higher emphasis on flexible deployment models that enable workload portability across geographic domains and between cloud and on-premise environments. In response, organizations are prioritizing containerized inference, modular model packaging, and vendor-neutral orchestration to preserve mobility and manage total cost of ownership under evolving trade regimes.

Moreover, the policy environment accelerated interest in sovereign data strategies and local vendor development. Public sector clients and regulated industries have increased scrutiny of supply chain provenance, which in turn influences vendor selection and partnership strategies. As a result, firms with transparent supply chains, verified component sourcing, and resilient logistics models are positioned to win more competitive procurement processes during periods of tariff-driven uncertainty.

A layered segmentation framework revealing divergent adoption paths and technical priorities across systems, deployment models, industries, and enterprise profiles

Segmentation analysis reveals distinct patterns of capability demand and commercialization pathways across multiple axes. Based on the agent system, some organizations prioritize Multi Agent System architectures where collaborative agents coordinate complex workflows across distributed functions, while others focus on Single Agent System deployments that target narrowly defined automation tasks. Based on type, technical teams must choose between Build-Your-Own Agents that enable bespoke behavior and deep customization, and Ready-to-Deploy Agents that accelerate time-to-value with preconfigured workflows and managed updates. Interaction mode separates Background Agents that perform autonomous, asynchronous tasks from Surface Agents that maintain continuous user-facing interactions and require tighter latency and conversational controls.

Different technology stacks influence both capability and integration effort. Based on technology, solutions leverage Computer Vision for perception-heavy tasks, Deep Learning and Machine Learning for pattern extraction and decisioning, and Natural Language Processing (NLP) to handle unstructured text and conversational interfaces. Deployment considerations matter as well; based on deployment type, organizations choose between Cloud options that offer elastic scale and managed services, and On-Premise choices that address data residency, latency, and compliance needs. Enterprise adoption profiles vary markedly by size; based on enterprise size, Large Enterprises tend to prioritize governance frameworks, integration at scale, and vendor consolidation, whereas Small & Medium Enterprises focus on cost-effective, packaged solutions and rapid ROI realization.

Industry-specific trajectories illustrate differentiated priorities. Based on industry, Automotive applications emphasize perception, real-time control, and production-grade reliability; Banking, Financial Services, & Insurance require stringent audit trails, explainability, and fraud detection capabilities; Healthcare & Lifesciences span Hospitals & Clinics, Pharmaceuticals & Drug Discovery, and Telemedicine with demanding requirements for privacy, clinical validation, and regulatory compliance. IT & Telecommunication providers focus on network-aware agents and orchestration across complex hybrid environments, while Media & Entertainment breaks down into Film & Television, Gaming & eSports, and Music & Streaming Services where content personalization, rights management, and real-time interactivity dominate. Retail & E-Commerce implementations center on inventory optimization, personalized commerce, and conversational shopping assistants. These segmentation layers collectively inform product design, go-to-market prioritization, and partnership strategies.

Regional demand and regulatory contrasts that shape deployment models, compliance priorities, and supply chain strategies across the Americas, Europe Middle East & Africa, and Asia-Pacific

Regional dynamics shape both demand composition and regulatory constraints, producing distinct strategic pressures and opportunities. In the Americas, investment in scalable cloud infrastructure, strong developer ecosystems, and heavy enterprise demand have driven early commercial adoption across financial services, healthcare, and retail verticals. The region's maturity in enterprise procurement and a robust venture ecosystem continue to accelerate innovation, yet public policy debates and supply chain recalibrations influence localization efforts and vendor selection.

Across Europe, Middle East & Africa, regulatory emphasis on data protection and cross-border data flows creates a pronounced focus on privacy-aware deployments and on-premise or hybrid architectures. European markets place a premium on compliance, model explainability, and vendor accountability, which has prompted regional firms and global vendors to offer specialized, compliant offerings. The Middle East emphasizes sovereign capabilities and large-scale public sector initiatives that aggregate demand, while African markets combine leapfrog adoption in digital services with infrastructure and skills development challenges that shape rollout timelines.

Asia-Pacific demonstrates heterogeneity between technology hubs and emerging markets. Advanced economies in the region prioritize edge-enabled agents, localized cloud capacity, and aggressive industrial automation use cases, whereas emerging markets pursue pragmatic deployments that prioritize cost efficiency and mobile-first interactions. Supply chain proximity to semiconductor manufacturing provides an advantage for hardware-heavy initiatives, while national strategies for digital sovereignty and industrial policy influence local partnerships and product roadmaps.

