¼¼°èÀÇ »óÇϼöµµ¿ë ¼¾¼­ ½ÃÀå
Water and Wastewater Sensors
»óǰÄÚµå : 1799085
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 284 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ »óÇϼöµµ¿ë ¼¾¼­ ½ÃÀåÀº 2030³â±îÁö 929¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 638¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â »óÇϼöµµ¿ë ¼¾¼­ ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 6.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 929¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ pH ¼¾¼­´Â ºÐ¼® ±â°£ Á¾·á±îÁö CAGR 7.9%¸¦ ³ªÅ¸³»°í, 437¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿ëÁ¸ »ê¼Ò ¼¾¼­ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 5.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 174¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 10.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ »óÇϼöµµ¿ë ¼¾¼­ ½ÃÀåÀº 2024³â¿¡ 174¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 194¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 10.4%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 3.1%¿Í 6.4%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.3%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ »óÇϼöµµ¿ë ¼¾¼­ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±ÔÁ¦ ¾Ð·ÂÀº ¼öÁú ¸ð´ÏÅ͸µ ¼ö¿ä¸¦ ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿Í Á¤Ã¥ ÇÁ·¹ÀÓ¿öÅ©´Â »óÇϼöµµ¿ë ¼¾¼­ ½ÃÀåÀÇ ÁøÈ­¸¦ µÞ¹ÞħÇÏ´Â °¡Àå °áÁ¤ÀûÀÎ Èû Áß ÇϳªÀÔ´Ï´Ù. ¼öÁú ±âÁØÀÌ Á¡Â÷ ¾ö°ÝÇØÁü¿¡ µû¶ó »ê¾÷°è¿Í ÁöÀÚü´Â ½Ç½Ã°£ °íÁ¤¹Ð ¸ð´ÏÅ͸µ ±â¼úÀ» äÅÃÇØ¾ß ÇÒ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì¿¡¼­´Â ¹Ì±¹ ȯ°æº¸È£Ã»(EPA)ÀÌ Áö¼ÓÀûÀ¸·Î ¹èÃâÇã¿ë±âÁØÀ» °­È­ÇÔ¿¡ µû¶ó, ½Ã¼³µéÀÌ ¹èÃâÇã¿ë±âÁØÀ» ÁؼöÇÒ ¼ö Àִ ÷´Ü ¼¾½Ì Àåºñ¿¡ ÅõÀÚÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î À¯·´¿¬ÇÕ(EU)¿¡¼­´Â ¹° ÇÁ·¹ÀÓ¿öÅ© ÁöħÀÌ È¸¿ø±¹µé¿¡°Ô ¼ö¿ªÀÇ »ýÅÂÀû, È­ÇÐÀû »óÅ °³¼±À» Àǹ«È­Çϰí ÀÖ¾î ¼¾¼­ µµÀÔ¿¡ Å« ź·ÂÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Áú»ê¿°, Àλ꿰, Á߱ݼÓ, Æó¼ö Áß ¹Ì»ý¹° ¿À¿° ÃøÁ¤ µî ¿µ¾ç¿°·ù ¹× ¿À¿°¹°Áú ÃßÀûÀ» ¼ö¹ÝÇÏ´Â ¿ëµµ¿¡¼­ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç ±¹°¡µéÀº ƯÈ÷ µµ½ÃÈ­·Î ÀÎÇÑ ¹° ½ºÆ®·¹½º¿Í ÀÌ·Î ÀÎÇÑ ¼ö°è Àü¿°º´ Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ±ÔÁ¦¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀεµÀÇ Jal Jeevan MissionÀ̳ª Áß±¹ÀÇ ¾ß½ÉÂù ȯ°æº¸È£ 5°³³â °èȹ°ú °°Àº ±¹°¡Àû ³ë·ÂÀº ºÐ»êÇü ¼öÁú ¸ð´ÏÅ͸µÀÇ Çʿ伺¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¿äÄÁ´ë, ÄÄÇöóÀ̾𽺴 ´õ ÀÌ»ó ¼±ÅûçÇ×ÀÌ ¾Æ´Ï¶ó ¼¾¼­ ±â¼úÀÌ »çġǰÀÌ ¾Æ´Ñ ÇʼöǰÀÌ µÉ ¼ö ÀÖ´Â º¯È­¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

½º¸¶Æ® ÀÎÇÁ¶ó°¡ ±× ¾î´À ¶§º¸´Ù ¼¾¼­ ÅëÇÕÀ» ÃËÁøÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

