¼¼°èÀÇ E-Mobility¿ë Æú¸®¾Æ¹Ìµå ½ÃÀå
Polyamide in E-Mobility
»óǰÄÚµå : 1798999
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 280 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

E-Mobility¿ë Æú¸®¾Æ¹Ìµå ¼¼°è ½ÃÀåÀº 2030³â±îÁö 19¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 13¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â E-Mobility¿ë Æú¸®¾Æ¹Ìµå ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 5.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 19¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Æú¸®¾Æ¹Ìµå 6Àº CAGR 4.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 8¾ï 200¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Æú¸®¾Æ¹Ìµå 66 ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 7.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 3¾ï 6,650¸¸ ´Þ·¯, Áß±¹Àº CAGR 8.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ E-Mobility¿ë Æú¸®¾Æ¹Ìµå ½ÃÀåÀº 2024³â¿¡ 3¾ï 6,650¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 8.7%·Î 2030³â±îÁö 3¾ï 7,310¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 2.9%¿Í 5.5%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ E-Mobility¿ë Æú¸®¾Æ¹Ìµå ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Æú¸®¾Æ¹Ìµå°¡ Â÷¼¼´ë E-Mobility ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ºÎ»óÇÏ´Â ÀÌÀ¯

°í¼º´É ¿£Áö´Ï¾î¸µ ¿­°¡¼Ò¼º ÇÃ¶ó½ºÆ½ÀÎ Æú¸®¾Æ¹Ìµå(PA)´Â Àü±â À̵¿¼º(e-mobility)ÀÇ ÁøÈ­¿¡ ÇʼöÀûÀÎ ¼ÒÀç·Î ºü¸£°Ô º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ³ôÀº ±â°èÀû °­µµ, ¿­ ¾ÈÁ¤¼º, Àü±â Àý¿¬¼ºÀ¸·Î À¯¸íÇÑ Æú¸®¾Æ¹Ìµå´Â ¹èÅ͸® ÀÎŬ·ÎÀú, ¹ö½º¹Ù, Ä¿³ØÅÍ, ¿­ °ü¸® ºÎǰ, º¸´Ö ±¸Á¶ ºÎǰ µî ´Ù¾çÇÑ Àü±âÀÚµ¿Â÷(EV) ÀÀ¿ë ºÐ¾ß¿¡¼­ ±Ý¼Ó ¹× Àú±Þ ÇÃ¶ó½ºÆ½À» ´ëüÇϰí ÀÖ½À´Ï´Ù.

E-Mobility·ÎÀÇ Àüȯ¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ÀÚµ¿Â÷ ºÎǰ Á¦Á¶¾÷ü´Â ¾ö°ÝÇÑ ¾ÈÀü ¹× ¼º´É ±âÁØÀ» ÃæÁ·½ÃŰ¸é¼­ Àü±â ½Ã½ºÅÛÀÇ °æ·®È­, ¼ÒÇüÈ­, ÅëÇÕÈ­¸¦ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. Æú¸®¾Æ¹Ìµå, ƯÈ÷ PA6, PA66, PA46 ¹× PA12¿Í °°Àº °í±Þ Àå¼â Æú¸®¾Æ¹Ìµå´Â ¿ì¼öÇÑ Áß·® ´ë °­µµ ºñÀ², ³­¿¬¼º ¹× °íÀü¾Ð ȯ°æ¿¡ ´ëÇÑ ³»¼ºÀ» °¡Áö°í ÀÖ¾î EVÀÇ ±¸Á¶Àû ÀÀ¿ë°ú ÀüÀÚ ÀÀ¿ë ¸ðµÎ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù.