Mapping vendor roles and partnership dynamics across foundational platforms, vertical integrators, component suppliers, and innovative specialist firms

Competitive dynamics reflect an ecosystem of foundational platform providers, specialized vertical integrators, component suppliers, and startups focused on niche capabilities. Foundational platform vendors concentrate on scalable compute, model hosting, and developer tooling that reduce friction for enterprise teams deploying sophisticated agents. Specialized integrators and system houses add value by delivering domain-specific connectors, workflow orchestration, and compliance controls that translate raw capability into operational outcomes. Component suppliers, particularly those providing inference accelerators, sensor modules, and software libraries, remain critical to performance-sensitive use cases.

Startups and midsize firms often drive innovation in areas such as agent orchestration, runtime observability, and safety tooling. These firms attract partnerships with larger integrators seeking to incorporate differentiated features into bundled solutions. Meanwhile, enterprise buyers frequently prioritize vendors that can demonstrate operational maturity, robust SLAs, and transparent model governance. As a result, strategic partnerships and go-to-market alliances are increasingly common, with firms combining complementary strengths to address complex, regulated verticals. Price competition, differentiated intellectual property, and vertical domain expertise are key axes of commercial advantage, while established reputation and certified integrations often determine procurement outcomes in high-stakes environments.

Practical strategic actions for executives to secure portability, trust, and operational resilience while accelerating AI agent adoption and integration

Leaders must align strategic priorities with implementation realities to capture value from AI agents while managing operational and regulatory risk. First, invest in modular architectures and vendor-neutral orchestration to preserve portability and future-proof deployments against policy and supply shifts; this reduces lock-in and simplifies migration across cloud and on-premise topologies. Second, prioritize observability, lineage tracking, and explainability as integral product features rather than afterthoughts; embedding these capabilities into development and operations pipelines strengthens trust with internal stakeholders and regulators.

Third, adopt a tiered procurement strategy that balances Build-Your-Own Agents for mission-critical, highly differentiated functions with Ready-to-Deploy Agents for repeatable, cross-cutting tasks that require rapid adoption. Fourth, design pilot programs that mirror production constraints-security, scale, latency, and compliance-so that pilots produce actionable insights and reduce integration risk. Fifth, cultivate partnerships across hardware suppliers, integrators, and domain specialists to combine performance, domain knowledge, and compliance expertise. Finally, put in place governance frameworks that assign clear ownership of model monitoring, incident response, and continuous validation to ensure resilient operations and ethical outcomes.

A rigorous mixed-methods approach combining primary expert interviews, technical literature synthesis, and scenario validation to ensure robust and actionable insights

The research synthesizes qualitative and quantitative evidence drawn from a blended methodology designed to ensure robustness, reproducibility, and practical relevance. Primary research included structured interviews with senior technologists, product leaders, procurement specialists, and regulatory experts across multiple industries to capture lived experience with agent deployments, vendor selection criteria, and operational constraints. These conversations informed thematic coding and cross-validation exercises to identify recurring challenges, success factors, and vendor capabilities that matter to enterprise adoption.

Secondary research comprised technical literature, vendor technical briefs, regulatory guidance, and public procurement documentation to triangulate claims and document observed patterns. Data validation included vendor capability mapping, technology stack assessments, and scenario analysis to test sensitivity to supply chain and policy shocks. Throughout, methodological safeguards such as source triangulation, expert adjudication, and clear documentation of assumptions were applied to maintain analytical integrity. This mixed-methods approach produces insights that are both empirically grounded and actionable for decision-makers seeking to translate research findings into operational strategies.

A synthesis of core findings emphasizing modular architectures, governance, and supply chain resilience as the pillars of successful AI agent adoption

In sum, the AI agents landscape is maturing into a complex ecosystem where technical capability, governance maturity, supply chain resilience, and regional regulation jointly determine commercial outcomes. Organizations that embrace modular, observable architectures and that balance bespoke and off-the-shelf approaches will be better positioned to capitalize on near-term efficiency gains while managing longer-term risk. Regulatory and trade developments in 2025 have underscored the importance of supply chain transparency, flexible deployment models, and local compliance strategies, reshaping procurement priorities and partnership formations.

Going forward, success will hinge on the ability to translate pilot achievements into reliable production operations through disciplined governance, rigorous validation, and cross-functional collaboration. The most effective adopters will be those who integrate technical excellence with operational controls and strategic sourcing, thereby converting agent capabilities into sustained business outcomes. This conclusion synthesizes the report's core findings and sets the stage for targeted actions that follow in the full deliverable.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. AI Agents Market, by Agent System

9. AI Agents Market, by Type

10. AI Agents Market, by Interaction Mode

11. AI Agents Market, by Technology

12. AI Agents Market, by Deployment Type

13. AI Agents Market, by Enterprise Size

14. AI Agents Market, by Industry

15. Americas AI Agents Market

16. Europe, Middle East & Africa AI Agents Market

17. Asia-Pacific AI Agents Market

18. Competitive Landscape

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â