½º¸¶Æ®½ÃƼÀÇ È®»ê°ú ·¹°Å½Ã ¹° ÀÎÇÁ¶óÀÇ Çö´ëÈ­´Â ¼öÀÚ¿øÀ» ¸ð´ÏÅ͸µÇÏ°í °ü¸®ÇÏ´Â ¹æ½Ä¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÚµ¿È­¿¡ ´ëÇÑ Á߿伺ÀÌ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ´Â °¡¿îµ¥, ÁöÀÚü¿Í °ø±â¾÷Àº ¿î¿µ È¿À²¼º°ú ¿¹Ãø À¯Áöº¸¼ö¸¦ °³¼±Çϱâ À§ÇØ ¼¾¼­ ±â¹Ý »ç¹°ÀÎÅͳÝ(IoT) ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ¹° °ü¸® ½Ã½ºÅÛÀº ÇöÀç pH, ʵµ, Àüµµµµ, ¿ëÁ¸ »ê¼Ò, ¿°¼Ò ¼¾¼­ µî ´Ù¾çÇÑ ¼¾¼­¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ÀÌ ¸ðµç °ÍÀÌ ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼® ¹× ÀÇ»ç °áÁ¤¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ³ëÈÄÈ­µÈ ÀÎÇÁ¶ó·Î ÀÎÇØ ´©¼ö ¹× °íÀåÀÌ ¹ß»ýÇϱ⠽¬¿î ¼±Áø±¹¿¡¼­´Â ƯÈ÷ µÎµå·¯Áö¸ç, ´©¼ö °¨Áö ¹× À¯·® ºÐ¼®À» À§ÇÑ ½º¸¶Æ® ¼¾¼­ÀÇ µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ½ÅÈï±¹µéÀº ±âÁ¸ ½Ã½ºÅÛÀ» ¶Ù¾î³Ñ¾î ºñ¿ë È¿À²ÀûÀÎ ¸ð´ÏÅ͸µ ±â´ÉÀ» Á¦°øÇÏ´Â ÅëÇÕ µðÁöÅÐ ¼Ö·ç¼ÇÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ¿ø°Ý ¼¾¼­¿Í ¹«¼± ¼¾¼­´Â ³ó¾÷ À¯Ãâ ÇöÀåÀ̳ª »ê¾÷ Æó±â¹° ±¸¿ª°ú °°Àº ¿­¾ÇÇÑ ¿ø°Ý ȯ°æ¿¡¼­µµ ÀÛµ¿Çϸç, »ç¶÷ÀÇ °¨½Ã ¾øÀ̵µ »óȲ ÀνÄÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ´É·ÂÀ¸·Î Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ GIS ¹× Ŭ¶ó¿ìµå ±â¹Ý Ç÷§Æû°úÀÇ ÅëÇÕÀ» ÅëÇØ ´ë±Ô¸ð ¼öÁú °ü¸® ´É·ÂÀÌ °­È­µÇ¾î ±âÁ¸ÀÇ ¼öµµ¸ÁÀÌ Áö´ÉÇü ÀÚ°¡ Á¦¾î ½Ã½ºÅÛÀ¸·Î º¯È­Çϰí ÀÖ½À´Ï´Ù. ¼¾¼­ ±â¼ú°ú ÀΰøÁö´É ¹× ¸Ó½Å·¯´×ÀÇ À¶ÇÕÀº ÀÌ»ó °¨Áö, ¼ö¿ä ¿¹Ãø, ¿À¿°¿ø ½Äº°À» ´õ¿í °£¼ÒÈ­ÇÏ¿© Á¤¹Ðµµ°¡ ÁÖµµÇÏ´Â ¹° °ü¸®ÀÇ »õ·Î¿î ½Ã´ë¸¦ ¾Õ´ç±æ °ÍÀÔ´Ï´Ù.

»ê¾÷ ¹× ³ó¾÷ ºÎ¹®Àº ¸ð´ÏÅ͸µÀ» °­È­ÇÏÁö ¾Ê°íµµ ¼ºÀåÀ» À¯ÁöÇÒ ¼ö ÀÖÀ»±î?