EVÀÇ °íÀü¾Ð ¾ÆÅ°ÅØÃ³(400V-800V)·ÎÀÇ Àüȯ¿¡ µû¶ó ³ôÀº ¿­Àû, Àü±âÀû ½ºÆ®·¹½º¸¦ °ßµô ¼ö ÀÖ´Â À¯Àüü Àý¿¬ Àç·á¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À¯¸®¼¶À¯ °­È­ Æú¸®¾Æ¹Ìµå µî±ÞÀº Ä¡¼ö ¾ÈÁ¤¼º°ú Ç¥¸é ÀúÇ×ÀÌ Áß¿äÇÑ °íÀü¾Ð Ä¿³ØÅÍ, Àý¿¬ ÇÏ¿ì¡, ¹èÅ͸® ¸ðµâ ÇÁ·¹ÀÓ, ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ºÀÁö µîÀÇ ¿ëµµ¿¡ ¸Â°Ô Á¶Á¤µÇ¾ú½À´Ï´Ù.

¹èÇÕÀÇ Áøº¸¿Í °¡°øÀÇ Çõ½ÅÀº ¾î¶»°Ô E-Mobility ´ëÀÀ Æú¸®¾Æ¹Ìµå¸¦ Çü¼ºÇϰí Àִ°¡?

EV Ç÷§ÆûÀÇ Á¡Á¡ ´õ ±î´Ù·Î¿öÁö´Â ¿ä±¸ »çÇ×À» ÃæÁ·½Ã۱â À§ÇØ Àç·á °úÇÐ Çõ½Å°¡µéÀº Àü±â Àý¿¬¼º, ³»°¡¼öºÐÇØ¼º, ¿­ ¼º´ÉÀ» °­È­ÇÑ »õ·Î¿î Æú¸®¾Æ¹Ìµå µî±ÞÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÇÒ·Î°Õ ÇÁ¸® ³­¿¬¼º PA6 ¹× PA66 ÄÄÆÄ¿îµå´Â UL94 V-0 Ç¥ÁØ, ±Û·Î¿ì ¿ÍÀÌ¾î °¡¿¬¼º Å×½ºÆ®(GWIT) ¹× EV ¹èÅ͸® ½Ã½ºÅÛ ¹× ÃæÀü ºÎǰ¿¡ Áß¿äÇÑ ºñ±³ ÃßÀû Áö¼ö(CTI) »ç¾çÀ» ÃæÁ·Çϵµ·Ï ÃÖÀûÈ­µÇ¾î ÀÖ½À´Ï´Ù.

PA46°ú °°Àº °í¿Â Æú¸®¾Æ¹Ìµå³ª Æú¸®ÇÁÅ»¾Æ¹Ìµå(PPA)¿Í °°Àº ¹Ý¹æÇâÁ· Æú¸®¾Æ¹Ìµå´Â ÀιöÅÍ ÇÏ¿ì¡, ¸ðÅÍ Àý¿¬ ºÎǰ, Á¤¼Ç¹Ú½º µî 150¡É ÀÌ»óÀÇ °í¿Â¿¡¼­ Áö¼ÓÀûÀ¸·Î µ¿ÀÛÇÏ´Â ºÎǰÀÇ °³¹ßÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±ä À¯¸®¼¶À¯¿Í ¹Ì³×¶ö ÇÊ·¯·Î °­È­µÈ Æú¸®¾Æ¹Ìµå º¹ÇÕÀç·á´Â EVÀÇ ´ëÇü ¹× º¹ÀâÇÑ ÀÎŬ·ÎÀú¸¦ À§ÇÑ Ä¡¼ö °­¼º°ú ÈÚ ÀúÇ×¼ºÀ» Á¦°øÇÕ´Ï´Ù.

