¾çÀÚ ÀÎÅͳÝÀÇ Á¤ÀÇ´Â ¾ÆÁ÷ ¸íÈ®ÇÏÁö ¾Ê½À´Ï´Ù. ÇÏÁö¸¸ ³ëµåµéÀÌ ÀÏÁ¾ÀÇ ¾çÀÚ ÀÎÅÍÄ¿³ØÆ®¸¦ ÅëÇØ ¾ôÇô ¿¬°áµÈ ³×Æ®¿öÅ©¶ó°í º¸´Â °ÍÀÌ Å¸´çÇÕ´Ï´Ù.
ÇöÀç ÀÌ ºÐ¾ßÀÇ ¸¹Àº Ȱµ¿Àº ¿¬±¸¶ó°í ºÎ¸£´Â °ÍÀÌ Å¸´çÇÒ ¼ö ÀÖ½À´Ï´Ù. Àå°Å¸® ¾ôÈù ³×Æ®¿öÅ©°¡ º¸ÆíȵDZâ±îÁö´Â ¾ÆÁ÷ °¥ ±æÀÌ ¸Ö´Ù. ºÏ¹Ì¿Í À¯·´À» Áß½ÉÀ¸·Î ¾çÀÚ ³×Æ®¿öÅ· Å×½ºÆ®º£µå°¡ ´Ã¾î³ª°í ÀÖÁö¸¸, ´ëºÎºÐ ¿¬±¸ °³¹ß Áß½ÉÀÇ Å×½ºÆ®º£µåÀÔ´Ï´Ù. ¾ôÈû ¾çÀÚ ³×Æ®¿öÅ·ÀÌ º¸ÆíȵDZâ À§Çؼ´Â ¾çÀÚ Áß°è±âÀÇ °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¾çÀÚ Áß°è±â°¡ »ó¿ëȵDZâ Àü±îÁö´Â ´ëºÎºÐÀÇ ¾çÀÚ ÀÎÅÍ³Ý Æ®·¡ÇÈÀº À§¼ºÀ» ÅëÇØ Àü¼ÛµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼¿¡¼´Â ¾ôÈù ³×Æ®¿öÅ©°¡ ÇöÀç ¾î¶² »óȲÀÎÁö, ±×¸®°í ÇâÈÄ ¸î³â¾È¿¡ ¾î¶² »óȲÀÌ µÉ °ÍÀÎÁö¿¡ ´ëÇØ ÀÚ¼¼È÷ ¼³¸íÇÕ´Ï´Ù.
ÇöÀç ¾çÀÚ ³×Æ®¿öÅ·ÀÇ °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ ÀÀ¿ë ºÐ¾ß´Â ¾çÀÚ ÄÄÇ»Å͸¦ ³×Æ®¿öÅ©·Î ¿¬°áÇÏ´Â ºÐ»ê ¾çÀÚ ÄÄÇ»ÆÃÀÔ´Ï´Ù. ÀÌ´Â °íÀü ÄÄÇ»Å͸¦ ³×Æ®¿öÅ©·Î ¿¬°áÇÏ¿© ó¸® ´É·Â, ¸Þ¸ð¸®, ½ºÅ丮Áö¸¦ Çâ»ó½ÃŰ´Â °í¼º´É ÄÄÇ»ÆÃ(HPC)°ú À¯»çÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î, ¾çÀÚ ÄÄÇ»Å͸¦ ³×Æ®¿öÅ©ÈÇÏ¸é ±âÁ¸º¸´Ù ´õ Å« ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇöÀç ¾çÀÚ ÄÄÇ»Å͸¦ ¿¬°áÇÏ´Â ¾ôÈù ³×Æ®¿öÅ©¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖÁö¸¸, IQTÀÇ ¿¬±¸´Â ¾çÀÚ ¼¾¼°¡ ¼º¼÷ÇÔ¿¡ µû¶ó ¾ôÈù ³×Æ®¿öÅ© °³³äÀ» ¾çÀÚ »ç¹° ÀÎÅͳÝ(QIoT)À¸·Î È®ÀåÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀÌ Å©´Ù°í º¾´Ï´Ù.
ÀÌ º¸°í¼´Â ¾ôÈù ³×Æ®¿öÅ©ÀÇ ÇöÀç¿Í »õ·Î¿î ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±â¼ú °úÁ¦, ±ÔÁ¦, Ç¥ÁØ, ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ß µî ¾ôÈù ³×Æ®¿öÅ©°¡ Á÷¸éÇÑ ¿©·¯ °¡Áö ¹®Á¦¸¦ ´Ù·ç°í ÀÖ½À´Ï´Ù.