»ê¾÷È­¿Í Áý¾àÀû ³ó¾÷Àº ¼öÁú ¿À¿°ÀÇ °¡Àå Å« µÎ °¡Áö ¿äÀÎÀ̸ç, ÀÌ·¯ÇÑ ºÎ¹®ÀÌ °è¼Ó È®´ëµÊ¿¡ µû¶ó ¼¾¼­ ±â¹Ý ¼Ö·ç¼Ç äÅÿ¡ ´ëÇÑ ¾Ð·ÂÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ¼®À¯È­ÇÐ, ±¤¾÷, Á¦¾à, ½ÄÀ½·á µîÀÇ »ê¾÷¿¡¼­ Æó¼ö¸¦ ±ÔÁ¦Ä¡ À̳»·Î À¯ÁöÇÏ´Â °ÍÀº ¹ý±Ô Áؼö»Ó¸¸ ¾Æ´Ï¶ó »çȸÀû ½Å·Ú¿Í Áö¼Ó°¡´É¼ºÀ» À¯ÁöÇϱâ À§Çؼ­µµ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ¿¡ µû¶ó È­ÇÐÀû »ê¼Ò¿ä±¸·®(COD), »ý¹°ÇÐÀû »ê¼Ò¿ä±¸·®(BOD), À¯ºÐ µî ´Ù¾çÇÑ ¿À¿°¹°ÁúÀ» µ¿½Ã¿¡ ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ´Â ¸ÖƼ ÆÄ¶ó¹ÌÅÍ ¹° ¼¾¼­ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ³ó¾÷ ºÐ¾ß¿¡¼­´Â Åä¾ç ¼öºÐ, À¯Ãâ¼ö ¼öÁú, ¿µ¾çºÐÀ» ÃøÁ¤ÇÏ´Â ¼¾¼­¸¦ ÅëÇØ °ü°³ ¹æ¹ýÀÌ ÃÖÀûÈ­µÇ°í ÀÖ½À´Ï´Ù. Á¤¹Ð³ó¾÷Àº ´õ ÀÌ»ó ÀÛ¹° ¼öÈ®·® ÃÖÀûÈ­¿¡ ±×Ä¡Áö ¾Ê°í, Ã¥ÀÓ°¨ ÀÖ´Â ¹° »ç¿ë°ú ¿À¿° ¿ÏÈ­·Î±îÁö È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¹° ºÎÁ· Áö¿ª¿¡¼­´Â ÀÌ·¯ÇÑ µµ±¸°¡ ³ó¾÷ »ý»ê¼º°ú ȯ°æ º¸È£ÀÇ ±ÕÇüÀ» ¸ÂÃß´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ºü¸£°Ô ¼ºÀåÇϰí ÀÖ´Â ¾ç½Ä¾÷Àº ÃÖÀûÀÇ »ýÀ° Á¶°ÇÀ» º¸ÀåÇÏ°í ¹°°í±â Æó»ç¸¦ ¹æÁöÇϱâ À§ÇØ ¿ëÁ¸ »ê¼Ò, ¾Ï¸ð´Ï¾Æ, pH ·¹º§ÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°è´Â ¶ÇÇÑ »ç³» ±ÔÁ¤ Áؼö ÃßÀû ¹× ÇÁ·Î¼¼½º ÃÖÀûÈ­¸¦ À§ÇØ ÀÚü ¼¾¼­ ³×Æ®¿öÅ©¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ¹Î°ü ÆÄÆ®³Ê½ÊÀ» ÅëÇØ Áö¿ª Àüü¿¡ ¼öÁú °¨Áö ÀÎÇÁ¶ó¸¦ ±¸ÃàÇϱâ À§ÇÑ Çù·ÂÀû ³ë·ÂÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î, ¼¾¼­ »ýŰè´Â ¹°ÀÇ ¹«°á¼ºÀ» ÈѼÕÇÏÁö ¾Ê°í »ê¾÷°ú ³ó¾÷ÀÇ »ý»ê¼ºÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

½ÃÀå ±ÞÆØÃ¢ÀÇ ¿øµ¿·ÂÀº?