°¡°ø Ãø¸é¿¡¼­ Á¦Á¶¾÷ü´Â °íÁ¤¹Ð »çÃâ ¼ºÇü ¹× ´Ù¼ººÐ ¿À¹ö¸ôµù ±â¼úÀ» Ȱ¿ëÇÏ¿© °øÂ÷°¡ ¾ö°ÝÇϰí Á¶¸³ÀÇ º¹À⼺À» ÁÙÀÎ ÀÏüÇü °í¼º´É ºÎǰÀ» »ý»êÇϰí ÀÖ½À´Ï´Ù. ·¹ÀÌÀú ¿ëÁ¢ÀÌ °¡´ÉÇÏ°í ·¹ÀÌÀú Åõ°ú¼ºÀÌ ÀÖ´Â PA ÄÄÆÄ¿îµå´Â ¹èÅ͸® ÆÑ Á¶¸³ ¶óÀο¡¼­ ÀÚµ¿ Á¢ÇÕ ¹× ¹ÐºÀÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, 3D ÇÁ¸°ÆÃ¿¡ ÀûÇÕÇÑ Æú¸®¾Æ¹Ìµå ÆÄ¿ì´õ¿Í Çʶó¸àÆ®´Â EVÀÇ ÇÁ·ÎÅäŸÀÌÇΰú ¼Ò·® »ý»ê¿¡ ÀÖ¾î ±× Á߿伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù.

Æú¸®¾Æ¹Ìµå ¼Òºñ¸¦ ÁÖµµÇÏ´Â EV ½Ã½ºÅÛ°ú ½ÃÀåÀº?

E-Mobility¿¡¼­ Æú¸®¾Æ¹ÌµåÀÇ °¡Àå Å« ÀÀ¿ë ºÐ¾ß´Â ¹èÅ͸® ÀÎŬ·ÎÀú, ÀüÀÚ Á¦¾î ÀåÄ¡ ÇÏ¿ì¡, ¿­ ÀÎÅÍÆäÀ̽º ºÎǰ, ³Ã°¢ ½Ã½ºÅÛ ¸ðµâ, ÄÉÀÌºí ±Û ·£µå, Ä¿³ØÅÍ ½Ã½ºÅÛ µîÀÌ ÀÖ½À´Ï´Ù. ¹èÅ͸® ½Ã½ºÅÛ¿¡¼­ Æú¸®¾Æ¹Ìµå´Â °­µµ, ³­¿¬¼º, Àü±â Àý¿¬¼ºÀÌ ÇÊ¿äÇÑ ¼¿ ½ºÆäÀ̼­, ¸ðµâ ÇÁ·¹ÀÓ, Àý¿¬ À庮 Á¦Á¶¿¡ »ç¿ëµË´Ï´Ù. Àü±â ÆÄ¿öÆ®·¹Àο¡¼­ PA ±â¹Ý ÇÏ¿ì¡Àº ¼¶¼¼ÇÑ ÀüÀÚ ÀåÄ¡¸¦ º¸È£ÇÏ°í ½Ã½ºÅÛÀ» °æ·®È­ÇÕ´Ï´Ù.

Æú¸®¾Æ¹Ìµå ¼ÒÀç´Â Ç÷¯±× Ä¿³ØÅÍ, ÄÉÀ̺í ÇǺ¹, Â÷·® Àη¿/¾Æ¿ô·¿ ½Ã½ºÅÛÀÇ Àý¿¬ ¿ä±¸ »çÇ× ¹× È­Àç ¾ÈÀü ¿ä±¸ »çÇ×À» ÃæÁ·½Ã۱⠶§¹®¿¡ Â÷·® ³» ¹× Â÷·® ¿ÜºÎ ÃæÀü ½Ã½ºÅÛµµ Áß¿äÇÑ ¼ºÀå ºÐ¾ßÀÔ´Ï´Ù. ¼ºÀå ºÐ¾ßÀÎ ÀÚÀ²ÁÖÇà Àü±âÀÚµ¿Â÷¿¡¼­´Â ¼¾¼­ ÇϿ조ú Åë½Å ¸ðµâÀÌ Æú¸®¾Æ¹ÌµåÀÇ ÀüÀÚÆÄ Â÷Æó¼º°ú ±¸Á¶Àû ³»±¸¼ºÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù.