¸ñÂ÷
Á¦1Àå ÁÖ¿ä ¿ä¾à
Á¦2Àå Entangled Networks ±â¼ú Á¦Ç°°ú ·Îµå¸Ê
- ¼·Ð
- Entangled Networks ÄÄÇ»ÅÍ
- ¾çÀÚ Åë½Å Àåºñ ¹× »óÈ£ Á¢¼Ó
- ¾çÀÚ ¼¾¼¿Í QIoT
- Entangled Networks ÄÄÆ÷³ÍÆ®
- À§¼º°ú µå·ÐÀÇ ¿ªÇÒ
- ¾çÀÚ ³×Æ®¿öÅ· Á¦Ç° ½ºÀ§Æ®
- ¾çÀÚ ÀÎÅÍ³Ý ¼ÒÇÁÆ®¿þ¾î : Â÷¼¼´ë
- ½ÃÀå Â÷º°È ¿äÀÎ
Á¦3Àå Entangled Networks ºÐ¾ß¿¡¼ÀÇ ÇöÀç »ó¾÷ Ȱµ¿
- ¼·Ð
- ADVA Network Security(µ¶ÀÏ)
- Aliro Quantum(¹Ì±¹)
- AWS Center for Quantum Networking(¹Ì±¹)
- Boeing(¹Ì±¹)
- BT Group(¿µ±¹)
- Cisco Systems(¹Ì±¹)
- evolutionQ(ij³ª´Ù)
- Icarus Quantum(¹Ì±¹)
- Infleqtion(¹Ì±¹)
- IBM(¹Ì±¹)
- IonQ(¹Ì±¹)
- Ki3 Photonics Technologies(ij³ª´Ù)
- levelQuantum(ÀÌÅ»¸®¾Æ)
- L3Harris(¹Ì±¹)
- LQUOM(ÀϺ»)
- MagiQ Technologies(¹Ì±¹)
- memQ(¹Ì±¹)
- NanoQT(ÀϺ»)
- Nippon Telegraph and Telephone Corporation(NTT)(ÀϺ»)
- Nu Quantum(¿µ±¹)
- Photonic(ij³ª´Ù)
- QphoX(³×´ú¶õµå)
- QTD Systems(¹Ì±¹)
- Quantum Bridge(ij³ª´Ù)
- Quantum Corridor(¹Ì±¹)
- Quantum Industries GmbH(¿À½ºÆ®¸®¾Æ)
- Quantum Network Technologies(Qunett)(¹Ì±¹)
- Quantum Optics Jena GmbHH(µ¶ÀÏ)
- Qunnect(¹Ì±¹)
- SpeQtral(½Ì°¡Æ÷¸£)
- Welinq(ÇÁ¶û½º)
Á¦4Àå Á¶»ç ¹× Å×½ºÆ® º£µå
- ¼·Ð
- A*STAR Quantum Innovation Center(Q.InC)(½Ì°¡Æ÷¸£)
- Air Force Research Laboratory(AFRL)(¹Ì±¹)
- Argonne National Laboratory(¹Ì±¹)
- Brookhaven National Laboratory(BNL)(¹Ì±¹)
- Center for Quantum Networks(CQN)((¹Ì±¹)
- Chicago Quantum Exchange(¹Ì±¹)
- DistriQ Quantum Innovation Zone(ij³ª´Ù)
- ICFO(½ºÆäÀÎ)
- Lawrence Berkeley National Laboratory(LBNL)(¹Ì±¹)
- Max Planck Institute of Optics(µ¶ÀÏ)
- Novum Industria(¹Ì±¹)
- Numana(ij³ª´Ù)
- Q-NEXT Science Center(¹Ì±¹)
- OpenQKD and Successor Testbeds
- QIQB Center for Quantum Information and Quantum Biology(ÀϺ»)
- Quantum Communications Hub(¿µ±¹)
- Quantum Flagship(EU)
- Saarland University(µ¶ÀÏ)
- The University of Amherst, Massachusetts(¹Ì±¹)
- The University of Geneva, Group of Applied Physics(½ºÀ§½º)
- The University of Innsbruck(¿À½ºÆ®¸®¾Æ)
- The University of Science and Technology of China(Áß±¹)
- TU Delft and QuTech(³×´ú¶õµå)
- University of Maryland(¹Ì±¹)
- University of Oxford(¿µ±¹)
- Wisconsin Quantum Institute(¹Ì±¹)
Á¦5Àå Entangled Networks Á¦Ç° ½ÃÀå
- ±¹³» ½ÃÀå ¿µÇâ
- ¹Ì±¹ÀÇ ¾çÀÚ ³×Æ®¿öÅ·
- À¯·´ÀÇ ¾çÀÚ ³×Æ®¿öÅ·
- ¾Æ½Ã¾ÆÀÇ ¾çÀÚ ³×Æ®¿öÅ·
- ±¹Á¦ ½ÃÀå°ú ±â¼ú
- ´ë»ó ¿ëµµ
- ºÐ»ê ¾çÀÚ ÄÄÇ»ÆÃ
- Åë½Å ¹× QKD
- ¼¾¼ ¹× °èÃø
- ¿¬±¸ ¹× Çмú°è¿¡¼ÀÇ Entangled Networks
- ±âŸ
Á¦6Àå Entangled Networks 10³â°£ ¿¹Ãø
¾Ö³Î¸®½ºÆ®¿¡ ´ëÇØ
LSH
The Quantum Internet remains ill defined. Nevertheless, it is reasonable to assume that it is a network where the nodes are entangled with connectivity over some kind of quantum interconnect. With this in mind, IQT Research is publishing this report which identifies the current and emerging opportunities for Entangled Networks. Our report also provides coverage of the many challenges faced by entangled networks including technical issues, regulations, standards and applications development.
