ÀÚµ¿Â÷¿ë ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­ ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼­ : ¼¾¼­ À¯Çüº°, Â÷·® À¯Çüº°, ÃßÁø·Â À¯Çüº°, Áö¿ªº°, ºÎ¹®º° ¿¹Ãø(2025-2030³â)
Automotive Powertrain Sensors Market Size, Share & Trends Analysis Report By Sensor Type (Pressure Sensors, Temperature Sensors, Position Sensors), By Vehicle Type, By Propulsion Type, By Region, And Segment Forecasts, 2025 - 2030
»óǰÄÚµå : 1772531
¸®¼­Ä¡»ç : Grand View Research, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 130 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 6,972,000
Unprintable PDF & Excel (Single User License) help
º¸°í¼­ PDF ¹× ¿¢¼¿À» 1Àθ¸ »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, Àμâ´Â ºÒ°¡´ÉÇÕ´Ï´Ù.
US $ 5,950 £Ü 8,380,000
Printable PDF & Excel (5-User License) help
º¸°í¼­ PDF ¹× ¿¢¼¿À» µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ ºÎ¼­¿¡¼­ ÃÖ´ë 5¸í±îÁö »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, Àμâ´Â °¡´ÉÇÕ´Ï´Ù.
US $ 7,950 £Ü 11,197,000
Printable PDF & Excel (Enterprise License) help
º¸°í¼­ ±¸¸Å ±â¾÷ ¹× ±× ÀÚȸ»ç, °ü°è»ç°¡ »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀ̸ç, PDF ¹× ¿¢¼¿ ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

ÀÚµ¿Â÷¿ë ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­ ½ÃÀå °³¿ä

¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­ ½ÃÀå ±Ô¸ð´Â 2024³â¿¡ 217¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇß°í, 2025³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR) 7.7%¸¦ ³ªÅ¸³» 2030³â¿¡´Â 336¾ï 6,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)·ÎÀÇ º¯È­°¡ ÁøÇàµÇ´Â °¡¿îµ¥, ¹èÅ͸® ½Ã½ºÅÛ, Àü±â ¸ðÅÍ, ¿­ Á¦¾î¿¡ Æ¯È­ÇØ ¼³°èµÈ ¼±Áø ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­ ¼ö¿ä°¡ ´ëÆø ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

¹Ì±¹ ¿¡³ÊÁöºÎ(DOE)¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¼¾¼­ ½ÃÀåÀº 2017³â 75¾ï À¯´Ö¿¡¼­ 2024³â 110¾ï À¯´ÖÀ¸·Î ±ÞÁõÇØ Àüµ¿È­¸¸À¸·Î ÀÌ È®´ëÀÇ 35%¸¦ Â÷ÁöÇß½À´Ï´Ù.

°Ô´Ù°¡ Áö¸£ÄÚ´Ï¾Æ ±â¹ÝÀÇ »ê¼Ò ¼¾¼­¿Í °°Àº ±â¼ú Çõ½ÅÀº ¿ø·¡ ³»¿¬ ±â°üÂ÷(ICE)¿ëÀ̾úÁö¸¸, ÇöÀç´Â ¼ö¼Ò ¼øµµ¿Í ¿¬·á ½ºÅà ȿÀ²À» ÃøÁ¤Çϱâ À§ÇØ ¿¬·áÀüÁö Àü±âÀÚµ¿Â÷(FCEV)¿¡ ÀûÀÀµÇ°í ÀÖ½À´Ï´Ù. DOEÀÇ ÃßÁ¤¿¡ µû¸£¸é Àü±âÂ÷ ¼¾¼­ Á¦Á¶ ¹× ¿î¿µ¿¡ ÇÊ¿äÇÑ ¿¡³ÊÁö ¼ö¿ä´Â 2017³â 1,050PJ¿¡¼­ 2024³â¿¡´Â 1,540ÆäŸÁÙ(PJ)¿¡ ´ÞÇØ ¼º´É Çâ»ó°ú ¼ö¸í Áֱ⠿¡³ÊÁö °ü¸®¶ó´Â ÀÌÁß °úÁ¦¸¦ ÇØ°áÇÒ Çʿ䰡 ÀÖ¾ú½À´Ï´Ù.