Áö¿ªÀûÀ¸·Î´Â À¯·´°ú Áß±¹ÀÌ E-Mobility ºÐ¾ß¿¡¼­ Æú¸®¾Æ¹Ìµå¸¦ °¡Àå Ȱ¹ßÇÏ°Ô Àü°³Çϰí ÀÖ´Â ½ÃÀåÀÔ´Ï´Ù. ¾ö°ÝÇÑ CO2 ¹èÃâ ±ÔÁ¦, ±Þ¼ÓÇÑ EV ÀÎÇÁ¶ó ±¸Ãà, Á¤ºÎ º¸Á¶±ÝÀ¸·Î EV »ý»êÀÌ °¡¼ÓÈ­µÇ¸é¼­ °í¼º´É Æú¸®¸Ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. BASF, µàÆù, EMS-Chemie, ¼Öº£ÀÌ, ¶û¼¼½º µî ÁÖ¿ä ÀÚµ¿Â÷ Æú¸®¸Ó °ø±Þ¾÷üµéÀº ÀÌ Áö¿ª¿¡¼­ E-Mobility¿¡ ƯȭµÈ PA µî±Þ »ý»êÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ƯÈ÷ ¹Ì±¹°ú ij³ª´Ù¿¡¼­ OEMµéÀÌ ¹èÅ͸® °øÀå°ú Àü±âÀÚµ¿Â÷ »ý»ê¶óÀο¡ ÅõÀÚÇϸ鼭 Ãß°ÝÇϰí ÀÖ½À´Ï´Ù.

E-Mobility¿ë Æú¸®¾Æ¹Ìµå ¼¼°è ½ÃÀå ¼ºÀåÀ» ÁÖµµÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀÚµ¿Â÷ÀÇ Àüµ¿È­, °æ·®È­ ¹× ³»¿­¼º ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, EVÀÇ Àü¿ø ¹× ÃæÀü ¾ÆÅ°ÅØÃ³ÀÇ º¹À⼺ Áõ°¡ µîÀÌ ¼¼°è Àü±âÀÚµ¿Â÷ÀÇ Æú¸®¾Æ¹Ìµå ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ÀÇ Àüµ¿È­°¡ °¡¼ÓÈ­µÇ¸é¼­ ½Â¿ëÂ÷, »ó¿ë Àü±âÀÚµ¿Â÷, ÀÌ·ûÂ÷ µî ±â´É¼º°ú ¾ÈÀü¼ºÀÌ Áß¿äÇÑ ºÎǰ¿¡ Æú¸®¾Æ¹ÌµåÀÇ »ç¿ëÀº Æ´»õ¿¡¼­ ÁÖ·ù·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù.