The report is partly based on a survey of major influencers in this space as well as a review of recent technical and relevant business literature. The final chapter of this report comprises a ten-year forecast of deployment and revenue generation by entangled networks by (1) types of attached equipment, (2) media and (3) reach.
Much of the current activity in this space might be reasonably designated as research. We still have a long way to go before long-haul entangled networks become common. There are a growing number of quantum network testbeds, especially in North America and Europe, but again much of the activity - the applications in testbeds - are R&D oriented. Before entangled quantum networks become ubiquitous, quantum repeaters will need to be developed. Until quantum repeaters are commercialized, we anticipate that a lot of Quantum Internet traffic will be carried over satellites. This report goes into detail about where the Entangled Network is today and what it will become over the next few years.
For now, the most noteworthy target application of quantum networks is distributed quantum computing, the networking together of quantum computers. A parallel can be drawn here with high performance computing (HPC), which networks classical computers together to increase the available processing power, memory, and storage. Similarly, networking quantum computers together will enable larger problems to be tackled than would otherwise be the case. While the focus today is on entangled networks that connect quantum computers, IQT research believes that there is much potential to extend the Entangled Network concept to a Quantum Internet of Things (QIoT) as quantum sensors mature.
Table of Contents
Chapter One: Executive Summary
- 1.1. Preamble
- 1.2. Timeframe for Entangled Networks: The Importance of Quantum Repeaters
- 1.3. Target Applications for the Entangled Network
- 1.3.1. Distributed Quantum Computing
- 1.3.2. Sensors and Metrology
- 1.3.3. Entangled Networks in Research and Academia
- 1.3.4. Other Applications
- 1.4. Timeframe for Entangled Networks: Protocols are also Critical
- 1.5. Components for Entangled Quantum Networks
- 1.6. Challenges on the Way to the Entangled Network
Chapter Two: Products and Roadmaps for Entangled Networks Technologies
- 2.1. Introduction
- 2.2. Computers in the Entangled Network
- 2.2.1. The Quantum Network is the Quantum Computer
- 2.2.2. The Size of the Distributed Quantum Computing Opportunity
- 2.2.3. Types of Quantum Computer Networks: Workgroups, Metro and Long-Haul
- 2.3. Quantum Communications Equipment and Interconnects
- 2.3.1. Quantum Repeaters
- 2.3.2. Entangled QKD
- 2.4. Quantum Sensors and the QIoT
- 2.4.1. Quantum Clock and CSAC Networks
- 2.4.2. Other Quantum Sensor Networks
- 2.5. Components of the Entangled Quantum Network
- 2.5.1. Quantum Interconnects
- 2.5.2. Quantum Memories
- 2.5.3. Photonic Sources for Quantum Networks
- 2.5.4. Detectors and other Components
- 2.6. The Role of Satellites and Drones
- 2.7. Quantum Network Product Suites
- 2.8. Quantum Internet Software: The Next Generation
- 2.8.1. Protocols for the Coming Entangled Network
- 2.9. Market Differentiators
Chapter Three: Current Commercial Activity in the Entangled Networks Space
- 3.1. Introduction
- 3.2. ADVA Network Security (Germany)
- 3.3. Aliro Quantum (United States)
- 3.4. AWS Center for Quantum Networking (CQN) (United States)
- 3.5. Boeing (United States)
- 3.6. BT Group (United Kingdom)
- 3.7. Cisco Systems (United States)
- 3.8. evolutionQ (Canada)