»óÇϼöµµ ¼¾¼­ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº ±â¼ú ¹ßÀü, ºÐ¾ßº° ¿ëµµ, ÁøÈ­ÇÏ´Â ¼ÒºñÀÚ ¹× Á¶Á÷ Çൿ µî ¿©·¯ ¿äÀο¡ °ÉÃÄ ÀÖ½À´Ï´Ù. ù°, ¼¾¼­ÀÇ ¼ÒÇüÈ­, ³»±¸¼º, ¹«¼± Åë½ÅÀÇ ±â¼ú Çõ½ÅÀ¸·Î äÅà À庮ÀÌ ³·¾ÆÁ® °íÁ¤ ¹× ¸ð¹ÙÀÏ Ç÷§Æû¿¡ ±¤¹üÀ§ÇÏ°Ô ¹èÆ÷ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. µÑ°, µµ½Ã¿Í ³óÃÌÀ» ¸··ÐÇÏ°í ºÐ»êÇü ¼öó¸® ½Ã½ºÅÛÀÇ µîÀåÀ¸·Î ÀÚÀ²ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ÀÛ°í À¯Áöº¸¼ö°¡ ÀûÀº ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú µ¥ÀÌÅÍ ±â¹ÝÀÇ ¹° °Å¹ö³Í½º·ÎÀÇ ÀüȯÀº ÷´Ü ¼¾½Ì ±â¼úÀÇ Çʿ伺À» ´õ¿í °¡¼ÓÈ­½Ã۰í ÀÖ½À´Ï´Ù. ¼Â°, »ê¾÷ °øÁ¤ÀÇ Ã³¸®¼ö ¼ö¿ä Áõ°¡¿Í Æó¼ö ÀçȰ¿ë ¹× Àç»ç¿ë Áõ°¡·Î ÀÎÇØ °øÁ¤ÀÇ ¹«°á¼ºÀ» À§ÇØ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µÀÌ ÇʼöÀûÀÔ´Ï´Ù. ³Ý°, ¹°ÀÇ ¾ÈÀü°ú °Ç°­¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀνÄÀº ƯÈ÷ ÁÖ°Å Áö¿ª¿¡¼­ ´õ Åõ¸íÇÏ°í ¼¾¼­·Î µÞ¹ÞħµÇ´Â ǰÁú º¸ÁõÀ» Á¦°øÇϵµ·Ï Àü·Âȸ»ç¿¡ Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±âÈÄ º¯È­·Î ÀÎÇØ ¼öÀÚ¿ø°ú ¼öÁúÀÌ ºÒ¾ÈÁ¤ÇØÁü¿¡ µû¶ó Á¤ºÎ ¹× ¹Î°£ ÀÌÇØ°ü°èÀÚµéÀº ¸®½ºÅ©¸¦ ÁÙÀ̱â À§ÇØ °ß°íÇÑ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ÀçÁ¤Àû Àμ¾Æ¼ºê, º¸Á¶±Ý, À¯¿£ÀÇ Áö¼Ó°¡´É°³¹ß¸ñÇ¥(SDGs) µîÀÇ ¼¼°è ÀÌ´Ï¼ÅÆ¼ºê°¡ ¼¾¼­¸¦ Ȱ¿ëÇÑ ¹° ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀÌ °áÇÕµÇ¾î ¿ªµ¿ÀûÀÌ°í ºü¸£°Ô ¼ºÀåÇÏ´Â ½ÃÀåÀ» µÞ¹ÞħÇϰí ÀÖÀ¸¸ç, ¼¼°è ¹° ¾Èº¸¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

¼¾¼­ À¯Çü(pH ¼¾¼­, ¿ëÁ¸ »ê¼Ò ¼¾¼­, ¿Âµµ ¼¾¼­, ʵµ ¼¾¼­, ±âŸ ¼¾¼­ À¯Çü), ¿ëµµ(ÀÚġü ¿ëµµ, »ê¾÷ Æó¼ö ó¸® ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Water and Wastewater Sensors Market to Reach US$92.9 Billion by 2030

The global market for Water and Wastewater Sensors estimated at US$63.8 Billion in the year 2024, is expected to reach US$92.9 Billion by 2030, growing at a CAGR of 6.5% over the analysis period 2024-2030. pH Sensors, one of the segments analyzed in the report, is expected to record a 7.9% CAGR and reach US$43.7 Billion by the end of the analysis period. Growth in the Dissolved Oxygen Sensors segment is estimated at 5.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$17.4 Billion While China is Forecast to Grow at 10.4% CAGR

The Water and Wastewater Sensors market in the U.S. is estimated at US$17.4 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$19.4 Billion by the year 2030 trailing a CAGR of 10.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.1% and 6.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.3% CAGR.

Global Water and Wastewater Sensors Market - Key Trends & Drivers Summarized

How Are Regulatory Pressures Reshaping the Demand for Water Quality Monitoring?

Stringent environmental regulations and policy frameworks have become one of the most defining forces behind the evolution of the water and wastewater sensors market. With water quality standards becoming progressively rigorous, industries and municipalities are under increased pressure to adopt real-time, high-precision monitoring technologies. Across North America, the U.S. Environmental Protection Agency (EPA) has continuously tightened permissible discharge limits, prompting facilities to invest in advanced sensing equipment that can ensure compliance. Similarly, in the European Union, the Water Framework Directive has compelled member states to improve the ecological and chemical status of water bodies, giving a significant boost to sensor deployments. The demand is particularly strong in applications involving nutrient and contaminant tracking, such as measuring nitrates, phosphates, heavy metals, and microbial contamination in effluents. Asia-Pacific countries are also stepping up regulatory enforcement, especially in response to urbanization-induced water stress and the resulting rise in waterborne diseases. Furthermore, national initiatives like India's Jal Jeevan Mission and China's ambitious Five-Year Plans for environmental protection have spurred the need for decentralized water quality monitoring. In essence, compliance is no longer optional; it is driving a transformation where sensor technology is no longer a luxury but a necessity.