ƯÈ÷ ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV)¿Í Ç÷¯±×ÀÎ ÇÏÀ̺긮µå ÀÚµ¿Â÷(PHEV)´Â ÀÚµ¿Â÷ÀÇ ¾ÈÀü¼º°ú ³­¿¬¼º¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±âÁØÀÌ ¸¶·ÃµÇ°í ÀÖÀ¸¸ç, UL, ISO, OEM °íÀ¯ÀÇ Ç¥ÁØ¿¡ ºÎÇÕÇÏ´Â Æú¸®¾Æ¹Ìµå ¼ÒÀçÀÇ Ã¤ÅÃÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, EVÀÇ Ç׼ӰŸ®¸¦ ´Ã¸®°í ¹èÅ͸®ÀÇ ºÎ´ãÀ» ÁÙÀ̱â À§ÇÑ °æ·®È­ ¿ä±¸µµ ±¸Á¶¿ë ¹× ¹Ý±¸Á¶¿ë¿¡¼­ ±Ý¼ÓÀ̳ª ¿­°æÈ­¼º ¼öÁöº¸´Ù Æú¸®¾Æ¹ÌµåÀÇ Ã¤¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Àü±âÀÚµ¿Â÷ »ý»ê »ýŰè¿Í ±â°¡ÆÑÅ丮ÀÇ ºÎ»óÀ¸·Î ¼ºÇüÀÌ °¡´ÉÇϰí ÀçȰ¿ëÀÌ °¡´ÉÇϸç ÅëÇÕ¿¡ ÀûÇÕÇÑ °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. »õ·Î¿î EV Ç÷§ÆûÀº ´Ù±â´É, ºñ¿ë È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ¼ÒÀç ¼Ö·ç¼ÇÀ» ¿ä±¸Çϱ⠶§¹®¿¡ Æú¸®¾Æ¹Ìµå´Â ¼¼°è ÀÚµ¿Â÷ ¹ë·ùüÀÎ Àü¹Ý¿¡¼­ Â÷¼¼´ë E-Mobility¸¦ À§ÇÑ ¼ÒÀçÀÇ ¼±ÅÃÀÌ µÉ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç° À¯Çü(Æú¸®¾Æ¹Ìµå 6, Æú¸®¾Æ¹Ìµå 66, ¹ÙÀÌ¿À ±â¹Ý Æú¸®¾Æ¹Ìµå, Ư¼ö Æú¸®¾Æ¹Ìµå), ÀÚµ¿Â÷ À¯Çü(ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷, Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷, ¹èÅ͸® Àü±âÀÚµ¿Â÷), ¿ëµµ(ÀüÀÚºÎǰ ¿ëµµ, º¸´Ö³» ºÎǰ ¿ëµµ, ÀÚµ¿Â÷ ¿ÜÀå ¿ëµµ, ÀÚµ¿Â÷ ³»Àå ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Polyamide in E-Mobility Market to Reach US$1.9 Billion by 2030

The global market for Polyamide in E-Mobility estimated at US$1.3 Billion in the year 2024, is expected to reach US$1.9 Billion by 2030, growing at a CAGR of 5.7% over the analysis period 2024-2030. Polyamide 6, one of the segments analyzed in the report, is expected to record a 4.3% CAGR and reach US$802.0 Million by the end of the analysis period. Growth in the Polyamide 66 segment is estimated at 7.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$366.5 Million While China is Forecast to Grow at 8.7% CAGR

The Polyamide in E-Mobility market in the U.S. is estimated at US$366.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$373.1 Million by the year 2030 trailing a CAGR of 8.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.9% and 5.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.7% CAGR.

Global Polyamide in E-Mobility Market - Key Trends & Drivers Summarized

Why Is Polyamide Gaining Ground in Next-Generation E-Mobility Applications?

Polyamide (PA), a high-performance engineering thermoplastic, is rapidly gaining traction as a crucial material in the evolution of electric mobility (e-mobility). Known for its high mechanical strength, thermal stability, and electrical insulation properties, polyamide is replacing metal and lower-grade plastics across a wide range of electric vehicle (EV) applications-including battery enclosures, busbars, connectors, thermal management components, and under-the-hood structural parts.

In the transition to e-mobility, automotive OEMs and tier suppliers are striving for lightweighting, miniaturization, and integration of electrical systems while meeting stringent safety and performance standards. Polyamide, particularly PA6, PA66, and advanced long-chain variants like PA46 and PA12, offer favorable weight-to-strength ratios, flame retardancy, and resistance to high-voltage environments-making them ideal for both structural and electronic applications in EVs.

The move toward higher voltage architectures (400V to 800V) in EVs is driving the need for dielectric insulation materials that can withstand elevated thermal and electrical stresses. Glass fiber-reinforced polyamide grades are being tailored for applications like high-voltage connectors, insulation housings, battery module frames, and power electronics encapsulation, where dimensional stability and surface resistance are critical.

How Are Formulation Advances and Processing Innovations Shaping E-Mobility-Ready Polyamides?