½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇÏ´Â ¶Ç ´Ù¸¥ ÁÖ¿ä µ¿ÇâÀº ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­¿Í ÀÚÀ² ÁÖÇà ¹× ADAS ±â¼úÀÇ À¶ÇÕÀÔ´Ï´Ù. ARPA-EÀÇ ¿¬±¸¿¡ µû¸£¸é ¼¾¼­ µ¥ÀÌÅÍÀÇ Å¬¶ó¿ìµå ±â¹Ý ÅëÇÕÀ¸·Î ÇÏÀ̺긮µå ÆÄ¿öÆ®·¹ÀÎÀÌ µµ·Î »óȲÀ̳ª ±³Åë ÆÐÅÏ¿¡ µ¿ÀûÀ¸·Î ÀûÀÀÇÒ ¼ö ÀÖ¾î ¿¡³ÊÁö ¼Òºñ·®ÀÌ ÃÖ´ë 12% »è°¨µË´Ï´Ù. ±¸¼º ¿ä¼Ò´Â ÇöÀç LiDAR ¹× ·¹ÀÌ´õ¿Í ÇÔ²² Áß¾Ó ÁýÁᫎ ÀüÀÚÁ¦¾îÀåÄ¡(ECU)¿¡ °ø±ÞµÇ¸ç, ±¸µ¿ ÇÁ·ÎÆÄÀϰú ¿¬·á È¿À²À» ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù. À¯ÁöÇÔÀ¸·Î½á ¹èÃâ°¡½º Á¦¾î°¡ °­È­µÈ´Ù°í ÁöÀûÇϰí ÀÖ½À´Ï´Ù. Ãæµ¹ ȸÇÇ¿Í CO2 »è°¨ÀÇ ±ÔÁ¦°¡ ½ÃÇàµÇ¾î ºÏ¹Ì¿Í À¯·´¿¡¼­´Â 2025³â±îÁö ½ÅÂ÷ÀÇ 70% ÀÌ»ó¿¡ ADAS¿Í ¿¬µ¿ÇÑ ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­°¡ žÀçµÉ °ÍÀ¸·Î ¿¹ÃøµÇ¾î ½ÃÀå Àü¸ÁÀ» ´õ¿í ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù.

°¡È¤ÇÑ È¯°æ¿¡¼­ ¼¾¼­ÀÇ ³»¼ºÀº ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í ½ÃÀå °æ°è¸¦ ³ÐÈ÷´Â Áß¿äÇÑ Â÷º°È­ ¿äÀÎÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ±¹¸³ ¿¡³ÊÁö ±â¼ú ¿¬±¸¼Ò(NETL)´Â ÃÖ°í 800¡ÉÀÇ ¿Âµµ¿¡¼­ ÀÛµ¿ÇÏ´Â Áö¸£ÄÚ´Ï¾Æ ±â¹Ý »ê¼Ò ¼¾¼­ÀÇ ¼±±¸ÀÚÀ̸ç, ¼¾¼­ÀÇ ½Å·Ú¼ºÀ» ÃßÁøÇÏ´Â Àç·áÀÇ Áøº¸¸¦ º¸¿©ÁÝ´Ï´Ù. ¸¶Âù°¡Áö·Î DOEÀÇ Áö¿øÀ» ¹Þ¾Æ 650¡ÆC ¹× Èֹ߼º ¾Ð·Â Á¶°Ç¿¡¼­ Á¤È®ÇÏ°Ô ÀÛµ¿ÇÏ´Â À¯·®°è¸¦ µµÀÔÇÏ¿© À¯·Î 7 ¹× ¹Ì±¹ Ƽ¾î 4 ¹èÃâ Ç¥ÁØÀ» ÁؼöÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çß½À´Ï´Ù. ÀÌ¿¡ µû¶ó OEMÀº °íÀå·üÀ» ÃÖ´ë 40%±îÁö ÁÙÀ̱â À§ÇØ 2025³â±îÁö 90%°¡ ¼Ö¸®µå ½ºÅ×ÀÌÆ® ¼¾¼­¸¦ µµÀÔÇÒ °èȹÀ» ¼¼¿ì´Â µî ºü¸£°Ô µµÀÔÇϰí ÀÖ½À´Ï´Ù.

ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­ ½ÃÀåÀÇ ÃßÁø¿¡ À־ ±ÔÁ¦ ÁؼöÀÇ ¿ªÇÒÀº °úÀåÇÏÁö ¾Ê½À´Ï´Ù. ¼¼°èÀûÀ¸·Î ¹è±â °¡½º ±ÔÁ¦°¡ °­È­µÇ°í ÷´Ü ¼¾¼­°¡ ÇʼöÀûÀÔ´Ï´Ù. EPA´Â »ê¼Ò ¼¾¼­¸¦ È­Çз®·ÐÀû °ø¿¬ºñ¸¦ À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀ¸·Î »ï°í ÀÖÀ¸¸ç ¼¾¼­¿¡ °áÇÔÀÌ ÀÖÀ¸¸é Ç¥ÁØ ½ÃÇè Áß NOx ¹èÃâ·®ÀÌ 300% Áõ°¡ÇÒ ¼ö ÀÖ´Ù°í ÁöÀûÇÕ´Ï´Ù. DOE µ¥ÀÌÅÍ´Â Æó¼âÇü ·çÇÁ ¼¾¼­ ½Ã½ºÅÛÀÌ °¡¼Ö¸° ¿£ÁøÀÇ ÅºÈ­¼ö¼Ò ¹èÃâÀ» ÃÖ´ë 50%±îÁö ÁÙÀÏ ¼ö ÀÖÀ½À» È®ÀÎÇϰí ÀÖÀ¸¸ç, 1980³â ÀÌÈÄ Å×ÀÏ ÆÄÀÌÇÁ ¿À¿°¹°ÀÇ 95% °¨¼Ò¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. »ê¼Ò ¼¾¼­ÀÇ OEM °¡°ÝÀº ±â´ÉÀÌ µ¿ÀÏÇÔ¿¡µµ ºÒ±¸Çϰí 400%µµ ´Ù¸¦ ¼ö ÀÖ¾î ¼ö¸®ÀÇ °æÁ¦¼º°ú °Ë»ç/À¯Áö(I/M) ÇÁ·Î±×·¥À» º¹ÀâÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ ´ëÀÀÇϱâ À§ÇØ EPA´Â ¼¾¼­ÀÇ Àç·á¿Í ÀÎÅÍÆäÀ̽ºÀÇ Ç¥ÁØÈ­¸¦ Á¦¾ÈÇϰí ÀÖÀ¸¸ç, 2025³â±îÁö ¾ÖÇÁÅ͸¶ÄÏÀÇ ºñ¿ëÀ» 30% Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥°ú ºñ¿ë ¿ªÇÐÀº Â÷·® Ç÷§Æû Àü¹Ý¿¡¼­ ¼±ÁøÀûÀ̰í Ç¥ÁØÈ­µÈ ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä¸¦ Á÷Á¢ÀûÀ¸·Î µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­ÀÇ ÅëÇÕÀº Â÷·®ÀÇ À¯Áö º¸¼ö¿Í ¿î¿µ È¿À²¼ºÀ» º¯È­½ÃŰ°í ½ÃÀåÀ» Å©°Ô ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, º¸½¬ÀÇ ½º¸¶Æ® ¼¾¼­ Ç÷§ÆûÀº ÇöÀç ÀÎÁ§ÅÍÀÇ ¸¶¸ð¿Í Åͺ¸Â÷ÀúÀÇ È¿À²¿¡ °üÇÑ ¶óÀÌºê µ¥ÀÌÅ͸¦ OEM ¼­¹ö¿¡ ¼Û½ÅÇØ, Àû±ØÀûÀÎ ºÎǰ ±³È¯À» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ARPA-E ¹× DOE ¸ðµ¨¿¡ µû¸£¸é ÀÌ Á¢±Ù ¹æ½ÄÀº °í¼Ó ÃæÀü Áß ¹èÅ͸® ¼º´É ÀúÇϸ¦ 15% ÁÙÀ̰í Â÷·®´ç ¼ö¸í Áֱ⠿¡³ÊÁö ¼Òºñ¸¦ 8.9GJ±îÁö ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿ÃÇØ¿¡´Â »ó¾÷¿ë Â÷·®ÀÇ 60%°¡ Ŭ¶ó¿ìµå·Î ¿¬°áµÈ ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­¸¦ Ȱ¿ëÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖÀ¸¸ç, ±× ÁÖµÈ ÀÌÀ¯´Â ºñ¿ë Àý°¨°ú ¿î¿µÀÇ ¿¬¼Ó¼ºÀÔ´Ï´Ù.

¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­ ½ÃÀå ¼¼ºÐÈ­

º» º¸°í¼­¿¡¼­´Â 2018-2030³âÀÇ ¼öÀÍ ¼ºÀåÀ» ¼¼°è, Áö¿ª, ±¹°¡ ¼öÁØ¿¡¼­ ¿¹ÃøÇϰí, °¢ ÇÏÀ§ ºÎ¹®¿¡ ´ëÇÑ Ãֽо÷°è µ¿ÇâÀÇ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ÀÚµ¿Â÷¿ë ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­ ½ÃÀåÀÇ º¯¼ö, µ¿Çâ, ¹üÀ§

Á¦4Àå ÀÚµ¿Â÷¿ë ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­ ½ÃÀå : ¼¾¼­ À¯Çüº° ÃßÁ¤¡¤µ¿Ç⠺м®

Á¦5Àå ÀÚµ¿Â÷¿ë ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­ ½ÃÀå : Â÷·® À¯Çüº° ÃßÁ¤¡¤µ¿Ç⠺м®

Á¦6Àå ÀÚµ¿Â÷¿ë ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­ ½ÃÀå : ÃßÁø·Â À¯Çüº° ÃßÁ¤¡¤µ¿Ç⠺м®

Á¦7Àå ÀÚµ¿Â÷¿ë ÆÄ¿öÆ®·¹ÀÎ ¼¾¼­ ½ÃÀå : Áö¿ªº° ÃßÁ¤¡¤µ¿Ç⠺м®

Á¦8Àå °æÀï ±¸µµ

KTH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Automotive Powertrain Sensors Market Summary

The global automotive powertrain sensors market size was estimated at USD 21.77 billion in 2024 and is projected to reach USD 33.66 billion by 2030, growing at a CAGR of 7.7% from 2025 to 2030. The ongoing shift toward electric vehicles (EVs) has significantly boosted the demand for advanced powertrain sensors designed specifically for battery systems, electric motors, and thermal control.

According to the U.S. Department of Energy (DOE), the global automotive sensor market surge from 7.5 billion units in 2017 to 11.0 billion units by 2024, with electrification alone accounting for 35% of this expansion. This transformation has propelled market growth by necessitating the development of sensors capable of managing tasks such as monitoring inverter temperatures, detecting voltage imbalances in battery cells, and enhancing regenerative braking systems.

Moreover, innovations such as zirconia-based oxygen sensors, originally intended for internal combustion engines (ICEs), are now being adapted for fuel cell electric vehicles (FCEVs) to measure hydrogen purity and fuel stack efficiency. The sensor ecosystem in EVs has also become more energy-intensive-DOE estimates indicate the energy demand for manufacturing and operating EV sensors reaches 1,540 petajoules (PJ) by 2024, up from 1,050 PJ in 2017, demonstrating the dual challenge of performance enhancement and lifecycle energy management. These technical advances and demand pressures are directly boosting the automotive powertrain sensors market.