- 3.9. Icarus Quantum (United States)
- 3.10. Infleqtion (United States)
- 3.11. IBM (United States)
- 3.12. IonQ (United States)
- 3.13. Ki3 Photonics Technologies (Canada)
- 3.14. levelQuantum (Italy)
- 3.15. L3Harris (United States)
- 3.16. LQUOM (Japan)
- 3.17. MagiQ Technologies (United States)
- 3.18. memQ (United States)
- 3.19. NanoQT (Japan)
- 3.20. Nippon Telegraph and Telephone Corporation (NTT) (Japan)
- 3.21. Nu Quantum (United Kingdom)
- 3.22. Photonic (Canada)
- 3.23. QphoX (The Netherlands)
- 3.24. QTD Systems (United States)
- 3.25. Quantum Bridge (Canada)
- 3.26. Quantum Corridor (United States)
- 3.27. Quantum Industries GmbH (Austria)
- 3.28. Quantum Network Technologies (Qunett) (United States)
- 3.29. Quantum Optics Jena GmbH (Germany)
- 3.30. Qunnect (United States)
- 3.31. SpeQtral (Singapore)
- 3.32. Welinq (France)
Chapter Four: Research and Testbeds
- 4.1. Introduction
- 4.2. A*STAR Quantum Innovation Center (Q.InC) (Singapore)
- 4.3. Air Force Research Laboratory (AFRL) (United States)
- 4.4. Argonne National Laboratory (United States)
- 4.5. Brookhaven National Laboratory (BNL) (United States)
- 4.6. Center for Quantum Networks (CQN) (United States)
- 4.7. Chicago Quantum Exchange (United States)
- 4.8. DistriQ Quantum Innovation Zone (Canada)
- 4.9. ICFO (Spain)
- 4.10. Lawrence Berkeley National Laboratory (LBNL) (United States)
- 4.11. Max Planck Institute of Optics (Germany)
- 4.12. Novum Industria (United States)
- 4.13. Numana (Canada)
- 4.14. Q-NEXT Science Center (United States)
- 4.15. OpenQKD and Successor Testbeds
- 4.16. QIQB Center for Quantum Information and Quantum Biology (Japan)
- 4.17. Quantum Communications Hub (United Kingdom)
- 4.18. Quantum Flagship (EU)
- 4.19. Saarland University (Germany)
- 4.20. The University of Amherst, Massachusetts (United States)
- 4.21. The University of Geneva, Group of Applied Physics (GAP) (Switzerland)
- 4.22. The University of Innsbruck (Austria)
- 4.23. The University of Science and Technology of China (USTC) (China)
- 4.24. TU Delft and QuTech (The Netherlands)
- 4.25. University of Maryland (UMD) (United States)
- 4.26. University of Oxford (United Kingdom)
- 4.27. Wisconsin Quantum Institute (WQI) (United States)
Chapter Five: Markets for Entangled Networking Products
- 5.1. Impact of National Markets
- 5.1.1. Quantum Networking in the U.S.
- 5.1.2. Quantum Networking in Europe
- 5.1.3. Quantum Networking in Asia
- 5.2. International Markets and Technology
- 5.3. Target Applications
- 5.3.1. Distributed Quantum Computing
- 5.3.2. Communication and QKD
- 5.3.3. Sensors and Metrology
- 5.3.4. Entangled Networks in Research and Academia
- 5.3.5. Other Applications
Chapter Six: Ten-Year Forecasts of Entangled Networks
- 6.1. Forecast Methodology and What We Forecast in this Report
- 6.2. Ten-Year Forecasts of Entangled Networks by Type of Equipment on the Network
- 6.3. Breakout of Entangled Quantum Networks by Reach and Technology
- 6.4. Breakout of Entangled Quantum Networks by Transmission Type
About the Analysts
List of Exhibits
- Exhibit 2-1: Selected Research on Quantum Repeaters
- Exhibit 2-2: Proposed Testbed Interconnection Approaches in OpenQKD
- Exhibit 5-1: Organizations Involved In Entangled Networks in the U.S.
- Exhibit 6-1: Ten-year forecasts of Equipment Attached to Entangled Networks
- Exhibit 6-2: Ten-year Forecasts of Equipment Attached to Entangled Networks by Reach ($ Millions)
- Exhibit 6-3: Ten-Year Forecasts by Transmission Type (Satellite, Fiber and Terrestrial Freespace) ($ Millions)