To address the increasingly demanding requirements of EV platforms, material science innovators are developing new polyamide grades with enhanced electrical insulation, hydrolysis resistance, and thermal performance. Flame-retardant PA6 and PA66 compounds, halogen-free by design, are being optimized to meet UL 94 V-0 ratings, glow wire flammability tests (GWIT), and comparative tracking index (CTI) specifications critical for EV battery systems and charging components.

High-temperature polyamides such as PA46 and semi-aromatic variants like polyphthalamide (PPA) are enabling the development of components that can operate under sustained temperatures above 150°C-supporting inverter housings, motor insulation parts, and junction boxes. Additionally, polyamide-based composites reinforced with long glass fibers or mineral fillers are offering dimensional rigidity and warpage resistance for large, complex housings in EVs.

On the processing front, manufacturers are leveraging high-precision injection molding and multi-component overmolding techniques to produce integrated, high-performance parts with tight tolerances and reduced assembly complexity. Laser-weldable and laser-transparent PA compounds are enabling automated joining and encapsulation in battery pack assembly lines. Furthermore, 3D printing-compatible polyamide powders and filaments are gaining relevance in EV prototyping and low-volume production.

Which EV Systems and Markets Are Driving Polyamide Consumption?

The largest application segments for polyamide in e-mobility include battery enclosures, electronic control unit housings, thermal interface components, cooling system modules, cable glands, and connector systems. Within battery systems, polyamides are used to manufacture cell spacers, module frames, and insulation barriers that require strength, flame retardancy, and electrical insulation. In electric powertrains, PA-based housings protect sensitive electronics and reduce system weight.

Charging systems-both onboard and offboard-are another key growth area, as polyamide materials meet the insulation and fire safety requirements for plug connectors, cable sheaths, and vehicle inlet/outlet systems. In the growing domain of autonomous EVs, sensor housings and communication modules benefit from polyamide’s electromagnetic shielding and structural durability.

Regionally, Europe and China are the most aggressive markets driving polyamide deployment in e-mobility. Stringent CO2 emissions regulations, rapid EV infrastructure rollout, and government subsidies are accelerating EV production, thus increasing demand for high-performance polymers. Leading automotive polymer suppliers such as BASF, DuPont, EMS-Chemie, Solvay, and Lanxess are scaling production of e-mobility-specific PA grades in these regions. North America is catching up, with OEMs investing in battery plants and EV production lines, especially in the U.S. and Canada.

What Is Driving Growth in the Global Polyamide in E-Mobility Market?

The growth in the global polyamide in e-mobility market is driven by the electrification of vehicles, rising demand for lightweight and thermally resilient materials, and growing complexity of EV power and charging architectures. As vehicle electrification accelerates, the use of polyamide in functional, safety-critical components is expanding from niche to mainstream across passenger cars, commercial EVs, and two-wheelers.

Stringent automotive safety and flame retardancy norms-especially for battery electric vehicles (BEVs) and plug-in hybrids (PHEVs)-are fostering adoption of polyamide materials that meet UL, ISO, and OEM-specific standards. Lightweighting imperatives to enhance EV range and reduce battery load are also promoting polyamide over metals and thermosets in structural and semi-structural applications.

Additionally, the rise of localized EV production ecosystems and gigafactories is boosting demand for high-performance materials that are moldable, recyclable, and integration-friendly. As new EV platforms demand multifunctional, cost-effective, and scalable material solutions, polyamide is poised to become a material of choice for next-generation e-mobility across global automotive value chains.

SCOPE OF STUDY:

The report analyzes the Polyamide in E-Mobility market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product Type (Polyamide 6, Polyamide 66, Bio-based Polyamide, Specialty Polyamides); Vehicle Type (Hybrid Electric Vehicles, Plug-in Hybrid Electric Vehicles, Battery Electric Vehicles); Application (Electronic Components Application, Under-Bonnet Components Application, Vehicle Exterior Application, Vehicle Interior Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â