Another key trend that has propelled market growth is the convergence of powertrain sensors with autonomous driving and ADAS technologies. These systems rely on real-time data from sensors to make critical adjustments to torque, braking, and energy use. ARPA-E studies show that cloud-based integration of sensor data allows hybrid powertrains to adapt dynamically to road conditions and traffic patterns, resulting in up to 12% lower energy consumption. Components like inertial measurement units (IMUs) and wheel-speed sensors now feed into centralized electronic control units (ECUs) alongside LiDAR and radar, optimizing drive profiles and fuel efficiency. The Environmental Protection Agency (EPA) notes that such integration enhances emission control by keeping engines or electric motors within their peak efficiency zones during autonomous operation. With regulatory mandates for collision avoidance and CO2 reduction taking effect, over 70% of new vehicles in North America and Europe are projected to include ADAS-linked powertrain sensors by 2025, further boosting the market outlook.

Sensor resilience in extreme environments has emerged as a critical differentiator, driving innovation and pushing market boundaries. Powertrain sensors deployed in high-temperature zones such as exhaust systems and turbochargers must withstand intense thermal, chemical, and vibrational stress. The National Energy Technology Laboratory (NETL) has pioneered zirconia-based oxygen sensors capable of functioning at temperatures up to 800°C, showcasing materials advancements that have propelled sensor reliability. Likewise, DOE-backed efforts have introduced flowmeters that perform accurately under 650°C and volatile pressure conditions, crucial for compliance with Euro 7 and U.S. Tier 4 emission standards. Notably, harsh-environment sensor failures account for nearly 22% of ICE-related warranty claims, according to the EPA. In response, OEMs are rapidly adopting solid-state sensors, with 90% planning to implement them by 2025 to reduce failure rates by up to 40%. These advances are directly boosting the automotive powertrain sensors market by improving performance, longevity, and lowering the total cost of ownership.

The role of regulatory compliance in propelling the powertrain sensors market cannot be overstated. Globally, tighter emission laws have made advanced sensors indispensable. The EPA identifies oxygen sensors as critical for maintaining stoichiometric air-fuel ratios, noting that a faulty sensor can lead to a 300% increase in NOx emissions during standard testing. DOE data confirms that closed-loop sensor systems can reduce hydrocarbon emissions in gasoline engines by up to 50%, contributing to the 95% reduction in tailpipe pollutants since 1980. However, the pressure to comply has also driven costs; OEM pricing for oxygen sensors can vary by as much as 400% despite identical functionality, complicating repair economics and inspection/maintenance (I/M) programs. To counter this, the EPA has proposed standardizing sensor materials and interfaces, which could reduce aftermarket costs by 30% by 2025. These policy and cost dynamics have directly boosted demand for advanced, standardized powertrain sensors across vehicle platforms.

The integration of cloud computing with powertrain sensors is transforming vehicle maintenance and operational efficiency, significantly boosting the market. Predictive maintenance systems use cloud-connected sensors to monitor component health in real-time, allowing vehicles to preemptively manage thermal loads or part degradation. For instance, Bosch's smart sensor platforms now transmit live data on injector wear and turbocharger efficiency to OEM servers, enabling proactive component replacement. According to ARPA-E and DOE models, this approach can cut battery degradation by 15% during fast charging and reduce lifecycle energy consumption by 8.9 GJ per vehicle. These systems also prevent unnecessary part replacements, improving vehicle uptime and reducing fleet management costs. By 2025, it's expected that 60% of commercial fleets will utilize cloud-connected powertrain sensors, largely driven by the cost savings and operational continuity they offer. This smart integration is further accelerating the growth trajectory of the global automotive powertrain sensors market.

Global Automotive Powertrain Sensors Market Segmentation

This report forecasts revenue growth at the global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2018 to 2030. For this study, Grand View Research has segmented the global automotive powertrain sensors market report based on sensor type, vehicle type, propulsion type, and region.

Table of Contents

Chapter 1. Methodology and Scope

Chapter 2. Executive Summary

Chapter 3. Automotive Powertrain Sensors Market Variables, Trends, & Scope

Chapter 4. Automotive Powertrain Sensors Market: Sensor Type Estimates & Trend Analysis

Chapter 5. Automotive Powertrain Sensors Market: Vehicle Type Estimates & Trend Analysis

Chapter 6. Automotive Powertrain Sensors Market: Propulsion Type Estimates & Trend Analysis

Chapter 7. Automotive Powertrain Sensors Market: Regional Estimates & Trend Analysis

Chapter 8. Competitive Landscape

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â