Why Is Smart Infrastructure Driving Sensor Integration Like Never Before?

The proliferation of smart cities and the modernization of legacy water infrastructure are revolutionizing how water resources are monitored and managed. With increasing emphasis on automation, municipalities and utilities are investing in sensor-based Internet of Things (IoT) solutions to improve operational efficiency and predictive maintenance. Smart water management systems now rely heavily on a diverse range of sensors including pH, turbidity, conductivity, dissolved oxygen, and chlorine sensors, all of which contribute to real-time data analytics and decision-making. This shift is particularly significant in developed economies where aging infrastructure is prone to leakages and failures, prompting the deployment of smart sensors for leak detection and flow rate analysis. At the same time, developing countries are leapfrogging traditional systems and adopting integrated digital solutions that offer cost-effective monitoring capabilities. Remote and wireless sensors have gained traction for their ability to operate in harsh and remote environments, such as agricultural runoff sites or industrial waste zones, enhancing situational awareness without intensive human oversight. Integration with GIS and cloud-based platforms is also amplifying the ability to manage water quality on a large scale, transforming conventional water networks into intelligent, self-regulating systems. The convergence of sensor technology with artificial intelligence and machine learning is further streamlining anomaly detection, demand forecasting, and pollution source identification, fostering a new era of precision-driven water stewardship.

Can Industrial and Agricultural Sectors Maintain Growth Without Enhanced Monitoring?

Industrialization and intensive agriculture are two of the biggest contributors to water pollution, and as these sectors continue to expand, the pressure to adopt sensor-based solutions grows stronger. In industries such as petrochemicals, mining, pharmaceuticals, and food & beverage, maintaining effluent discharge within regulated parameters is essential not only to comply with laws but also to maintain public trust and sustainability credentials. As a result, there is a heightened adoption of multi-parameter water sensors that can simultaneously monitor various pollutants, including chemical oxygen demand (COD), biological oxygen demand (BOD), and oil content. On the agricultural front, irrigation practices are increasingly being optimized through sensors that measure soil moisture, runoff quality, and nutrient content. Precision agriculture is no longer confined to crop yield optimization but has extended into responsible water use and pollution mitigation. In water-stressed regions, such tools are vital for balancing agricultural productivity with environmental protection. Furthermore, aquaculture, a rapidly expanding sub-sector, also relies heavily on real-time monitoring of dissolved oxygen, ammonia, and pH levels to ensure optimal growing conditions and prevent fish mortality. Industries are also investing in proprietary sensor networks for internal compliance tracking and process optimization, while public-private partnerships are enabling collaborative efforts to deploy region-wide water quality sensing infrastructure. Overall, the sensor ecosystem is becoming indispensable for sustaining industrial and agricultural productivity without compromising water integrity.

What Is Fueling the Momentum Behind the Rapid Expansion of This Market?

The growth in the water and wastewater sensors market is driven by several factors that span across technological advancements, sectoral applications, and evolving consumer and institutional behavior. First, innovations in sensor miniaturization, durability, and wireless communication have lowered barriers to adoption, enabling widespread deployment across fixed and mobile platforms. Secondly, the rise of decentralized water treatment systems in both urban and rural areas has created demand for compact, low-maintenance sensors capable of autonomous operation. The shift toward real-time monitoring and data-driven water governance is further accelerating the need for sophisticated sensing technologies. Thirdly, the escalating demand for treated water in industrial processes, combined with the increasing recycling and reuse of wastewater, has made continuous monitoring essential for process integrity. Fourth, consumer awareness around water safety and health has prompted utilities to offer more transparent, sensor-backed quality assurance, particularly in residential zones. Additionally, climate change-induced volatility in water sources and quality is pushing governments and private stakeholders to invest in robust monitoring systems to mitigate risks. Finally, financial incentives, grants, and global initiatives such as the United Nations Sustainable Development Goals (SDGs) are catalyzing investments in sensor-enabled water infrastructure. All these factors collectively underpin a dynamic and rapidly growing market, poised to play a pivotal role in global water security.

SCOPE OF STUDY:

The report analyzes the Water and Wastewater Sensors market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Sensor Type (pH Sensors, Dissolved Oxygen Sensors, Temperature Sensors, Turbidity Sensors, Other Sensor Types); Application (Municipalities Application, Industrial Wastewater Treatment Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â